JPH0512013B2 - - Google Patents

Info

Publication number
JPH0512013B2
JPH0512013B2 JP1219710A JP21971089A JPH0512013B2 JP H0512013 B2 JPH0512013 B2 JP H0512013B2 JP 1219710 A JP1219710 A JP 1219710A JP 21971089 A JP21971089 A JP 21971089A JP H0512013 B2 JPH0512013 B2 JP H0512013B2
Authority
JP
Japan
Prior art keywords
hollow fiber
dialysis
fiber membrane
hollow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1219710A
Other languages
Japanese (ja)
Other versions
JPH02258035A (en
Inventor
Morio Myagi
Masaru Kaneizumi
Tasuku Sawaguchi
Tsutomu Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPH02258035A publication Critical patent/JPH02258035A/en
Publication of JPH0512013B2 publication Critical patent/JPH0512013B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/084Undulated fibres

Description

【発明の詳細な説明】 本発明は、新規な中空繊維膜に関するものであ
り、透析によつて体液を浄化するに適した透析用
中空繊維膜及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel hollow fiber membrane, and relates to a hollow fiber membrane for dialysis suitable for purifying body fluids by dialysis, and a method for producing the same.

セルロースエステル類は従来から中空繊維膜に
加工され、種々の工程、例えば、かん水や海水の
脱塩、種々の溶質を含有した水溶液の限外濾過な
ど、省エネルギー型の分離工程に使用されてき
た。
Cellulose esters have traditionally been processed into hollow fiber membranes and used in various processes, such as desalination of brine and seawater, ultrafiltration of aqueous solutions containing various solutes, and energy-saving separation processes.

一方、腎不全患者の血液浄化に用いる中空繊維
膜素材として、セルロースエステル系中空繊維膜
は、生体に対する適合性、製造面での容易さから
種々の研究開発がなされている。血液透析に用い
る中空繊維膜の必要特性としては、中空繊維から
の漏血がないこと、尿素、尿酸やクレアチニンな
ど体内の小分子量の老廃物が容易に除去できるこ
と、バランスの取れた水分透過性を持つているこ
となどがあげられる。しかし、さらに重要なこと
は、中空繊維膜を集束し、血液処理器(モジユー
ル)に組上げた時、中空繊維膜の持つ性能を充分
に発揮させることである。従来、中空繊維膜の開
発と併行して、モジユールの形状に関する研究も
種々行なわれ、シンプルな円筒型からはじまつて
偏平型、三室筒型、こぶ付き容器型などが開発さ
れている。
On the other hand, various research and developments have been conducted on cellulose ester-based hollow fiber membranes as a material for hollow fiber membranes used for blood purification of patients with renal failure due to their compatibility with living organisms and ease of production. The required characteristics of hollow fiber membranes used in hemodialysis include: no blood leakage from the hollow fibers, the ability to easily remove small molecular weight waste products from the body such as urea, uric acid, and creatinine, and balanced water permeability. Examples include things that you have. However, what is even more important is that when the hollow fiber membranes are bundled and assembled into a blood treatment device (module), the performance of the hollow fiber membranes can be fully demonstrated. In parallel with the development of hollow fiber membranes, various studies have been conducted on the shapes of modules, starting with a simple cylindrical shape, and then developing flat types, three-chamber cylindrical types, knobby container types, etc.

本発明者らは、モジユールの形状に左右されず
に、中空繊維膜の持つ性能を充分に発揮できる中
空繊維を、鋭意研究してきた。本発明者らは、血
液透析時の透析液の中空繊維外表面への接触と中
空繊維膜の性能とが密接に関連することに着目
し、モジユール内の中空繊維を観察したところ、
ストレートな、クリンプ形状を有さないセルロー
スエステル系中空繊維では、透析時に中空繊維が
隣接の中空繊維と密着し、透析液の中空繊維外表
面への均一な接触を著しく妨げて透析効率を著し
く低減せしめていることを見出した。本発明者ら
は、透析時の中空繊維間同志の線接触密着を点接
触に改良し、かつ透析液の流れが中空繊維表面で
乱れを発生し膜表面の境膜抵抗を低下させる中空
繊維膜を見出した。
The present inventors have been diligently researching hollow fibers that can fully exhibit the performance of hollow fiber membranes, regardless of the shape of the module. The present inventors focused on the fact that the contact of dialysate with the outer surface of hollow fibers during hemodialysis and the performance of hollow fiber membranes are closely related, and observed the hollow fibers in the module.
With cellulose ester hollow fibers that are straight and do not have a crimp shape, the hollow fibers come into close contact with adjacent hollow fibers during dialysis, significantly impeding uniform contact of the dialysate with the outer surface of the hollow fibers and significantly reducing dialysis efficiency. I found out that it is forcing me. The present inventors have developed a hollow fiber membrane that improves the line contact between hollow fibers during dialysis to a point contact, and also creates turbulence in the flow of dialysate on the surface of the hollow fibers, reducing membrane resistance on the membrane surface. I found out.

