JPH0321645B2 - - Google Patents

Info

Publication number
JPH0321645B2
JPH0321645B2 JP56191289A JP19128981A JPH0321645B2 JP H0321645 B2 JPH0321645 B2 JP H0321645B2 JP 56191289 A JP56191289 A JP 56191289A JP 19128981 A JP19128981 A JP 19128981A JP H0321645 B2 JPH0321645 B2 JP H0321645B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
ufr
sec
fiber membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56191289A
Other languages
Japanese (ja)
Other versions
JPS5891806A (en
Inventor
Morio Myagi
Tsutomu Kawamura
Masaru Kaneizumi
Tetsuo Ukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP19128981A priority Critical patent/JPS5891806A/en
Publication of JPS5891806A publication Critical patent/JPS5891806A/en
Publication of JPH0321645B2 publication Critical patent/JPH0321645B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、新規な中空繊維膜に関するものであ
り、透析によつて体液を浄化するに適した透析用
中空繊維膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel hollow fiber membrane, and relates to a hollow fiber membrane for dialysis suitable for purifying body fluids by dialysis.

セルロースエステル類は従来から中空繊維膜に
加工され、種々の工程、例えば、かん水や海水の
脱塩、種々の溶質を含有した水溶液の限外濾過な
ど、省エネルギー型の分離工程に使用されてき
た。
Cellulose esters have traditionally been processed into hollow fiber membranes and used in various processes, such as desalination of brine and seawater, ultrafiltration of aqueous solutions containing various solutes, and energy-saving separation processes.

一方、腎不全患者の血液浄化に用いる中空繊維
膜素材としてセルロースエステル系中空繊維膜
は、生体に対する適合性、製造面での容易さから
種々の研究開発がなされている。また血液透析に
用いる中空繊維膜の必要特性としては、中空繊維
からの漏血がないこと、尿素、尿酸やクレアチニ
ンなど体内の小分子量の老廃物が容易に除去でき
ること、バランスの取れた水分透過性を持つてい
ることなどがある。
On the other hand, various research and development efforts have been made on cellulose ester-based hollow fiber membranes as hollow fiber membrane materials used for blood purification of renal failure patients due to their compatibility with living organisms and ease of production. In addition, the characteristics required for hollow fiber membranes used in hemodialysis include: no blood leakage from the hollow fibers, the ability to easily remove small molecular weight waste products from the body such as urea, uric acid, and creatinine, and balanced water permeability. There are times when you have something like that.

しかし、血液浄化用のセルロースエステル系中
空繊維膜においては、透過水量すなわち限外過
率UFR(ml/m2・hr・mmHg)は、比較的容易に、
上昇させうることが可能であるが、溶質の透過係
数を透過水量とバランスを取りながら、増加させ
ることは、むづかしかつた。
However, in cellulose ester hollow fiber membranes for blood purification, the amount of permeated water, that is, the ultraviolet rate UFR (ml/ m2・hr・mmHg), can be determined relatively easily.
Although it is possible to increase the solute permeability coefficient, it has been difficult to increase the solute permeability coefficient while balancing the permeate amount.

そこで本発明者らは、限外過率UFRと溶質
の透過係数(例えば尿素透過係数PUN)とのバ
ランスを良好に維持する中空繊維膜について鋭意
検討した結果本発明を見出すに至つた。
Therefore, the present inventors have conducted intensive studies on hollow fiber membranes that maintain a good balance between the ultraviolet rate UFR and the permeability coefficient of solutes (for example, urea permeability coefficient PUN), and as a result, have discovered the present invention.

本発明において前記両者のバランスは下記(a)式
で定義する膜定数Mを用いることにより評価し
た。
In the present invention, the balance between the two was evaluated using the membrane constant M defined by the following equation (a).

