JPH0652869A - Solid electrolyte film of fuel cell and manufacture thereof - Google Patents

Solid electrolyte film of fuel cell and manufacture thereof

Info

Publication number
JPH0652869A
JPH0652869A JP4223410A JP22341092A JPH0652869A JP H0652869 A JPH0652869 A JP H0652869A JP 4223410 A JP4223410 A JP 4223410A JP 22341092 A JP22341092 A JP 22341092A JP H0652869 A JPH0652869 A JP H0652869A
Authority
JP
Japan
Prior art keywords
electrolyte
solid electrolyte
film
electrode
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223410A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Isao Nemoto
勲 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4223410A priority Critical patent/JPH0652869A/en
Publication of JPH0652869A publication Critical patent/JPH0652869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To efficiently manufacture a compact film of solid electrolyte required to a solid electrolyte fuel cell (SOFC). CONSTITUTION:A compact film 2 of electrolyte for blocking pores in an electrode base 1 and a frame-sprayed film 3 of electrolyte formed by frame spraying method are sequentially provided on the electrode base 1. A slurry of particles of stabilized zirconia (YSZ) is previously applied to the surface of an electrode serving as a cell base and is sintered to block the pores, and the film of electrolyte is formed thereafter by frame spraying, whereby a compact film of solid electrolyte can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池の固体電
解質膜およびその製造方法、さらに詳細には固体電解質
型燃料電池の単セルにおける電解質膜およびその製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte membrane for a fuel cell and a method for producing the same, and more particularly to an electrolyte membrane for a single cell of a solid oxide fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池(以下、SOFC
と略)は、イオンの選択透過性を有する固体電解質と、
これを挟んで配置した2つの電極(酸化剤極と燃料極)
を基本要素として構成されている。そして、酸化剤極に
酸素を、燃料極に水素を流すことで化学反応が進行し、
発電が行なわれる。
2. Description of the Related Art Solid oxide fuel cells (hereinafter referred to as SOFC
Is an abbreviation) is a solid electrolyte having selective permeability of ions,
Two electrodes (an oxidizer electrode and a fuel electrode) arranged with this pinched in between
It is configured with as a basic element. Then, by flowing oxygen to the oxidizer electrode and hydrogen to the fuel electrode, the chemical reaction proceeds,
Power is generated.

【0003】電解質としては、酸素イオンか水素イオン
のどちらか一方を透過させる材料であればよいが、通常
は材料的な制約の点から、酸素イオン透過性を持った材
料が使用されている。電解質材料としては、酸化ジルコ
ニアに、酸化イットリアを添加して構造の安定化を図っ
た安定化ジルコニア(YSZ)が使用され、酸化剤極に
はペロブスカイト構造でランタンの一部をアルカリ土類
金属で置換したランタンマンガナイト(La
1-x(M)xyMnO3(M:アルカリ土類金属)が、そ
して燃料電極としては、YSZに所定量のNiを混合し
て調整されたニッケルジルコニアサーメットが用いられ
ている。
As the electrolyte, a material that allows either oxygen ions or hydrogen ions to pass therethrough may be used, but normally a material having oxygen ion permeability is used in view of material restrictions. As the electrolyte material, stabilized zirconia (YSZ) is used in which yttria oxide is added to zirconia to stabilize the structure. The oxidizer electrode has a perovskite structure and a part of lanthanum is alkaline earth metal. Replaced Lantern Manganite (La
1-x (M) x ) y MnO 3 (M: alkaline earth metal), and a nickel zirconia cermet prepared by mixing YSZ with a predetermined amount of Ni is used as the fuel electrode.

【0004】SOFCの構造としては、例えば図4に示
すように、固体電解質41の両面に酸化剤極42と燃料
極43を設けた単セル40を燃料通路47および酸化剤
通路48を有するインタコネクタ44を介して積層した
構造で、電解質に機械的な強度を持たせたものが知られ
ている。また図5に示すように、燃料通路47を有する
燃料電極基板46に固体電解質41および酸化剤極42
を積層した単セル40を、インタコネクタ34が積層さ
れ、酸化剤通路48が形成された酸化剤電極基板45を
介して複数積層する構造のSOFCも知られている。こ
の場合、一方の電極に機械的な強度を持たせ、その表面
に電解質と他の電極を形成するものである。
As a structure of the SOFC, for example, as shown in FIG. 4, a unit cell 40 having an oxidant electrode 42 and a fuel electrode 43 on both surfaces of a solid electrolyte 41 is an interconnector having a fuel passage 47 and an oxidant passage 48. A structure in which the electrolyte has mechanical strength is known, which has a structure in which the electrolyte is laminated via 44. Further, as shown in FIG. 5, a solid electrolyte 41 and an oxidizer electrode 42 are formed on a fuel electrode substrate 46 having a fuel passage 47.
There is also known an SOFC having a structure in which a plurality of single cells 40 having a plurality of stacked layers are stacked with an oxidizer electrode substrate 45 in which an interconnector 34 is stacked and an oxidizer passage 48 is formed. In this case, one electrode is provided with mechanical strength, and the electrolyte and the other electrode are formed on the surface thereof.