即ち、本発明の要旨は、透析用中空繊維膜の外
径R(単位;ミクロン)が、(i)式の範囲内にあつ
て、該中空繊維の10cm当りの捲縮数n(単位、n)
が(ii)式で、捲縮振幅し(単位;ミクロン)が(iii)式
の範囲内にあることを特徴とする中空繊維膜及び 200≦R≦500 (i) 10≦n≦35 (ii) 0.65×R≦L≦R+50 (iii) 該中空繊維膜を製造する方法、すなわち中空繊
維膜を紡糸した後、T1℃の空気又は不活性ガス
中で乾燥し、次いでボビンに巻取り、該ボビンに
巻き取つた状態でT2℃の温度で熱処理して、前
記中空繊維膜に捲縮を付与することを特徴とする
中空繊維膜の製造方法。ここでT1℃及びT2℃は
下記(iv)式及び(v)式で定められる。
That is, the gist of the present invention is that the outer diameter R (unit: microns) of the hollow fiber membrane for dialysis is within the range of formula (i), and the number n of crimps per 10 cm of the hollow fiber (unit: n )
is the formula (ii), and the crimp amplitude (in microns) is within the range of the formula (iii), and 200≦R≦500 (i) 10≦n≦35 (ii) ) 0.65×R≦L≦R+50 (iii) The method for manufacturing the hollow fiber membrane, that is, after spinning the hollow fiber membrane, it is dried in air or inert gas at T 1 °C, and then wound on a bobbin. 1. A method for producing a hollow fiber membrane, which comprises heat-treating the hollow fiber membrane wound on a bobbin at a temperature of T 2 °C to impart crimps to the hollow fiber membrane. Here, T 1 °C and T 2 °C are determined by the following formulas (iv) and (v).

40≦T1≦80 (iv) T1≦T2≦T1+20 (v) 本発明における中空繊維膜に用いることのでき
るセルロースエステルは、セルロースジアセテー
ト、セルローストリアセテート、セルロースプロ
ピオネート、セルロースブチレート、セルロース
アセテートプロピオネート、セルロースアセテー
トブチレートなどのセルロースのエステル化物の
単独、又は、これらの混合物である。
40≦T 1 ≦80 (iv) T 1 ≦T 2 ≦T 1 +20 (v) Cellulose esters that can be used for the hollow fiber membrane in the present invention include cellulose diacetate, cellulose triacetate, cellulose propionate, and cellulose butylene. Cellulose esters, such as cellulose esters, cellulose acetate propionate, and cellulose acetate butyrate, may be used alone, or a mixture thereof.

本発明に用いるセルロースエステルの有機溶媒
は、ジメチルホルムアミド、N−メチルピロリド
ン、ジメチルアセトアミド、アセトンなどを用い
る。又、紡糸原液として、セルロースエステルと
上記有機溶剤のほかに、第3成分として、多価ア
ルコールを用いる。多価アルコールとしては、エ
チレングリコール、トリエチレングリコール、グ
リセリン、種々分子量のポリエチレングリコール
などを用いる。
The organic solvent for cellulose ester used in the present invention includes dimethylformamide, N-methylpyrrolidone, dimethylacetamide, acetone, and the like. Further, in addition to the cellulose ester and the above-mentioned organic solvent, a polyhydric alcohol is used as a third component in the spinning dope. As the polyhydric alcohol, ethylene glycol, triethylene glycol, glycerin, polyethylene glycols of various molecular weights, etc. are used.