M=P×105/√ (a) 本発明者らは、水及び溶質の膜の透過を、細孔
機構で考察した。膜中の細孔の半径をrcm、膜厚
をΔdcm、細孔数をnコ/cm2、水の粘度をηg/
cm・secとする。溶質の膜の透過係数をPcm/sec
溶質の拡散係数をDcm2/secとする。又水の単位
時間当りの移動量Vcm/secとする。移動量V
cm/secは、限外過率UFRml/m2・hr・mmHg
と(b)式の関係にある。
M=P×10 5 /√ (a) The present inventors considered the permeation of water and solute through a membrane using a pore mechanism. The radius of the pores in the membrane is rcm, the membrane thickness is Δdcm, the number of pores is n/cm 2 , and the viscosity of water is ηg/
Let it be cm・sec. The permeability coefficient of the solute membrane is Pcm/sec
Let the diffusion coefficient of solute be Dcm 2 /sec. Also, the amount of movement of water per unit time is Vcm/sec. Movement amount V
cm/sec is ultraviolet rate UFRml/m 2・hr・mmHg
and (b).

UFR=V/ΔP×4.8×1010 (b) Vcm/secは、Hagen Poiseulle′s Lawより(c)
式で与えられる。
UFR=V/ΔP×4.8×10 10 (b) Vcm/sec is from Hagen Poiseulle's Law (c)
It is given by Eq.

V=nπr4ΔP/8ηΔd (c) Δpg/cmsec2は細孔出入口の圧力差を表わす。V=nπr 4 ΔP/8ηΔd (c) Δpg/cmsec 2 represents the pressure difference at the entrance and exit of the pore.

溶質の膜の透過係数Pは、孔の面積と溶質の拡
散係数Dcm2/secを用いて、(d)式で求められる。
(d)式を(c)式を用いて変形すると(e)式となる。
The permeability coefficient P of the solute in the membrane is determined by equation (d) using the pore area and the solute diffusion coefficient Dcm 2 /sec.
When formula (d) is transformed using formula (c), formula (e) is obtained.

P=Dnπr2/Δd (d) P=√8× (e) (e)式で透過水量と溶質の透過係数のバランス
は、細孔数nで決められることがわかる。(b)式と
(e)式とから、本発明者らは、UFRとPUNとのバ
ランス評価パラメーターとして(a)式の膜定数Mを
定義した。
P=Dnπr 2 /Δd (d) P=√8× (e) It can be seen from equation (e) that the balance between the amount of permeated water and the permeability coefficient of solute is determined by the number of pores n. (b) and
From equation (e), the present inventors defined the membrane constant M in equation (a) as a parameter for evaluating the balance between UFR and PUN.

人工腎臓用透析モジユールの形状は、血液のモ
ジユール内の充填量を少くなくする目的で、小型
化の傾向に進んでいる。小型にした場合、中空繊
維膜に要求される特性は、モジユール当りの同一
の透水量にするために、UFRを上昇させる必要
がある。又膜面積減少をカバーするため、膜の溶
質透過係数を上昇させる必要がある。
The shape of dialysis modules for artificial kidneys is becoming smaller in order to reduce the amount of blood filled in the module. When miniaturized, the properties required of hollow fiber membranes are such that in order to maintain the same water permeability per module, it is necessary to increase the UFR. Furthermore, in order to compensate for the decrease in membrane area, it is necessary to increase the solute permeability coefficient of the membrane.

セルロースアセテート中空繊維膜の例として特
開昭54−42420号公報があげられるが、ここには
UFRが約5ないし約6ml/m2・hr・mmHgで、尿
素の透過係数が約50×10-5ないし約75×10-5cm/
secである中空繊維膜が記載されている。そして
本発明に係る膜定数で評価すると、UFRが5
ml/m2・hr・mmHg、尿素の透過係数が75×10-5
cm/secをもつ中空繊維膜の場合、33.5となる。
As an example of cellulose acetate hollow fiber membrane, JP-A-54-42420 can be mentioned;
When the UFR is about 5 to about 6 ml/ m2・hr・mmHg, the permeability coefficient of urea is about 50×10 -5 to about 75×10 -5 cm/
Hollow fiber membranes that are sec are described. And when evaluated using the film constant according to the present invention, UFR is 5
ml/m 2・hr・mmHg, urea permeability coefficient is 75×10 -5
For a hollow fiber membrane with cm/sec, it is 33.5.