【0005】[0005]

【発明が解決する問題点】しかし、SOFCにおける各
部材は、先に示したような材料を高温処理して作製した
セラミックスであり、また、各材料の中で電解質はSO
FCの動作温度である900〜1000℃においても導
電率が小さい。したがって、電解質部での電圧降下によ
る単セルの出力不足を防ぐには電解質の厚みをおさえる
必要がある。しかるに、前者のような構造では、電解質
自体にセル全体を支えるような機械的強度を付与する必
要があり、極端な薄膜は使用できず、厚みは300〜5
00μm程度となっている。
However, each member in the SOFC is a ceramic produced by subjecting the above-mentioned materials to high temperature treatment, and the electrolyte in each material is SO.
The electrical conductivity is small even at 900 to 1000 ° C., which is the operating temperature of FC. Therefore, in order to prevent the output shortage of the single cell due to the voltage drop in the electrolyte part, it is necessary to reduce the thickness of the electrolyte. However, in the former structure, it is necessary to impart mechanical strength to the electrolyte itself so as to support the entire cell, an extremely thin film cannot be used, and the thickness is 300 to 5
It is about 00 μm.

【0006】一方、後者の構造では、どちらかの電極が
セルの支持体となり、電極材料の導電率は電解質材料の
1000〜10000倍も大きいので支持体の厚みにあ
まりこだわらずに構成でき、この結果電解質は製造上許
容される厚みにまで薄くてもよいことになり、単セルと
して非常に高い性能が期待される。しかし、現実には電
極支持体の作製法や構造・形状等による制約があり、こ
のような構造のセルの作製法としては、電極と電解質の
シートを重ねて、共焼結する方法や、プラズマ溶射やレ
ーザ溶射法によって電解質膜を形成する方法が採られて
いる。
On the other hand, in the latter structure, one of the electrodes serves as a support for the cell, and the conductivity of the electrode material is 1000 to 10000 times as large as that of the electrolyte material, so that the thickness of the support can be omitted. As a result, the electrolyte may be as thin as the manufacturing allowance, and extremely high performance as a single cell is expected. However, in reality, there are restrictions due to the manufacturing method of the electrode support and the structure and shape, and as the method of manufacturing the cell having such a structure, a method of stacking electrodes and electrolyte sheets and co-sintering, or plasma A method of forming an electrolyte membrane by thermal spraying or laser spraying has been adopted.

【0007】前者のシートの共焼結による方法の場合、
有機溶剤と有機物バインダーを用いたシート作製や、シ
ートの圧着・焼結等に多大な稼働を要することから、試
料の形状や大きさにとらわれず、また成膜速度が大きい
溶射法が産業上の観点からは好ましい。しかし、溶射法
によって、SOFCの電解質膜を製造する場合、YSZ
の融点が約2700℃と高いために問題があった。すな
わち、溶射法では、高温の溶射炎中にYSZ粉末を供給
して溶融状態とし、溶融したYSZが固化する前に基板
上に融着させるものであるが、この方法では基板に到着
する前に固化するYSZ粒子が発生してしまうこともあ
り、必ずしも全てのYSZが充分に溶融した状態で基板
に到着するものではない。このため、生成したYSZ膜
は完全な緻密体ではなく、このためある程度のガス(特
に分子径の小さい水素)の透過が生じるという現象があ
った。これを防止するには、電解質の厚みを増やすこと
が考えられるが、その場合電解質内における電圧降下が
増してしまう。したがって、このような完全な緻密体で
ない電解質を用いて単セルを作製しても、セルの起電力
は理論値より低いものとなったり、外部に電流を取り出
した際の電圧降下が大きくなったりして、発電特性は必
ずしも充分なものとはいえなかった。
In the case of the former method of co-sintering the sheet,
Since a large amount of operation is required for sheet production using an organic solvent and an organic binder, and pressure bonding and sintering of the sheet, the thermal spraying method, which has a high deposition rate regardless of the shape and size of the sample, is an industrial method. It is preferable from the viewpoint. However, when an SOFC electrolyte membrane is manufactured by the thermal spraying method, YSZ
However, there was a problem because its melting point was as high as about 2700 ° C. That is, in the thermal spraying method, YSZ powder is supplied into a high-temperature thermal spraying flame to bring it into a molten state, and the molten YSZ is fused on the substrate before it solidifies. Solidified YSZ particles may be generated, and not all YSZ reach the substrate in a sufficiently melted state. Therefore, the produced YSZ film is not a perfect dense body, and therefore, there is a phenomenon that some amount of gas (especially hydrogen having a small molecular diameter) is transmitted. To prevent this, it is conceivable to increase the thickness of the electrolyte, but in that case the voltage drop in the electrolyte increases. Therefore, even if a single cell is produced using such a non-compact electrolyte, the electromotive force of the cell will be lower than the theoretical value, or the voltage drop when the current is taken out becomes large. Then, the power generation characteristics were not always sufficient.

【0008】[0008]

【発明の目的】本発明は、電極材料によってセル自身を
機械的に支える構造のSOFCの固体電解質およびその
製造方法に関わるもので、電極基板上にまず固体電解質
粉末のスラリーを塗布して焼結し、形成した焼結電解質
膜の上に溶射法によって再び溶射電解質膜を形成させた
固体電解質膜およびその製造法法を提供するもので、こ
れによってSOFCに要求される緻密な固体電解質膜を
効率よく製造することを目的としている。
SUMMARY OF THE INVENTION The present invention relates to a solid electrolyte of SOFC having a structure in which a cell itself is mechanically supported by an electrode material and a method for producing the same, in which a slurry of solid electrolyte powder is first applied and sintered on an electrode substrate. The present invention provides a solid electrolyte membrane in which a sprayed electrolyte membrane is formed again on the formed sintered electrolyte membrane by a thermal spraying method, and a method for producing the solid electrolyte membrane. By this, the dense solid electrolyte membrane required for SOFC can be efficiently produced. The purpose is to manufacture well.