本発明のクリンプを有するセルロースエステル
系中空繊維膜はモジユールの形状に左右されず、
中空繊維間の間隙を保ち、かつ透析液の流れが繊
維表面で乱れを発生し膜表面の境膜抵抗を低下せ
しめ、以つて効果的な透析効率を得るものであ
る。
The crimp cellulose ester hollow fiber membrane of the present invention is independent of the shape of the module;
The gap between the hollow fibers is maintained, and the flow of the dialysate is disturbed on the fiber surface, reducing the film resistance on the membrane surface, thereby achieving effective dialysis efficiency.

最適な透析効率を得るために、透析液の流路と
なる中空繊維間の間隙をクリンプを有する中空繊
維で確保するためには、中空繊維10cm当りに、10
個から35個の捲縮が必要である。本発明における
捲縮数とは、中空繊維を軸方向に見た場合、中空
繊維の一つの頂点と、隣接する直径的に対抗する
頂点とが、sinカーブの頂点になるように、中空
繊維の軸方向の中心軸を設け、中空繊維10cm当り
の中心軸に対して同一側にある山の数を捲縮数と
する。捲縮数が9個以下の場合は、透析時に中空
繊維間の間隙を充分に確保することができず、中
空繊維の持つ性能を充分に発揮させることができ
ない。捲縮数が35個を越えた場合、中空繊維の持
つ真円形状がくずれてくる傾向にあり、血液透析
時に血液のよどみの発生原因になる危倶がある。
本発明におけるセルロースエステル系中空繊維の
捲縮数の最も好ましい条件は、20個前後である。
In order to obtain the optimum dialysis efficiency, in order to secure the gap between the hollow fibers, which becomes the flow path for the dialysate, by using hollow fibers with crimps,
From 1 to 35 crimps are required. The number of crimps in the present invention means that when the hollow fiber is viewed in the axial direction, one vertex of the hollow fiber and an adjacent diametrically opposed vertex become the vertex of a sin curve. A central axis in the axial direction is provided, and the number of crimp points is defined as the number of ridges on the same side of the central axis per 10 cm of hollow fiber. If the number of crimps is 9 or less, sufficient gaps between the hollow fibers cannot be secured during dialysis, and the performance of the hollow fibers cannot be fully demonstrated. If the number of crimps exceeds 35, the circular shape of the hollow fibers tends to collapse, which may cause blood stagnation during hemodialysis.
The most preferable condition for the number of crimps in the cellulose ester hollow fiber in the present invention is around 20 crimps.

透析の効率を上げるために、捲縮の数のみなら
ず、捲縮の大きさの表示である捲縮振幅L(単
位;ミクロン)も大きく関与している。本発明に
おける捲縮振幅Lとは、中空繊維の中央の頂点と
次に隣接する直径的に対向する頂点の中空繊維と
の間の横方向距離の半分である。捲縮振幅が0.65
×Rより小さい範囲では、透析時に中空繊維間の
間隙を充分に確保することができず、中空繊維同
志が密着してしまう傾向にあり、さらに透析液の
流れに乱れをおこさせ膜表面の境膜抵抗を低下さ
せることもなされず中空繊維の持つ性能を充分に
発揮させることができない。捲縮振幅がR+50を
越えた範囲では、中空繊維を集束する場合集束状
態が大きくなり、モジユールにした場合の中空繊
維の均一配置が困難となる。これらのことは透析
時の透析効率を著しく低下させる要因となる。本
発明者らは、前記(ii)式の捲縮数を持つ中空繊維
で、前記(iii)式の範囲内にある捲縮脊振幅を持つて
いる時、最適な透析効率を得ることを見出した。
中空繊維の外径は、広い範囲で選択することがで
きるが、透析用中空繊維膜を考えた場合200μ〜
500μが必要である。
In order to increase the efficiency of dialysis, not only the number of crimps but also the crimping amplitude L (unit: microns), which is an indication of the size of crimps, plays a large role. The crimp amplitude L in the present invention is half the lateral distance between the central vertex of a hollow fiber and the next adjacent diametrically opposite vertex of the hollow fiber. Crimp amplitude is 0.65
If the range is smaller than ×R, it will not be possible to secure sufficient gaps between the hollow fibers during dialysis, and the hollow fibers will tend to stick together, which will further disrupt the flow of the dialysate and create boundaries between membrane surfaces. The membrane resistance is not lowered, and the performance of the hollow fibers cannot be fully demonstrated. In a range where the crimp amplitude exceeds R+50, the bundled state of the hollow fibers becomes large and it becomes difficult to uniformly arrange the hollow fibers in a module. These factors become factors that significantly reduce the dialysis efficiency during dialysis. The present inventors have found that the optimum dialysis efficiency can be obtained when the hollow fiber has a crimp number expressed by the above formula (ii) and has a crimp spine amplitude within the range of the above formula (iii). Ta.
The outer diameter of the hollow fiber can be selected within a wide range, but when considering a hollow fiber membrane for dialysis, it is 200μ ~
500μ is required.