本発明者らは、細孔の理論から透過水量と溶質
の透過係数とがバランスされるためには、イヌリ
ンの透過率が30%を越えた時、膜定数の高い中空
繊維膜を得ることが出来ることを見出した。
Based on pore theory, the present inventors found that in order to balance the amount of permeated water and the solute permeability coefficient, it is possible to obtain a hollow fiber membrane with a high membrane constant when the inulin permeability exceeds 30%. I found out what I can do.

しかし、細孔が大きくかつ孔数がふえると必然
的に中空繊維の強力は弱くなり、モジユールなど
の組立工程で損傷をきたし、血液透析用モジユー
ルとして使用できなくなる。本発明者らは、適当
な膜定数を持ち、かつモジユール組立時に、中空
繊維膜の性能低下及び損傷を与えることない中空
繊維膜を見出した。
However, as the pores become larger and the number of pores increases, the strength of the hollow fibers inevitably decreases, causing damage during the module assembly process, making it impossible to use the fibers as a hemodialysis module. The present inventors have discovered a hollow fiber membrane that has an appropriate membrane constant and does not cause any performance deterioration or damage to the hollow fiber membrane during module assembly.

本発明は、透析用中空繊維膜であつて、限外
過率UFR(ml/m2・hr・mmHg)が(1)式の範囲内
にあり、さらに尿素透過係数PUN(cm/sec)と
の間に、(ii)式の関係をもつ性能を有し、かつイヌ
リンの透過率SC(%)が(iii)式の範囲であることを
特徴とするものある。
The present invention is a hollow fiber membrane for dialysis, which has an ultrafiltration rate UFR (ml/m 2 hr mmHg) within the range of equation (1), and a urea permeability coefficient PUN (cm/sec). Among them, there are some that are characterized by having a performance having the relationship expressed by formula (ii) and having an inulin transmittance SC (%) within the range expressed by formula (iii).

10≧UFR≧4 (1) PUN×105/√≧40 (ii) SC≧30 (iii) 本発明における透析用中空繊維膜に用いること
のできるセルロースエステルは、セルロースジア
セテート、セルローストリアセテート、セルロー
スプロピオネート、セルロースブチレート、セル
ロースアセテートプロピオネート、セルロースア
セテートグチレートなどのセルロースのエステル
化物の単独、又は、これらの混合物である。
10≧UFR≧4 (1) P UN ×10 5 /√≧40 (ii) SC≧30 (iii) Cellulose esters that can be used in the hollow fiber membrane for dialysis in the present invention include cellulose diacetate, cellulose triacetate, Cellulose esters such as cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate ghylate may be used alone or in mixtures thereof.

本発明のセルロースエステル系中空繊維膜は、
芯液としてアルカリ水溶液と非相溶の液体を用
い、環状オリフイスよりセルロースエステルの紡
糸原液を2重管構造の紡糸口金の外管の環状スリ
ツトより押出すと共に紡糸口金の内管より芯液を
押出すと共に紡糸原液を一度ガス雰囲気下に導き
その後水系凝固浴に導き、付着凝固液を水洗後、
0.1重量%〜13重量%のアルカリ水溶液で1〜30
秒処理し、付着アルカリ水溶液を酢酸水溶液で中
和し次に水洗することによつて製造されるが、就
中本発明のUFR、PUN及びSCを所定の範囲に維
持するためには紡糸原液中のセルロースエステル
の濃度を30重量%以上に設定することが望まし
い。
The cellulose ester hollow fiber membrane of the present invention is
Using a liquid that is incompatible with an alkaline aqueous solution as the core liquid, the cellulose ester spinning dope is extruded from an annular orifice through an annular slit in the outer tube of a spinneret with a double-tube structure, and the core liquid is extruded from the inner tube of the spinneret. At the same time, the spinning stock solution is first introduced into a gas atmosphere and then introduced into an aqueous coagulation bath, and after washing the adhering coagulation liquid with water,
1 to 30 with 0.1% to 13% by weight alkaline aqueous solution
It is manufactured by treating the alkali aqueous solution with an acetic acid aqueous solution and then washing with water. In particular, in order to maintain the UFR, P UN and SC of the present invention within a predetermined range, the spinning stock solution is It is desirable to set the concentration of cellulose ester therein to 30% by weight or more.