【0009】[0009]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明による燃料電池の固体電解質膜は、電極基
板上に前記電極基板の細孔を塞ぐための電解質緻密薄
膜、および溶射法によって形成された電解質溶射膜を順
次設けたことを特徴とする。
In order to solve the above problems, the solid electrolyte membrane of the fuel cell according to the present invention is an electrolyte dense thin film for closing pores of the electrode substrate on an electrode substrate, and a thermal spraying method. It is characterized in that the electrolytic sprayed film formed by is sequentially provided.

【0010】さらに本発明の燃料電池の固体電解質膜の
製造方法は、電極基板上に固体電解質粉末のスラリーを
塗布して焼結させ、その後焼結させた電解質緻密薄膜の
表面に溶射法によって電解質溶射膜を形成させることを
特徴とする。
Further, in the method for producing a solid electrolyte membrane for a fuel cell of the present invention, a slurry of solid electrolyte powder is applied onto an electrode substrate and sintered, and then the surface of the sintered electrolyte dense thin film is sprayed with an electrolyte. It is characterized in that a sprayed film is formed.

【0011】本発明の特徴は、電極基板上に溶射法を用
いて電解質膜を形成する際、まず第一に電解質のスラリ
ーを塗布して焼結させて基板表面の微少な細孔を閉塞さ
せ、その後、膜の製造速度等の面で有利な溶射法を使用
して所定の厚みの電解質溶射膜を形成し、これによって
SOFCに適した緻密な膜を効率よく作ることを特徴と
している。
A feature of the present invention is that when an electrolyte membrane is formed on an electrode substrate by using a thermal spraying method, first, a slurry of an electrolyte is applied and sintered to close fine pores on the substrate surface. After that, an electrolyte sprayed film having a predetermined thickness is formed by using a spraying method which is advantageous in terms of film production rate and the like, whereby a dense film suitable for SOFC is efficiently produced.

【0012】従来、溶射法だけで固体電解質膜を作るこ
とは行なわれてきていたが、膜の緻密度が低くこの方法
だけでは充分な性能のSOFCは実現できていなかっ
た。
Conventionally, a solid electrolyte membrane has been produced only by the thermal spraying method, but the denseness of the membrane is low and SOFC of sufficient performance cannot be realized only by this method.

【0013】[0013]

【実施例】図1に本発明による固体電解質膜製造方法の
概念を示す。1は多孔性の電極基板、2は電解質緻密薄
膜、そして3が溶射した電解質溶射膜である。本発明に
よる製造方法では、まず第一に基板1上に(図1参照)
固体電解質粉末スラリーを塗布して焼結させて緻密でガ
ス不透過性の電解質緻密薄膜2を形成(図2参照)し、
次いで、この緻密薄膜2の表面に電解質を溶射して電解
質溶射膜3を形成することで燃料電池を作製するために
必要な固体電解質膜を形成する(図3参照)。この電解
質溶射膜3にマイクロクラック4が形成されても、緻密
な電解質緻密薄膜2が形成されているのでガスの透過を
防止できる。
EXAMPLE FIG. 1 shows the concept of the method for producing a solid electrolyte membrane according to the present invention. 1 is a porous electrode substrate, 2 is an electrolyte dense thin film, and 3 is an electrolyte sprayed film sprayed. In the manufacturing method according to the present invention, first of all, on the substrate 1 (see FIG. 1).
Solid electrolyte powder slurry is applied and sintered to form a dense and gas impermeable electrolyte dense thin film 2 (see FIG. 2),
Then, an electrolyte sprayed film 3 is formed by spraying an electrolyte on the surface of the dense thin film 2 to form a solid electrolyte film necessary for producing a fuel cell (see FIG. 3). Even if the microcracks 4 are formed on the electrolyte sprayed film 3, since the dense electrolyte dense thin film 2 is formed, gas permeation can be prevented.

【0014】上述の電解質緻密薄膜2は電極基板1の細
孔を塞ぐものであれば、製造方法等は基本的に限定され
ない。またその厚さは前述のように電極基板1の細孔を
塞ぐため十分の厚さであればよい。好ましくは2〜10
μmである。2μm未満の厚さであると、充分細孔を塞
ぐことができない恐れがあり、一方10μmを越える
と、電解質緻密薄膜2にクラックを生じる恐れがあるか
らである。
The manufacturing method and the like of the above-mentioned electrolyte dense thin film 2 is basically not limited as long as it closes the pores of the electrode substrate 1. Further, the thickness may be a sufficient thickness to close the pores of the electrode substrate 1 as described above. Preferably 2-10
μm. If the thickness is less than 2 μm, the pores may not be sufficiently closed, and if the thickness exceeds 10 μm, cracks may occur in the electrolyte dense thin film 2.

【0015】前述のような本発明によるスラリーを使用
する燒結法で電解質緻密薄膜を形成する場合、前記固体
電解質粉末の平均粒径は好ましくは0.1〜1μmであ
る。0.1μm未満であると、固体電解質粉末の製造が
困難であり、実用的でない。一方1μmを越えると燒結
温度が高くなって電極基板にダメージを与える恐れが生
じるからである。
When forming a dense electrolyte thin film by a sintering method using the slurry according to the present invention as described above, the average particle size of the solid electrolyte powder is preferably 0.1 to 1 μm. If it is less than 0.1 μm, it is difficult to produce a solid electrolyte powder, which is not practical. On the other hand, if it exceeds 1 μm, the sintering temperature becomes high and the electrode substrate may be damaged.