かかるクリンプを有するセルロースエステル系
中空繊維膜を製造する方法は、従来の半湿式紡糸
及び湿式紡糸で中空繊維膜を紡糸し、種々の工程
で透析膜としての性能を付与した中空繊維をグリ
セリン水溶液中に浸漬し、その後、40℃から80℃
の範囲内の温度T1℃を持つ空気又は不活性ガス
中で乾燥し、次いでボビンに巻取る。巻取時の張
力、捲き密度であるが本発明においては張力を5
g/単糸以下、平均捲き密度を45〜55%に設定す
ることが好ましい。巻取つたボビンをT2℃で熱
処理することによつて、中空繊維に捲縮を付与す
るとともに捲縮の固定を行なう。乾燥温度が40℃
より小さい場合は、グリセリン水溶液処理後の中
空繊維に付着した水分を充分に除去することがで
きずボビン巻取り後の熱処理によつても、充分な
持続性のある捲縮を付与することができない。80
℃より高い温度で乾燥した場合は、乾燥時に中空
繊維が固定されてしまい、ボビン熱処理によつ
て、充分な捲縮を付与することができない。また
熱処理後の中空繊維膜中の水分率は大略10%以下
に調整することが望ましい。
The method for manufacturing cellulose ester hollow fiber membranes having such crimps is to spin hollow fiber membranes using conventional semi-wet spinning and wet spinning, and then spin the hollow fibers, which have been imparted with dialysis membrane performance through various steps, into a glycerin aqueous solution. and then 40℃ to 80℃
and then wound onto bobbins. The tension at the time of winding and the winding density are 5.
g/single yarn or less, and the average winding density is preferably set to 45 to 55%. By heat-treating the wound bobbin at T 2 °C, the hollow fibers are crimped and the crimps are fixed. Drying temperature is 40℃
If the hollow fibers are smaller, the water attached to the hollow fibers cannot be sufficiently removed after being treated with an aqueous glycerin solution, and even with heat treatment after winding the bobbin, it will not be possible to provide a sufficiently long-lasting crimp. . 80
If drying is carried out at a temperature higher than 0.degree. C., the hollow fibers will be fixed during drying, and sufficient crimp cannot be imparted by the bobbin heat treatment. Further, it is desirable that the moisture content in the hollow fiber membrane after heat treatment is adjusted to about 10% or less.

また前述の如く中空繊維膜を乾燥する前にグリ
セリン水溶液に浸漬することは膜性能を経時的に
変化させないためにも重要である。即ち、グリセ
リン水溶液処理しないといくら前述の乾燥、熱処
理を行なつても所定の捲縮を付与することができ
ない。
Further, as mentioned above, it is important to immerse the hollow fiber membrane in an aqueous glycerin solution before drying it to prevent the membrane performance from changing over time. That is, unless treated with an aqueous glycerin solution, the desired crimp cannot be imparted, no matter how much the drying and heat treatment described above is carried out.

さらに本発明においては前述した捲縮中空繊維
の全繊維に占める割合は20%以上、好ましくは60
%以上に維持することが好ましく、またセルロー
スエステル系中空繊維膜として部分加水分解した
ものを含めることもできる。
Furthermore, in the present invention, the ratio of the crimped hollow fibers to the total fibers is 20% or more, preferably 60% or more.
% or more, and a partially hydrolyzed cellulose ester hollow fiber membrane may also be included.