以下、具体的な実施例により、本発明を更に詳
細に説明するが本発明は、この範囲に限定される
ものではない。
Hereinafter, the present invention will be explained in more detail with reference to specific examples, but the present invention is not limited to this scope.

なお、本発明に用いる尿素透過係数PUN(cm/
sec)及びイヌリン透過率SC(%)は次の式で算
出したものである。
In addition, the urea permeability coefficient P UN (cm/
sec) and inulin permeability SC (%) were calculated using the following formula.

(1) PUN(cm/sec) PUN=QB/A lnC1/C2 ここで QB;供給液の流速(ml/sec) A;有効膜面積(cm2) C1;原液入口部での尿素濃度 C2;原液出口部での尿素濃度 (2) SC(%) SC=C4/C3×100 ここで C3;原液中のイヌリン濃度 C4;透過液中のイヌリン濃度 実施例 1 セルロースジアセテートを31重量部、ジメチル
ホルムアミドを48重量部ポリエチレングリコール
200を21重量部を混合溶解しこれを紡糸原液とし、
環状オリフイスノズルを用いて紡糸を行なつた。
外管部より紡糸原液を供給し、一方芯液として流
動パラインを吐出した。環状オリフイスを出た中
空状の原液を15cm空気中に走行させ、その後、凝
固させ、その後水洗し、5重量%の水酸化ナトリ
ウム水溶液中を6秒走行させ、次に酢酸水溶液
浴、水洗浴を通し、引き続き、40重量%のグリセ
リン水溶液浴を通過させ、その後、60℃の乾燥空
気のゾーンを乾燥空気と向流に中空繊維を通過さ
せ、ワインダーにより、ボビンに巻取つた。得ら
れたセルロースアセテート中空繊維は、真円状で
あり、内径200μ、膜厚22μであつた。この膜の
UFRは、5.5ml/m2・hr.mm.Hg、尿素の透過係
数は、94×10-5cm/secであつた。イヌリンの透
過率は、35%であつた。膜定数は、40.1であり、
従来のセルロースエステル中空繊維膜より優れた
ものである。又本中空繊維膜の単糸当りの降状強
力は、27gであり、本中空繊維でのモジユール化
でトラブルを生じることがなかつた。なお、降状
強力は、糸長10cm、引張速度10cm/minで引張り
試験を行ない、得られる強度〜伸度曲線の降状点
に対応する強力を測定したものである。
(1) P UN (cm/sec) P UN =Q B /A lnC 1 /C 2 where Q B ; Flow rate of feed liquid (ml/sec) A; Effective membrane area (cm 2 ) C 1 ; Raw solution inlet Urea concentration at the stock solution outlet C 2 ; Urea concentration at the stock solution outlet (2) SC (%) SC = C 4 /C 3 ×100 where C 3 ; Inulin concentration in the stock solution C 4 ; Inulin concentration in the permeate Example 1 31 parts by weight of cellulose diacetate, 48 parts by weight of dimethylformamide, polyethylene glycol
Mix and dissolve 21 parts by weight of 200 and use this as a spinning stock solution.
Spinning was carried out using an annular orifice nozzle.
A spinning dope was supplied from the outer tube, while liquid paraline was discharged as a core liquid. The hollow stock solution that came out of the annular orifice was run in 15 cm of air, then solidified, then washed with water, run in a 5% by weight sodium hydroxide aqueous solution for 6 seconds, and then passed through an acetic acid aqueous solution bath and a water washing bath. The hollow fibers were then passed through a 40% by weight aqueous glycerin bath, and then passed through a zone of dry air at 60° C. in countercurrent to the hollow fibers, and wound onto a bobbin using a winder. The obtained cellulose acetate hollow fibers had a perfect circular shape, an inner diameter of 200 μm, and a film thickness of 22 μm. of this membrane
UFR is 5.5ml/ m2・hr.mm. The permeability coefficients for Hg and urea were 94×10 -5 cm/sec. The permeability of inulin was 35%. The membrane constant is 40.1,
It is superior to conventional cellulose ester hollow fiber membranes. Furthermore, the falling strength of the hollow fiber membrane per single fiber was 27 g, and no trouble occurred when the hollow fiber was used to form a module. Incidentally, the descending strength is measured by conducting a tensile test at a yarn length of 10 cm and a tensile speed of 10 cm/min, and measuring the strength corresponding to the descending point of the obtained strength-elongation curve.