【0016】以下、具体的な実施例として、まず燃料電
極材料によって作製した多孔性の電極基板に本発明の方
法で固体電解質膜を形成した例を示す。
As specific examples, first, examples in which a solid electrolyte membrane is formed by the method of the present invention on a porous electrode substrate made of a fuel electrode material will be shown.

【0017】燃料電極の材料としては、ここで一般的に
広く使用されているニッケルジルコニアサーメットを使
用した。サーメットの調整に用いた材料は、酸化ニッケ
ル粉末とイットリア安定化ジルコニア粉末(酸化イット
リアを8モル%添加したもの:東ソー製、TZ−8Y)
であり、これらを酸化ニッケルが体積比で40vol%
以上含まれるように秤量して混合した。混合物にPVA
系バインダを重量比で2〜5%添加した後プレス成形
し、これを1300℃で2時間焼結した。焼結体の多孔
度はバインダの添加量で若干異なるが、20〜30%程
度である。これをH2雰囲気下、900〜1000℃で
還元処理を行なうことでNiOの還元が進行し、30〜
40%程度の多孔度とすることができた。この還元処理
後の焼結体の細孔は、1μmを中心に0.2〜3μm程
度に分布したものであった。したがって、この基板1上
に直接電解質の溶射を行なうと、図6に示すように溶射
した電解質溶射膜3にはマイクロクラック4が発生して
しまうので、燃料ガスが容易に酸素極1側に透過してし
まい、発電特性が不良になってしまう。
As the material for the fuel electrode, nickel zirconia cermet, which is widely used here, was used. The material used to prepare the cermet was nickel oxide powder and yttria-stabilized zirconia powder (with 8 mol% yttria oxide added: Tosoh TZ-8Y).
And nickel oxide is 40 vol% in volume ratio.
It was weighed and mixed so as to be included above. PVA in the mixture
A system binder was added in an amount of 2 to 5% by weight and then press-molded, and this was sintered at 1300 ° C. for 2 hours. The porosity of the sintered body is about 20 to 30%, though it varies slightly depending on the amount of the binder added. This is subjected to a reduction treatment at 900 to 1000 ° C. in an H 2 atmosphere, whereby reduction of NiO proceeds,
The porosity could be about 40%. The pores of the sintered body after this reduction treatment were distributed around 0.2 to 3 μm with 1 μm as the center. Therefore, when the electrolyte is directly sprayed onto the substrate 1, microcracks 4 are generated in the sprayed electrolyte sprayed film 3 as shown in FIG. 6, so that the fuel gas easily permeates to the oxygen electrode 1 side. Will result in poor power generation characteristics.

【0018】そこで本発明では、図3に示したように燃
料電極1の表面に電解質の薄い緻密薄膜2を形成させて
いるが、形成にあたってはスラリー塗布法によった。ス
ラリーの調製には、媒体として水を使用し、これに分散
剤を添加し、YSZと水が容積比で約3:1となるよう
に混合して得た。なお、スラリー調製にあたって使用し
たYSZの組成は、導電率の観点から、電極や溶射材料
に使用したものと同じ安定化ジルコニア(酸化イットリ
アを8モル%添加したもの)である。しかし、塗布した
スラリーの焼結性を高めるために、粒径の小さい粉末を
使用した。粒径の小さい粉末を使用することで、低い温
度での塗布膜の焼結が可能であった。これまで電解質と
して広く使用されてきているYSZの東ソー製TZ−8
Yの場合、緻密化する焼結温度は1300℃が下限であ
るが、これを、結晶子径を200〜250Å、粒径のサ
イズを平均0.5μm程度に小さくすることで1200
℃程度の温度での焼結を行なうことができた。
Therefore, in the present invention, the dense thin film 2 of the electrolyte is formed on the surface of the fuel electrode 1 as shown in FIG. 3, but the slurry coating method was used for the formation. For the preparation of the slurry, water was used as a medium, a dispersant was added thereto, and YSZ and water were mixed at a volume ratio of about 3: 1 to obtain a slurry. The composition of YSZ used for preparing the slurry is the same stabilized zirconia as that used for the electrode and the thermal spraying material (adding 8 mol% of yttria oxide) from the viewpoint of conductivity. However, in order to improve the sinterability of the applied slurry, a powder having a small particle size was used. It was possible to sinter the coating film at a low temperature by using a powder having a small particle size. TZ-8 manufactured by Tosoh of YSZ, which has been widely used as an electrolyte so far.
In the case of Y, the sintering temperature for densification has a lower limit of 1300 ° C., but the crystallite diameter is reduced to 200 to 250 Å and the grain size is reduced to an average of about 0.5 μm to obtain 1200.
Sintering could be performed at a temperature of about ° C.

【0019】粒径サイズを小さくすることの利点の一つ
は、焼結温度が低くなり電極基板1に熱ストレスを与え
ることなしに電解質溶射膜3の下地となり、多孔質の電
極基板1の細孔を塞ぐ電解質緻密薄膜2を作製すること
ができる点である。また、こればかりでなく、電極の細
孔を塞ぐ上でもよい効果を得ることができた。なお、細
孔に入り込みにくい場合には塗布面の反対側の圧力を減
じることでより良い効果を得ることができる。ところ
で、燃料電極基板1は、セルを形成して発電する場合に
は水素ガスが供給されて還元状態になるので、細孔は酸
化雰囲気下での焼結直後に比べて大きくなっている。
One of the advantages of reducing the particle size is that the sintering temperature becomes low and the electrode substrate 1 becomes a base of the electrolyte sprayed film 3 without applying thermal stress, and the fineness of the porous electrode substrate 1 is obtained. The point is that the dense electrolyte thin film 2 that closes the pores can be produced. Further, not only this but also a good effect in closing the pores of the electrode could be obtained. If it is difficult to enter the pores, a better effect can be obtained by reducing the pressure on the side opposite to the coated surface. By the way, since the hydrogen gas is supplied to the fuel electrode substrate 1 in a reducing state when power is generated by forming a cell, the pores are larger than those immediately after sintering in an oxidizing atmosphere.