本発明に係る捲縮性を有する中空繊維膜は、透
析能が良好であり、モジユール組立後も充分な透
析効率を与えるものであり、その製造法も、ボビ
ン熱処理によるものであり、簡便な装置により容
易に製造することができる。
The crimpable hollow fiber membrane according to the present invention has good dialysis ability and provides sufficient dialysis efficiency even after module assembly.The manufacturing method is also bobbin heat treatment, and a simple device is used. It can be easily manufactured by

本発明の中空繊維膜の膜性能は透析用モジユー
ルとして評価した。すなわち、実施例に記載され
れた条件でモジユールの血液側に尿素溶液を流
し、透析液を透析側に向流に流し、尿素の入口側
濃度(Cin)と出口側濃度(Cout)を実測し、下
記式より中空繊維膜の尿素除去性能(尿素のクリ
アランス:C)を求めた。
The membrane performance of the hollow fiber membrane of the present invention was evaluated as a dialysis module. That is, under the conditions described in the example, a urea solution was flowed to the blood side of the module, the dialysate was flowed countercurrently to the dialysis side, and the inlet side concentration (Cin) and outlet side concentration (Cout) of urea were actually measured. The urea removal performance (urea clearance: C) of the hollow fiber membrane was determined from the following formula.

C(ml/min)=Cin−Cout/Cin ×尿素溶液流量(ml/min.) 実施例 1 セルロースジアセテートを30重量部、ジメチル
ホルムアミドを49重量部、ポリエチレングリコー
ル200を21重量部を85℃2時間撹拌して溶解し、
紡糸原液を作成した。この紡糸原液を85℃で2時
間静置脱泡した。内管部の外径0.8mm、同内径0.5
mmで外管部の径が1mmの環状オリフイスノズルを
用いて紡糸を行つた。外管部より紡糸原液を供給
し、一方芯液として流動パラフインを0.45μのフ
イルターで濾過した後、内管部へ供給した。環状
オレフイスを出た中空状の原液を15cm空気中を走
行させ、その後、凝固浴中に導き、凝固させその
後水洗し、5重量%の水酸化ナトリウム水溶液浴
中を6秒走行させ、次に酢酸水溶液浴、水洗浴と
通し、引き続き40重量%のグリセリン水溶液浴を
通過させ、その後60℃の乾燥空気のゾーンを乾燥
空気と向流に中空繊維を通過させワインダーによ
り、張力2g/単糸条件のもとボビンに巻取つ
た。得られた中空繊維は、真円状であり、内径
200μ、膜厚16μで、ストレートな中空繊維であつ
た。巻取つたボビンを60℃の熱風乾燥器内で、18
時間熱処理した。得られた中空繊維は、内径
200μ、外径232μでかつ捲縮数が20個、捲縮振幅
が170μであつた。得られた中空繊維の溶質の透
析係数は、尿素で85×10-5cm/secであつた。本
中空繊維を用いて、円筒型の膜面積1.15m2のモジ
ユールを作製した。モジユールでの尿素のクリア
ランスは、透析流量500ml/minで、160ml/min
(C1)を得透析効率の良好な膜であることがわか
つた。
C (ml/min) = Cin-Cout/Cin × urea solution flow rate (ml/min.) Example 1 30 parts by weight of cellulose diacetate, 49 parts by weight of dimethylformamide, and 21 parts by weight of polyethylene glycol 200 at 85°C Stir for 2 hours to dissolve,
A spinning dope was prepared. This spinning stock solution was left standing at 85° C. for 2 hours to defoam. The outer diameter of the inner tube is 0.8 mm, and the inner diameter is 0.5 mm.
Spinning was performed using an annular orifice nozzle with an outer tube diameter of 1 mm. A spinning stock solution was supplied from the outer tube section, while liquid paraffin as a core solution was filtered through a 0.45μ filter and then supplied to the inner tube section. The hollow stock solution exiting the annular olefin was run through 15 cm of air, then introduced into a coagulation bath, coagulated, washed with water, run for 6 seconds in a 5% by weight sodium hydroxide aqueous solution bath, and then passed through acetic acid bath. The fibers are passed through an aqueous solution bath, a water washing bath, and then a 40% by weight glycerin aqueous solution bath.Then, the hollow fibers are passed through a zone of dry air at 60°C in countercurrent to the dry air, and then the fibers are heated using a winder at a tension of 2 g/single yarn. It was originally wound onto a bobbin. The obtained hollow fibers are perfectly circular and have an inner diameter of
It was a straight hollow fiber with a thickness of 200μ and a film thickness of 16μ. The wound bobbin is dried in a hot air dryer at 60℃ for 18
Heat treated for hours. The obtained hollow fiber has an inner diameter of
The diameter was 200μ, the outer diameter was 232μ, the number of crimps was 20, and the crimp amplitude was 170μ. The dialysis coefficient of the solute in the obtained hollow fiber was 85×10 −5 cm/sec with urea. Using this hollow fiber, a cylindrical module with a membrane area of 1.15 m 2 was fabricated. The clearance of urea in the module is 160ml/min at a dialysis flow rate of 500ml/min.
(C 1 ) and was found to be a membrane with good dialysis efficiency.