実施例 2 実施例1のジメチルホルムアミドをN−メチル
ピロリドンに、またポリエチレングリコール200
をエチレングリコールに替えた他は実施例1と同
様な手法で紡糸原液を作製し、環状オリフイスノ
ズルからドープと芯液を押し出し、空気中を走行
後、凝固浴中に導き、凝固させ、その後水洗し、
7重量%の水酸化ナトリウム水溶液中を走行さ
せ、次に酢酸水溶液浴、水洗浴を通し、その後41
重量%のグリセリン水溶液浴を通過させ、その後
60℃の乾燥空気と向流に中空繊維を通過させ、ワ
インダーによりボビンに巻取つた。得られたセル
ロースアセテート中空繊維膜は真円状であり内径
200μ、膜厚21μであつた。この中空繊維膜のUFR
は、5.1ml/m2・hr.mmHg、尿素の透過係数は、93
×10-5cm/secであつた。イヌリンの透過率は、
41%であつた。膜定数は、41.2であり、従来のセ
ルロースエステル中空繊維膜より優れたものであ
る。又中空繊維の単糸当りの降状強力は、25gで
あり、本中空繊維でのモジユール化でトラブルを
生じることがなかつた。
Example 2 The dimethylformamide of Example 1 was converted into N-methylpyrrolidone and polyethylene glycol 200
A spinning dope was prepared in the same manner as in Example 1, except that ethylene glycol was used, and the dope and core liquid were extruded from an annular orifice nozzle, passed through the air, introduced into a coagulation bath, coagulated, and then washed with water. death,
Run in a 7% by weight sodium hydroxide aqueous solution, then pass through an acetic acid aqueous solution bath, a water washing bath, and then 41
% by weight through a glycerin aqueous solution bath, then
The hollow fibers were passed through countercurrent to dry air at 60°C and wound onto a bobbin using a winder. The obtained cellulose acetate hollow fiber membrane has a perfect circular shape with an inner diameter of
It was 200μ and the film thickness was 21μ. UFR of this hollow fiber membrane
is 5.1ml/ m2・hr.mmHg, and the permeability coefficient of urea is 93
×10 -5 cm/sec. The permeability of inulin is
It was 41%. The membrane constant is 41.2, which is superior to conventional cellulose ester hollow fiber membranes. Further, the falling strength of the hollow fiber per single yarn was 25 g, and no trouble occurred when the hollow fiber was made into a module.