【0020】このような状態であっても塗布したスラリ
ー中のYSZ微粒子は電極表面の細孔を効果的に閉塞さ
せる必要があるので、スラリーの塗布にあたっては事前
に還元処理を行なった。このようにスラリーを塗布した
後、電極基板を1200〜1250℃の温度で2時間程
度熱処理して、薄い緻密な電解質緻密薄膜2を形成し
た。
Even in such a state, since the YSZ fine particles in the applied slurry need to effectively close the pores on the electrode surface, a reduction treatment was performed before applying the slurry. After applying the slurry in this manner, the electrode substrate was heat-treated at a temperature of 1200 to 1250 ° C. for about 2 hours to form a thin dense electrolyte dense film 2.

【0021】この後、この表面にプラズマ溶射装置によ
ってSOFCを形成するために必要な電解質層3を形成
した。そして、この電解質層に重ねて酸化剤極の電極層
を形成することでSOFC単セルを作製した。ここで
は、酸化剤極層の形成はスラリー塗布法によって行なっ
た。すなわち、ランタンマンガナイトをポリエチレング
リコールとエタノールで混合してスラリーを作製し、こ
れを電解質表面に塗布し、その後1100〜1300℃
の範囲内の温度で熱処理して焼き付けた。
After that, an electrolyte layer 3 necessary for forming SOFC was formed on this surface by a plasma spraying device. Then, an SOFC single cell was produced by forming an electrode layer of an oxidizer electrode on the electrolyte layer. Here, the formation of the oxidizer electrode layer was performed by a slurry coating method. That is, lanthanum manganite was mixed with polyethylene glycol and ethanol to prepare a slurry, which was applied to the surface of the electrolyte, and then 1100 to 1300 ° C.
And heat-treated at a temperature within the range.

【0022】溶射による電解質膜形成にあたっては、大
気溶射を使用し、50μm〜100μmの厚みで形成し
たが、もちろん減圧溶射によって行なっても本発明では
一向に支障はない。従来、溶射法によってYSZ膜を形
成するには緻密性の向上の点で減圧溶射の方が適してい
たが、本発明によれば、基板となる電極細孔の入口は予
め全てYSZ微粉末で閉塞した状態になっているので、
大気溶射でも問題はない。また、溶射法によるYSZ形
成では、マイクロクラックの発生によるガスの透過に対
処するため、膜の厚みを200〜300μm程度に大き
くしていた。しかし、本発明によれば、ガスの透過は電
極表面で防止できるようになっているので溶射膜3の厚
みを増す必要性がなくなる。溶射においては、通常、溶
射炎が試料の表面を何回か走査することで製膜が行なわ
れているが、一走査回数あたりの膜厚は10μm程度で
ある。このため、厚膜の形成のためには必然的に炎の走
査回数を増すことになるが、この場合、製膜に要する時
間が長くなり製造コストが上昇するのみならず、試料が
高温の溶射炎に暴される時間が長くなるために試料温度
が上昇し、試料の破損や基板の材質の変化といった問題
が生じる恐れがあった。しかし、本発明によれば溶射に
要する時間が短縮されるので、製造コストの低減はもと
より、製造上の歩留まりを著しく改善することができ
る。
In forming the electrolyte membrane by thermal spraying, atmospheric spraying was used and the thickness was 50 μm to 100 μm. Of course, vacuum spraying does not cause any problems in the present invention. Conventionally, in order to form a YSZ film by a thermal spraying method, the reduced pressure thermal spraying was more suitable from the viewpoint of improving the denseness. Since it is in a blocked state,
There is no problem with atmospheric spraying. Further, in YSZ formation by the thermal spraying method, the film thickness is increased to about 200 to 300 μm in order to cope with gas permeation due to generation of microcracks. However, according to the present invention, the permeation of gas can be prevented on the electrode surface, so that there is no need to increase the thickness of the sprayed film 3. In thermal spraying, the film is usually formed by scanning the surface of the sample several times with the thermal spray flame, but the film thickness per scanning is about 10 μm. Therefore, in order to form a thick film, the number of times of scanning of the flame is inevitably increased, but in this case, not only the time required for film formation increases and the manufacturing cost increases, but also the sample is sprayed at high temperature. Since the time exposed to the flame becomes long, the sample temperature rises, which may cause problems such as breakage of the sample and change of the material of the substrate. However, according to the present invention, since the time required for thermal spraying is shortened, not only the manufacturing cost can be reduced, but also the manufacturing yield can be remarkably improved.

【0023】次に酸化剤極基板を用いて行なった、本発
明の実施例について述べる。酸化剤極を用いた場合も基
本プロセスはこれまで述べてきたものと同様であるが、
スラリー塗布によって細孔の閉塞を行なう前の還元処理
のプロセスが不要である分だけ、作製は簡略化される。
ここでは、材料粉末として、SOFCで一般敵に使用さ
れているLA0.8Sr0.2MnO3を使用した。なお、粉
末は、平均粒径が2〜10μmの範囲内に位置する数種
の中から適宜選択して使用した。これらの粉末の焼結特
性は、平均粒径が小さいほど、焼結が進行しやすく緻密
化するので、各粉末の粒径に対応して焼結条件を決定し
て酸化剤極基板を作製した。作製した基板は、燃料電極
基板と同様にPVA系バインダを加えてプレス成形した
ものである。作製した酸化剤極基板の物性としては、多
孔度が20〜40%であり、平均の細孔径は、おおよそ
1〜2μmであった。
Next, examples of the present invention carried out using an oxidizer electrode substrate will be described. The basic process is similar to that described so far when an oxidizer electrode is used,
The production is simplified by the fact that the process of reduction treatment before closing the pores by slurry coating is unnecessary.
Here, LA 0.8 Sr 0.2 MnO 3 , which is commonly used in SOFC, was used as the material powder. In addition, the powder was appropriately selected and used from several kinds of particles having an average particle size within the range of 2 to 10 μm. Regarding the sintering characteristics of these powders, the smaller the average particle size, the easier the sintering proceeds and the denser the powder becomes. Therefore, the sintering conditions were determined according to the particle size of each powder, and the oxidizer electrode substrate was prepared. . The manufactured substrate was press-molded by adding a PVA-based binder like the fuel electrode substrate. Regarding the physical properties of the produced oxidant electrode substrate, the porosity was 20 to 40%, and the average pore diameter was approximately 1 to 2 μm.

【0024】このような試料基板に、やはり燃料電極で
使用したものと同一の方法で調合したYSZスラリーを
塗布して焼結し、表面の細孔を閉塞させた。このとき、
YSZスラリーに使用した粉末は微紛であり、さきに述
べたように1200℃程度で緻密な焼結物とすることが
できる。一方、酸化剤極はあまり高い温度で焼結させる
と、緻密化してしまい、電極に要求される多孔性が失わ
れてしまい、原料の粒径にもよるが、好ましい電極特性
が得られる粒径の原料での焼結温度の上限は、1200
〜1250℃である。しかし、表面に塗布するYSZの
焼結はこれと同程度の温度で可能であるので、酸化剤極
基板を不必要な高温に暴することなしに、表面の細孔を
塞ぐことができた。このようなプロセスに次いで、プラ
ズマ溶射装置によって溶射膜を作製した。そして、電解
質膜に重ねて、ニッケルジルコニアサーメットからなる
燃料電極層を形成し、単セルを得た。燃料電極の形成に
あたっては、酸化剤極基板(ランタンマンガナイト)の
耐熱温度が約1300℃程度で、ニッケルジルコニアサ
ーメットの焼結温度以下であるのでサーメットのスラリ
ー塗布・焼結法は適用できない。したがって、基板に対
する熱ストレスのないプラズマ溶射法によってサーメッ
ト層を形成した。
A YSZ slurry prepared by the same method as that used for the fuel electrode was applied to such a sample substrate and sintered to close the pores on the surface. At this time,
The powder used for the YSZ slurry is a fine powder, and as described above, a dense sintered product can be obtained at about 1200 ° C. On the other hand, if the oxidizer electrode is sintered at an excessively high temperature, it will become densified, and the porosity required for the electrode will be lost. The upper limit of the sintering temperature of the raw material is 1200
˜1250 ° C. However, since the YSZ applied to the surface can be sintered at the same temperature as this, it was possible to close the pores on the surface without exposing the oxidizer electrode substrate to an unnecessary high temperature. Following such a process, a sprayed film was produced by a plasma spraying device. Then, a fuel cell layer made of nickel zirconia cermet was formed on the electrolyte membrane to obtain a single cell. When forming the fuel electrode, the cermet slurry coating / sintering method cannot be applied because the heat resistance temperature of the oxidizer electrode substrate (lanthanum manganite) is about 1300 ° C., which is lower than the sintering temperature of nickel zirconia cermet. Therefore, the cermet layer was formed by the plasma spraying method without heat stress on the substrate.

【0025】このように本発明によれば、これまで行な
われていた溶射法による電解質の作製プロセスに準じた
方法で、これまでよりも高性能のSOFCセルを得るこ
とができる。しかも、従来の溶射法のプロセスそのもの
は何ら変えることなしに、逆に溶射プロセスの短縮化に
よって製品の歩留まり向上を図ることもできる。
As described above, according to the present invention, a SOFC cell having a higher performance than ever can be obtained by a method according to the process for producing an electrolyte by the thermal spraying method that has been performed so far. In addition, the yield of products can be improved by shortening the thermal spraying process, without changing the conventional thermal spraying process itself.

【0026】[0026]

【発明の効果】以上説明したように、本発明ではSOF
Cセルの電解質膜を溶射法によって形成するにあたっ
て、予めセルの基板となる電極の表面にYSZ微粉末の
スラリーを塗布・燒結して細孔を閉塞させることとし、
その後、溶射によって電解質溶射膜を形成することとし
ている。従来、溶射法はEVD法やスパッタリング法に
比べて膜の製造速度が大きいことや、製膜する試料面の
大きさや形状にとらわれないという利点に着目されSO
FCの電解質薄膜形成法として検討されてきたものであ
る。しかし、電解質材料であるジルコニアの融点が27
00℃と高いために必ずしも緻密な膜にはなりえず、膜
内にはマイクロクラック等が存在し、これがガスの透過
による発電特性の不良の原因となっていた。溶射膜にお
いて、このようなガスの透過を防止するための対策とし
ては、膜の厚みを増すことが考えられる。しかし、ガス
の透過だけに着目して徒らに膜厚を厚くすると、電解質
内における電圧効果が大きくなりセルの性能が低下する
という問題があった。しかし、本発明における方法で
は、溶射を行なう前に試料の表面に、細孔の閉塞が行な
えるような微粉末の電解質スラリーを塗布して焼結を行
なっているので、試料の表面は溶射を行なう前の段落で
緻密性が高められている。したがって、このような面に
溶射を行なうことで、例え電解質溶射膜にマイクロクラ
ックが発生したとしても、電解質膜全体としての緻密性
に大きな影響を与えることを防止することができる。ま
た、本発明の効果としては、電解質溶射膜の厚さを従来
の方法に比べて薄くすることもでき、これによって、製
造コストの低減と製造上の歩留まりを向上させることが
できる。
As described above, according to the present invention, SOF is used.
When the electrolyte membrane of the C cell is formed by the thermal spraying method, YSZ fine powder slurry is applied and sintered on the surface of the electrode serving as the cell substrate in advance to close the pores,
After that, the electrolyte sprayed film is formed by spraying. Conventionally, the thermal spraying method has been focused on the advantages that the film production rate is higher than that of the EVD method or the sputtering method, and that the size and shape of the sample surface to be formed is not restricted.
It has been studied as a method for forming an electrolyte thin film of FC. However, the melting point of zirconia, which is the electrolyte material, is 27.
Since the temperature is as high as 00 ° C., a dense film cannot always be formed, and microcracks and the like are present in the film, which causes poor power generation characteristics due to gas permeation. In a sprayed coating, increasing the thickness of the coating can be considered as a measure for preventing such gas permeation. However, if the film thickness is excessively increased by focusing only on the gas permeation, there is a problem that the voltage effect in the electrolyte is increased and the cell performance is deteriorated. However, in the method of the present invention, since the surface of the sample is sprayed with an electrolyte slurry of fine powder that can close the pores before the thermal spraying and the sintering is performed, the surface of the sample is sprayed. In the paragraph before it is done, the elaborateness is enhanced. Therefore, by spraying such a surface, it is possible to prevent the denseness of the entire electrolyte membrane from being greatly affected even if microcracks occur in the electrolyte sprayed membrane. In addition, as an effect of the present invention, the thickness of the electrolyte sprayed film can be made thinner than that of the conventional method, whereby the manufacturing cost can be reduced and the manufacturing yield can be improved.

【0027】なお、電解質薄膜の製造法としては、本発
明の第1ステップで行なうスラリーの塗布と焼結のプロ
セスだけで行なうことも考えられる。しかし、この方法
の場合、一回に塗布するスラリーの厚みを増すと、焼結
時に表面に無数の亀裂が発生してしまうので、スラリー
を薄く塗布せざるを得ず、塗布と焼結を数回繰り返す必
要がある。このため、作業効率が悪くなってしまうばか
りか、焼結によって電極基板に熱ストレスが生じ、電極
性能が低下してしまう恐れもあった。本発明では、この
ような問題が生じる恐れもなく、溶射法による大きな製
膜速度を有効利用し、SOFCに必要とされる電解質薄
膜を得ることができ、産業上、大きな利点を得ることが
できる。
As a method of manufacturing the electrolyte thin film, it is possible to use only the slurry coating and sintering processes performed in the first step of the present invention. However, in the case of this method, if the thickness of the slurry applied at one time is increased, numerous cracks will be generated on the surface during sintering. Need to repeat times. For this reason, not only the work efficiency is deteriorated, but also the sintering causes a thermal stress on the electrode substrate, which may deteriorate the electrode performance. In the present invention, such a problem does not occur, a large film formation rate by the thermal spraying method can be effectively used, an electrolyte thin film required for SOFC can be obtained, and industrially great advantage can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池の固体電解質膜製造方法の説
明図。
FIG. 1 is an explanatory view of a method for producing a solid electrolyte membrane for a fuel cell of the present invention.

【図2】本発明の燃料電池の固体電解質膜製造方法の説
明図。
FIG. 2 is an explanatory view of a method for producing a solid electrolyte membrane for a fuel cell of the present invention.

【図3】本発明の燃料電池の固体電解質膜の断面図。FIG. 3 is a sectional view of a solid electrolyte membrane of a fuel cell of the present invention.

【図4】燃料電池の構造を示す説明図。FIG. 4 is an explanatory view showing the structure of a fuel cell.

【図5】燃料電池の構造を示す説明図。FIG. 5 is an explanatory view showing the structure of a fuel cell.

【図6】従来の燃料電池の固体電解質膜の断面図。FIG. 6 is a cross-sectional view of a solid electrolyte membrane of a conventional fuel cell.

【符号の説明】[Explanation of symbols]

1 電極基板 2 電解質薄膜 3 電解質溶射膜 4 マイクロクラック 40 単セル 41 固体電解質 42 酸化剤極 43 燃料極 44 インコネクタ 45 酸化剤電極基板 46 燃料電極基板 47 燃料通路 48 酸化剤通路 1 Electrode Substrate 2 Electrolyte Thin Film 3 Electrolyte Sprayed Film 4 Microcrack 40 Single Cell 41 Solid Electrolyte 42 Oxidizer Electrode 43 Fuel Electrode 44 In Connector 45 Oxidizer Electrode Substrate 46 Fuel Electrode Substrate 47 Fuel Passage 48 Oxidant Passage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極基板上に、前記電極基板の細孔を塞
ぐための電解質緻密薄膜、および溶射法によって形成さ
れる電解質溶射膜を順次設けたことを特徴とする燃料電
池の固体電解質膜。
1. A solid electrolyte membrane for a fuel cell, wherein an electrolyte dense thin film for closing pores of the electrode substrate and an electrolyte sprayed film formed by a spraying method are sequentially provided on the electrode substrate.
【請求項2】 電極基板上に固体電解質粉末のスラリー
を塗布して焼結させ電解質緻密薄膜を形成し、その後前
記電解質緻密薄膜の表面に溶射法によって固体電解質溶
射膜を形成させることを特徴とする燃料電池の固体電解
質膜製造方法。
2. A solid electrolyte sprayed film is formed by applying a slurry of a solid electrolyte powder on an electrode substrate and sintering the slurry to form an electrolyte dense thin film, and then forming a solid electrolyte sprayed film on the surface of the electrolyte dense thin film by a spraying method. Method for producing solid electrolyte membrane of fuel cell for manufacturing.
JP4223410A 1992-07-30 1992-07-30 Solid electrolyte film of fuel cell and manufacture thereof Pending JPH0652869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223410A JPH0652869A (en) 1992-07-30 1992-07-30 Solid electrolyte film of fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223410A JPH0652869A (en) 1992-07-30 1992-07-30 Solid electrolyte film of fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0652869A true JPH0652869A (en) 1994-02-25

Family

ID=16797712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223410A Pending JPH0652869A (en) 1992-07-30 1992-07-30 Solid electrolyte film of fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0652869A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034333A1 (en) * 1996-03-11 1997-09-18 Forschungszentrum Jülich GmbH Coating of porous electrodes with thin electrolyte layers
JP2002373675A (en) * 2001-06-18 2002-12-26 Toyota Central Res & Dev Lab Inc Electrode assembly for solid electrolyte fuel cell, and manufacturing method of the same
JP2007516569A (en) * 2003-07-15 2007-06-21 ロールス・ロイス・ピーエルシー Solid oxide fuel cell
JP2009134979A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
WO2012165409A1 (en) * 2011-05-30 2012-12-06 京セラ株式会社 Solid oxide fuel cell, fuel cell stack system, fuel cell module, and fuel cell system
JP2016100080A (en) * 2014-11-18 2016-05-30 住友大阪セメント株式会社 Electrolyte for solid oxide fuel battery, solid oxide fuel battery and method for manufacturing electrolyte of solid oxide fuel battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034333A1 (en) * 1996-03-11 1997-09-18 Forschungszentrum Jülich GmbH Coating of porous electrodes with thin electrolyte layers
JP2002373675A (en) * 2001-06-18 2002-12-26 Toyota Central Res & Dev Lab Inc Electrode assembly for solid electrolyte fuel cell, and manufacturing method of the same
JP2007516569A (en) * 2003-07-15 2007-06-21 ロールス・ロイス・ピーエルシー Solid oxide fuel cell
JP4751323B2 (en) * 2003-07-15 2011-08-17 ロールス・ロイス・ピーエルシー Solid oxide fuel cell
JP2009134979A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
WO2012165409A1 (en) * 2011-05-30 2012-12-06 京セラ株式会社 Solid oxide fuel cell, fuel cell stack system, fuel cell module, and fuel cell system
JP2013069697A (en) * 2011-05-30 2013-04-18 Kyocera Corp Solid oxide fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
JP5197890B2 (en) * 2011-05-30 2013-05-15 京セラ株式会社 Solid oxide fuel cell, fuel cell stack device, fuel cell module, fuel cell device
JP2016100080A (en) * 2014-11-18 2016-05-30 住友大阪セメント株式会社 Electrolyte for solid oxide fuel battery, solid oxide fuel battery and method for manufacturing electrolyte of solid oxide fuel battery

Similar Documents

Publication Publication Date Title
KR101083701B1 (en) Reversible Solid Oxide Fuel Cell Stack and Method for Preparing Same
US7163713B2 (en) Method for making dense crack free thin films
KR101699091B1 (en) Advanced materials and design for low temperature sofcs
US5234722A (en) Solid electrolyte film, solid oxide fuel cell comprising such a solid electrolyte film, and processes for producing such film and solid oxide fuel cell
US5143801A (en) Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor
US20070037031A1 (en) Cermet and ceramic interconnects for a solid oxide fuel cell
EP1768208A2 (en) High performance anode-supported solid oxide fuel cell
KR101475392B1 (en) Titanate and metal interconnects for solid oxide fuel cells
JPH05135787A (en) Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell
JP5552222B2 (en) Ceramic layer processing method and processed article
JP3915500B2 (en) THIN FILM LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SOLID OXIDE FUEL CELL USING THE SAME
JPH08287926A (en) Manufacture of solid electrolyte fuel cell
KR101937919B1 (en) A method of producing a cell for a metal-supported solid oxide fuel cell by tape lamination, Fuel Cell Stack and Fuel Cell Power Generation System manufactured by using the cell for fuel cell
JPH0652869A (en) Solid electrolyte film of fuel cell and manufacture thereof
CN113488689B (en) Solid oxide fuel cell stack and method for preparing the same
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JP5550223B2 (en) Ceramic electrolyte processing method and related products
JP2848551B2 (en) Method for producing electrolyte membrane for solid oxide fuel cell
JPH09245813A (en) Manufacture of solid electrolyte fuel cell
JPH06283178A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
JP3339998B2 (en) Cylindrical fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
US20190386320A1 (en) Anode for an electrochemical cell and method for producing an electrochemical cell comprising such an anode
JP3257363B2 (en) Solid oxide fuel cell
JPH08195216A (en) Manufacture of solid-electrolyte fuel cell