比較例 1 実施例1で熱処理をかける前のボビンの中空繊
維の尿素の透析係数は、84×10-5cm/secであつ
た。この中空繊維には、クリンプなかつた。本中
空繊維を用いて、実施例1と同様に円筒型の膜面
積1.15m2のモジユールを作製した。モジユールで
の尿素のクリアランスは透析流量500ml/minで、
135ml/minを得た。中空繊維膜の持つ性能を充
分発揮していないことがわかつた。
Comparative Example 1 The urea dialysis coefficient of the hollow fiber of the bobbin before heat treatment in Example 1 was 84×10 −5 cm/sec. This hollow fiber was not crimped. Using this hollow fiber, a cylindrical module with a membrane area of 1.15 m 2 was produced in the same manner as in Example 1. Urea clearance in the module is at a dialysis flow rate of 500ml/min.
135ml/min was obtained. It was found that the performance of the hollow fiber membrane was not fully demonstrated.

実施例 2 実施例2と同様に、ジメチルホルムアミドをN
−メチルピロリドンポリエチレングリコール200
をトリエチレングリコールに替えた系で紡糸原液
を作製した。組成比及び芯液は実施例1と同様で
ある。環状オリフイスノズルからドープと芯液を
押し出し、空気中を走行後、凝固浴中に導き、凝
固させ、その後水洗し、8重量%の水酸化ナトリ
ウム水溶液中を走行させ、次に酢酸水溶液浴、水
洗浴を通し、その後45重量%のグリセリン水溶液
浴を通過させ、その後55℃の乾燥空気のゾーンを
乾燥空気と向流に中空繊維を通過させ、ワインダ
ーにより張力2.5g/単糸条件でボビンに巻取つ
た。得られたボビンを63℃の熱風乾燥器内で、18
時間熱処理した。得られた中空繊維は、内径
225μで外径275μで、かつ捲縮数が18個、捲縮振
幅が209μであつた。本中空繊維を用いて円筒型
の膜面積1.1m2のモジユールを作製した。モジユ
ールの尿素のクリアランス、透析流量500ml/
minで、157ml/minであり透析効率の良好な膜
であることがわかつた。
Example 2 Similarly to Example 2, dimethylformamide was
-Methylpyrrolidone polyethylene glycol 200
A spinning dope was prepared using a system in which 100% of the raw material was replaced with triethylene glycol. The composition ratio and core liquid are the same as in Example 1. The dope and core liquid are extruded through an annular orifice nozzle, passed through the air, introduced into a coagulation bath, coagulated, washed with water, run through an 8% by weight aqueous sodium hydroxide solution, then passed through an acetic acid aqueous solution bath and water. The hollow fibers were passed through a washing bath, then a 45% by weight glycerin aqueous solution bath, and then passed through a 55°C dry air zone in countercurrent to the drying air, and wound onto a bobbin with a winder at a tension of 2.5 g/single thread. I took it. The obtained bobbin was dried in a hot air dryer at 63℃ for 18
Heat treated for hours. The obtained hollow fiber has an inner diameter of
The diameter was 225μ, the outer diameter was 275μ, the number of crimps was 18, and the crimp amplitude was 209μ. A cylindrical module with a membrane area of 1.1 m 2 was fabricated using this hollow fiber. Module urea clearance, dialysis flow rate 500ml/
The dialysis efficiency was 157 ml/min, indicating that the membrane had good dialysis efficiency.

比較例 2 実施例2の熱処理をかける前のボビンの中空繊
維から円筒型の膜面積1.1m2のモジユールを作製
した。本中空繊維には、クリンプがなかつた。モ
ジユールでの尿素のクリアランスは透析流量500
ml/minで118ml/minであり、、中空繊維膜のも
つ性能が充分発揮されていないことがわかつた。
Comparative Example 2 A cylindrical module with a membrane area of 1.1 m 2 was produced from the hollow fibers of the bobbin before heat treatment in Example 2. The hollow fibers had no crimps. Clearance of urea in module is dialysis flow rate 500
ml/min was 118 ml/min, indicating that the performance of the hollow fiber membrane was not fully demonstrated.

比較例 3 実施例2の同一の条件で紡糸、まきとりしたセ
ルロースアセテート中空繊維を実施例2とは異な
つた熱処理条件(30℃)処理したところ、チーズ
内部の中空繊維には捲縮が発生していた。捲縮数
は10cmあたり12個で捲縮振幅は、150μであつた。
本中空繊維を用いて円筒型の膜面積1.1m2のモジ
ユールを作製した。モジユールの尿素のクリアラ
ンスは、透析流量500ml/minで、130ml/minで
あり、中空繊維膜のもつ性能が充分発揮されてい
ないことがわかつた。
Comparative Example 3 Cellulose acetate hollow fibers spun and wound under the same conditions as in Example 2 were subjected to heat treatment conditions (30°C) different from those in Example 2, and crimping occurred in the hollow fibers inside the cheese. was. The number of crimp was 12 per 10cm and the crimp amplitude was 150μ.
A cylindrical module with a membrane area of 1.1 m 2 was fabricated using this hollow fiber. The clearance of urea in the module was 130 ml/min at a dialysis flow rate of 500 ml/min, indicating that the performance of the hollow fiber membrane was not fully demonstrated.

Claims (1)

【特許請求の範囲】 1 透析用中空繊維膜において、該中空繊維の外
径R(単位:ミクロン)が(i)式の範囲内にあつて、
該中空繊維の10cm当りの捲縮数n(単位:個)が
(ii)式で、捲縮振幅L(単位:ミクロン)が(iii)式の
範囲内にあることを特徴とする透析用中空繊維
膜。 200≦R≦500 (i) 10≦n≦35 (ii) 0.65×R≦L≦R+50 (iii) 2 中空繊維膜を紡糸した後、T1℃の空気又は
不活性ガス中で乾燥し、次いでボビンに巻取り、
該ボビンに巻き取つた状態でT2℃の温度で熱処
理して、前記中空繊維膜に捲縮を付与することを
特徴とする中空繊維膜の製造方法。ここでT1
及びT2℃は下記(iv)式及び(v)式で定められる。 40≦T1≦80 (iv) T1≦T2≦T1+20 (v)
[Claims] 1. In a hollow fiber membrane for dialysis, the outer diameter R (unit: microns) of the hollow fiber is within the range of formula (i),
The number of crimp n (unit: pieces) per 10 cm of the hollow fiber is
A hollow fiber membrane for dialysis, characterized in that the crimp amplitude L (unit: microns) is within the range of formula (iii) in formula (ii). 200≦R≦500 (i) 10≦n≦35 (ii) 0.65×R≦L≦R+50 (iii) 2 After spinning the hollow fiber membrane, it is dried in air or inert gas at T 1 °C, and then Wind it onto a bobbin,
A method for producing a hollow fiber membrane, which comprises heat-treating the hollow fiber membrane wound on the bobbin at a temperature of T2C to impart crimp to the hollow fiber membrane. Here T 1
and T 2 °C are determined by the following formulas (iv) and (v). 40≦T 1 ≦80 (iv) T 1 ≦T 2 ≦T 1 +20 (v)
JP1219710A 1981-11-14 1989-08-25 Manufacture of hollow fiber dialyzing membrane Granted JPH02258035A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18272281A JPS5884007A (en) 1981-11-14 1981-11-14 Hollow fibrous membrane for dialysis and its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18272281A Division JPS5884007A (en) 1981-11-14 1981-11-14 Hollow fibrous membrane for dialysis and its production

Publications (2)

Publication Number Publication Date
JPH02258035A JPH02258035A (en) 1990-10-18
JPH0512013B2 true JPH0512013B2 (en) 1993-02-17

Family

ID=16123293

Family Applications (2)

Application Number Title Priority Date Filing Date
JP18272281A Granted JPS5884007A (en) 1981-11-14 1981-11-14 Hollow fibrous membrane for dialysis and its production
JP1219710A Granted JPH02258035A (en) 1981-11-14 1989-08-25 Manufacture of hollow fiber dialyzing membrane

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP18272281A Granted JPS5884007A (en) 1981-11-14 1981-11-14 Hollow fibrous membrane for dialysis and its production

Country Status (1)

Country Link
JP (2) JPS5884007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093654A1 (en) 2007-01-30 2008-08-07 Toray Industries, Inc. Hollow-fiber membrane and hollow-fiber-membrane module having the same included therein

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884007A (en) * 1981-11-14 1983-05-20 Toyobo Co Ltd Hollow fibrous membrane for dialysis and its production
US4913864A (en) * 1987-11-19 1990-04-03 Teijin Limited Process for preparation of porous hollow filament
US5011637A (en) * 1989-01-23 1991-04-30 The Dow Chemical Company Preparing cellulose ester membranes for gas separation
US4980063A (en) * 1989-01-27 1990-12-25 The Dow Chemical Company Compositions useful for preparing cellulose ester membranes for liquid separations
DE10007327A1 (en) * 2000-02-17 2001-08-30 Fresenius Medical Care De Gmbh Filter device, preferably hollow fiber dialyzer with curled hollow fibers
SE522692C2 (en) * 2002-03-27 2004-03-02 Gambro Lundia Ab Method and apparatus for removing partially protein bound substances
JP2010046587A (en) * 2008-08-20 2010-03-04 Toyobo Co Ltd Hollow fiber membrane module
JP5580616B2 (en) * 2010-02-15 2014-08-27 東洋紡株式会社 Method for drying polysulfone-based permselective hollow fiber membrane bundle
EP2815807A1 (en) 2013-06-20 2014-12-24 Gambro Lundia AB Capillary dialyzer comprising crimped hollow fibres

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488317A (en) * 1977-11-30 1979-07-13 Monsanto Co Hollow fiber for fluid separation
JPS57194007A (en) * 1981-05-26 1982-11-29 Nitsushiyoo:Kk Hollow yarn type permeating device
JPS5884007A (en) * 1981-11-14 1983-05-20 Toyobo Co Ltd Hollow fibrous membrane for dialysis and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53104754U (en) * 1977-01-27 1978-08-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488317A (en) * 1977-11-30 1979-07-13 Monsanto Co Hollow fiber for fluid separation
JPS57194007A (en) * 1981-05-26 1982-11-29 Nitsushiyoo:Kk Hollow yarn type permeating device
JPS5884007A (en) * 1981-11-14 1983-05-20 Toyobo Co Ltd Hollow fibrous membrane for dialysis and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093654A1 (en) 2007-01-30 2008-08-07 Toray Industries, Inc. Hollow-fiber membrane and hollow-fiber-membrane module having the same included therein

Also Published As

Publication number Publication date
JPH0369573B2 (en) 1991-11-01
JPS5884007A (en) 1983-05-20
JPH02258035A (en) 1990-10-18

Similar Documents

Publication Publication Date Title
JPH0512013B2 (en)
US4681713A (en) Method of making a hollow fiber membrane for dialysis
US5387345A (en) Cellulose acetate membranes
JP2008155009A (en) Hollow fiber membrane type blood purification module and its manufacturing method
US4587168A (en) Hollow fiber membrane for dialysis
JPS59166208A (en) Manufacture of gas separating membrane
JPH0120245B2 (en)
JPS6242705A (en) Permselective hollow yarn and fluid separator
JPH06509746A (en) Hollow fiber for dialysis
JPS6054402B2 (en) Manufacturing method of recycled cellulose hollow fiber
CA1237260A (en) Hollow fiber membrane for dialysis
JP3001774B2 (en) Method for producing hollow fiber membrane for blood
JPH0566169B2 (en)
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JPS61268304A (en) Fluid separator
JPH047256B2 (en)
JPH0321645B2 (en)
JP2001000843A (en) Composite semipermeable membrane and composite semipermeable membrane module
JPS6411322B2 (en)
JPS6229524B2 (en)
JP2710711B2 (en) Cellulose diacetate hollow fiber
JPH0523554A (en) Cellulose hollow yarn
JPH0362447B2 (en)
JP2710710B2 (en) Fluid separator
JPS621007B2 (en)