比較例 1 セルロースジアセテート33重量部、N−メチル
ピロリドン54重量部及びエチレングリコール13重
量部を混合溶解して紡糸原液となし、環状オリフ
イスノズルを用いて紡糸し、内径202μ、膜厚20μ
のセルロースアセテート中空繊維膜を得た。この
中空繊維のUFRは3ml/m2・hr・mmHgで、尿素
の透過係数は70×10-5cm/secであつた。膜定数
は40.4であつた。一方実施例2で作製したモジユ
ールの透過水量と同一レベルの性能をもつモジユ
ールを得るためには充填密度又はモジユール容器
を1.7倍にする必要があつた。しかし充填密度が
1.7倍にもなればモジユール化が困難であり、一
方モジユール容量が1.7倍になればモジユール内
の血液量も1.7倍になり血液の体外循環量が著し
く減少するので好ましくない。
Comparative Example 1 33 parts by weight of cellulose diacetate, 54 parts by weight of N-methylpyrrolidone and 13 parts by weight of ethylene glycol were mixed and dissolved to prepare a spinning stock solution, which was spun using an annular orifice nozzle to obtain an inner diameter of 202μ and a film thickness of 20μ.
A cellulose acetate hollow fiber membrane was obtained. The UFR of this hollow fiber was 3 ml/m 2 ·hr · mmHg, and the permeability coefficient of urea was 70×10 -5 cm/sec. The membrane constant was 40.4. On the other hand, in order to obtain a module having the same level of performance as the amount of permeated water in the module produced in Example 2, it was necessary to increase the packing density or the module container by 1.7 times. However, the packing density
If the capacity is 1.7 times, it will be difficult to form a module, and on the other hand, if the capacity of the module is 1.7 times, the blood volume within the module will also be 1.7 times, which is not preferable because the extracorporeal circulation amount of blood will be significantly reduced.

比較例 2 実施例1と同一の紡糸原液を、実施例1と同様
な方法で紡糸、凝固させ、次いで水洗して内径
200μ、膜厚22μのセルロースアセテート中空繊維
膜を得た(実施例1の如き紡糸、水洗、凝固後の
水酸化ナトリウム水溶液及び酢酸水溶液処理は行
なわなかつた)。得られた中空繊維膜は、UFRが
5.3ml/m2・hr・mmHg、PUNが82×10-5cm/sec
であつた。膜定数を計算すると35.6であつた。か
かる中空繊維膜を用いてモジユールを作製しその
尿素クリアランスを測定すると137ml/minしか
なかつた。一方実施例1のモジユールを用いた場
合の尿素クリアランスは157ml/minであつた。
Comparative Example 2 The same spinning solution as in Example 1 was spun and coagulated in the same manner as in Example 1, and then washed with water to reduce the inner diameter.
A cellulose acetate hollow fiber membrane having a diameter of 200 μm and a thickness of 22 μm was obtained (the treatment with an aqueous sodium hydroxide solution and an aqueous acetic acid solution after spinning, washing with water, and coagulation as in Example 1 was not performed). The obtained hollow fiber membrane has a UFR of
5.3ml/m 2・hr・mmHg, PUN is 82×10 -5 cm/sec
It was hot. The membrane constant was calculated to be 35.6. When a module was prepared using such a hollow fiber membrane and its urea clearance was measured, it was found to be only 137 ml/min. On the other hand, when the module of Example 1 was used, the urea clearance was 157 ml/min.

尚、尿素クリアランスは次の式を用いて求めた
ものである。
Incidentally, urea clearance was determined using the following formula.

C=QB・1−exp{NT(1−QB/QD)}/QB/QD−exp{
NT(1−QB/QD)} ここで NT=K0・S/QB QB,QD;血液流量及び透析液流量(ml/min) KO;総括物質移動係数(cm/min) S;モジユール膜面積(cm2) またKO=QB/S(1−QB/QD)1n(C/QD−1)/(
C/QB−1)
C=Q B・1−exp{N T (1−Q B /Q D )}/Q B /Q D −exp{
N T (1-Q B /Q D )} Here, N T = K 0 · S / Q B Q B , Q D ; Blood flow rate and dialysate flow rate (ml/min) K O : Overall mass transfer coefficient (cm /min) S; module membrane area (cm 2 ) and K O =Q B /S (1-Q B /Q D )1n (C/Q D -1) / (
C/Q B -1)

Claims (1)

【特許請求の範囲】 1 セルロースアセテート30重量%以上含有する
紡糸原液から紡糸されたセルロースアセテート系
透析用中空繊維膜であつて、限外濾過率UFR
(ml/m2・hr・mmHg)、該UFRと尿素透過係数
PUN(cm/sec)との関係及びイヌリン透過率SC
(%)が下記範囲を満足しかつ中空繊維単糸当り
の降伏強力が20g以上であることを特徴とする透
析用中空繊維膜。 4≦UFR≦10 (i) PUN×105/√≧40 (ii) SC≧30 (iii)
[Scope of Claims] 1. A cellulose acetate-based hollow fiber membrane for dialysis spun from a spinning stock solution containing 30% by weight or more of cellulose acetate, which has an ultrafiltration rate of UFR.
(ml/ m2・hr・mmHg), UFR and urea permeability coefficient
Relationship with PUN (cm/sec) and inulin permeability SC
A hollow fiber membrane for dialysis, characterized in that (%) satisfies the following range and the yield strength per single hollow fiber is 20 g or more. 4≦UFR≦10 (i) PUN×10 5 /√≧40 (ii) SC≧30 (iii)
JP19128981A 1981-11-27 1981-11-27 Hollow filament film for dialysis Granted JPS5891806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19128981A JPS5891806A (en) 1981-11-27 1981-11-27 Hollow filament film for dialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19128981A JPS5891806A (en) 1981-11-27 1981-11-27 Hollow filament film for dialysis

Publications (2)

Publication Number Publication Date
JPS5891806A JPS5891806A (en) 1983-05-31
JPH0321645B2 true JPH0321645B2 (en) 1991-03-25

Family

ID=16272081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19128981A Granted JPS5891806A (en) 1981-11-27 1981-11-27 Hollow filament film for dialysis

Country Status (1)

Country Link
JP (1) JPS5891806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027447A1 (en) * 1998-11-09 2000-05-18 Asahi Medical Co., Ltd. Blood purifying apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536627A (en) * 1976-07-08 1978-01-21 Nippon Zeon Co Ltd Hollow fibers
JPS54138616A (en) * 1978-04-13 1979-10-27 Mitsubishi Rayon Co Ltd Production of hollow regenerated cellulose fiber
JPS5536335A (en) * 1978-09-01 1980-03-13 Nippon Zeon Co Ltd Production of hollow fiber
JPS5539223A (en) * 1978-09-11 1980-03-19 Nippon Zeon Co Ltd Manufacture of hollow fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536627A (en) * 1976-07-08 1978-01-21 Nippon Zeon Co Ltd Hollow fibers
JPS54138616A (en) * 1978-04-13 1979-10-27 Mitsubishi Rayon Co Ltd Production of hollow regenerated cellulose fiber
JPS5536335A (en) * 1978-09-01 1980-03-13 Nippon Zeon Co Ltd Production of hollow fiber
JPS5539223A (en) * 1978-09-11 1980-03-19 Nippon Zeon Co Ltd Manufacture of hollow fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027447A1 (en) * 1998-11-09 2000-05-18 Asahi Medical Co., Ltd. Blood purifying apparatus

Also Published As

Publication number Publication date
JPS5891806A (en) 1983-05-31

Similar Documents

Publication Publication Date Title
US8784664B2 (en) Hollow fibre membrane
EP0294737B1 (en) Polysulfone hollow fiber membrane and process for making the same
US4781833A (en) Hollow fiber fluid separator
US6042783A (en) Hollow yarn membrane used for blood purification and blood purifier
CS226188B2 (en) Dialysing diaphragm in the form of flat foil,tubular foil or hollow filament made of cellulose regenerated by using cuoxam process
US4681713A (en) Method of making a hollow fiber membrane for dialysis
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
EP0012630B1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
JP2000140589A (en) Porous polysulfone film
US5736046A (en) High-flux hollow-fiber membrane with enhanced transport capability and process for making same
JP2542572B2 (en) Hollow fiber
US5783124A (en) Cellulose acetate hemodialysis membrane
JPH0512013B2 (en)
JPH0321645B2 (en)
JP4103037B2 (en) Diaphragm cleaning hollow fiber membrane and method for producing the same
US4587168A (en) Hollow fiber membrane for dialysis
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
JPS6160165B2 (en)
JPH06509746A (en) Hollow fiber for dialysis
JPS61268304A (en) Fluid separator
JPH0211263B2 (en)
JPS6411322B2 (en)
JPS60193504A (en) Hollow fiber membrane for dialysis
JP2000210544A (en) Production of semipermeable membrane
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane