JPS6054402B2 - Manufacturing method of recycled cellulose hollow fiber - Google Patents

Manufacturing method of recycled cellulose hollow fiber

Info

Publication number
JPS6054402B2
JPS6054402B2 JP14518578A JP14518578A JPS6054402B2 JP S6054402 B2 JPS6054402 B2 JP S6054402B2 JP 14518578 A JP14518578 A JP 14518578A JP 14518578 A JP14518578 A JP 14518578A JP S6054402 B2 JPS6054402 B2 JP S6054402B2
Authority
JP
Japan
Prior art keywords
hollow fibers
cellulose
regenerated cellulose
spinning
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14518578A
Other languages
Japanese (ja)
Other versions
JPS5571810A (en
Inventor
正通 石田
徹 武村
健資 鎌田
純 加茂
俊輔 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP14518578A priority Critical patent/JPS6054402B2/en
Priority to CA000333930A priority patent/CA1141114A/en
Priority to EP19790301711 priority patent/EP0008536B1/en
Priority to DE7979301711T priority patent/DE2967152D1/en
Priority to US06/070,651 priority patent/US4388256A/en
Publication of JPS5571810A publication Critical patent/JPS5571810A/en
Publication of JPS6054402B2 publication Critical patent/JPS6054402B2/en
Expired legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 本発明は再生セルロース中空繊維の製法に関するもの
てより詳しくは、透析性、限外口過性に優れ、強度が高
く、取扱性、およびモジュール加工性が優れた高品質の
再生セルロース中空繊維をセルロースエステル中空繊維
から工業的に有利に製造する方法に関する。
Detailed Description of the Invention The present invention relates to a method for producing regenerated cellulose hollow fibers.More specifically, the present invention relates to a method for producing regenerated cellulose hollow fibers. The present invention relates to an industrially advantageous method for producing regenerated cellulose hollow fibers from cellulose ester hollow fibers.

海水の淡水化、排水処理、人工臓器、ガス分離、食品
工業等の分野において物質分離に透過性を有する膜を用
いる方法が注目されており、それに関連した技術開発が
急速に進展しつつある。
BACKGROUND ART Methods using permeable membranes for substance separation are attracting attention in fields such as seawater desalination, wastewater treatment, artificial organs, gas separation, and the food industry, and related technological development is progressing rapidly.

膜素材の1つとして中空繊維状膜があるが、それは単位
スペース当りの膜面積を大きくすることができ、平膜等
に比し補強材としての支持体が不要になる等の長所を有
しており、分離膜としての中空繊維は今後増々その利用
分野を広めていくことになると推定される。 本発明は
セルロースエステルを用いて限外口過用、血液透析用と
して優れた選択透過性を有する”他、モジュールに組立
てる時の加工性が優れ、そして中空繊維を洗浄し乾燥し
た後再び湿潤状態においた時の寸法安定性、性能安定性
が良好でかつ真円性が高く、断面形状の均一なピンホー
ルの無い再生セルロース中空繊維を工業的に有利に製造
する方法に関する。
One of the membrane materials is a hollow fibrous membrane, which has the advantage of increasing the membrane area per unit space and eliminating the need for a support as a reinforcing material compared to flat membranes. It is estimated that hollow fibers as separation membranes will be used in more and more fields in the future. The present invention uses cellulose ester and has excellent permselectivity for ultrafiltration and hemodialysis.In addition, it has excellent processability when assembled into modules, and the hollow fibers are re-wet after being washed and dried. The present invention relates to an industrially advantageous method for producing regenerated cellulose hollow fibers that have good dimensional stability and performance stability when smelled, have high roundness, have a uniform cross-sectional shape, and are free of pinholes.

従来再生セルロース中空繊維はアンモニア法により製造
されてきたが、最近セルロース誘導体、特にセルロース
アセテートを用いて中空繊維を製造し、それを脱アシル
化し、再生セルロース中空繊維となす方法が注目を集め
ている。
Conventionally, regenerated cellulose hollow fibers have been produced by the ammonia method, but recently a method of producing hollow fibers using cellulose derivatives, particularly cellulose acetate, and deacylating them to produce regenerated cellulose hollow fibers has been attracting attention. .

しかしこれらの方法に用いられるセルロースアセテート
はその分子量が非常に低いため、得られる再生セルロー
ス中空繊維の形態安定性、強度等が不十分で、それを向
上させるためには結晶化度、配向度を増加させる必要が
あつた。すなわちセルロースアセテート中空繊維を延伸
配向せしめる方法がとられてきた。しかしこのような手
段を講じた場合得られる再生セルロース中空繊維の透過
性能は大巾に低下し、実用に供しえる程度の強度、形態
安定性を確保すると透過性能は実用に供し得なくなるま
で低下してしまうのである。このように高強度、形態安
定性に優れかつ透過性能の優れたセルロースアセテート
より製造される再生セルロース中空繊維はいまだ出現し
ておらず、その開発が待たれている。そこで本発明者ら
は上記のような不都合な点を有さない再生セルロース中
空繊維をセルロースエステルを用いて得ることを目的と
して検討中のところセルロース・エステル誘導体中空繊
維を脱アセチル化し、水洗し必要に応じ、グリセリン等
の可塑剤を付着せしめた後延伸した状態で乾燥する.こ
とによつて良好な性状を有する再生セルロース中空繊維
が得られることを見出し本発明を完成した。
However, since the cellulose acetate used in these methods has a very low molecular weight, the shape stability and strength of the regenerated cellulose hollow fibers obtained are insufficient. It was necessary to increase it. That is, a method has been adopted in which cellulose acetate hollow fibers are stretched and oriented. However, when such measures are taken, the permeation performance of the regenerated cellulose hollow fibers obtained decreases significantly, and once a practical level of strength and morphological stability is achieved, the permeation performance decreases to the point where it can no longer be used for practical use. That's what happens. Regenerated cellulose hollow fibers manufactured from cellulose acetate, which have such high strength, excellent shape stability, and excellent permeability, have not yet appeared, and their development is awaited. Therefore, the present inventors are currently considering using cellulose ester to obtain regenerated cellulose hollow fibers that do not have the above-mentioned disadvantages. Depending on the requirements, a plasticizer such as glycerin is applied and then stretched and dried. The present invention was completed based on the discovery that regenerated cellulose hollow fibers having good properties can be obtained by this method.

本発明の要旨とする所はセルロースエステル中空繊維を
実質的に脱アシル化し十分水洗し、湿潤.状態の再生セ
ルロース中空繊維を延伸した状態で50℃以上の空気又
は不活性ガス中で乾燥(以下延伸乾燥という)すること
にある。
The gist of the present invention is to substantially deacylate cellulose ester hollow fibers, thoroughly wash them with water, and moisten them. The purpose of this method is to dry the stretched regenerated cellulose hollow fibers in air or inert gas at 50° C. or higher (hereinafter referred to as stretch drying).

本発明において使用するセルロースエステルとはセルロ
ースアセテート、セルロースプロピオネ・ート、セルロ
ースブチレー等であるが、特にセルロースアセテートが
好ましい。
The cellulose ester used in the present invention includes cellulose acetate, cellulose propionate, cellulose butyrate, etc., and cellulose acetate is particularly preferred.

又、セルロースエステル中空繊維は従来公知の紡糸成形
方法すなわち溶融紡糸法、乾式紡糸法、湿式紡糸法、半
湿式紡糸法により製造できるが、紡糸工程中でのロール
、ガイド、捲取りにより容易に偏平とならないように中
空糸内部に液体を注入できる湿式紡糸法、半湿式紡糸法
により製造したものであることが特に好ましい。該中空
繊維には可塑剤や添加剤が含まれていても何ら本発明を
逸脱するものではない。特に沸点の高い有機溶剤を用い
た湿式紡糸、半湿式紡糸によりセルロース・エステル誘
導体中空)繊維を製造する場合は容易に得られる中空繊
維壁に多孔質体を形成することができるので、多孔質体
を形成する意味での紡糸原液への添加物は何ら必要では
ない。
In addition, cellulose ester hollow fibers can be produced by conventionally known spinning methods, such as melt spinning, dry spinning, wet spinning, and semi-wet spinning, but they can be easily flattened by rolls, guides, and winding during the spinning process. It is particularly preferable that the fiber be produced by a wet spinning method or a semi-wet spinning method, which allows liquid to be injected into the hollow fibers to prevent the formation of the hollow fibers. Even if the hollow fibers contain plasticizers and additives, this does not deviate from the scope of the present invention. In particular, when manufacturing cellulose ester derivative hollow fibers by wet spinning or semi-wet spinning using an organic solvent with a high boiling point, it is possible to form a porous body on the easily obtained hollow fiber wall. It is not necessary to add any additives to the spinning dope in the sense of forming .

又、湿式法、半湿式法を用いるとその特性から中空繊維
内部に液体を注入すること・ができ、紡糸工程でガイド
による糸の方向転換、ローラー間延伸時に中空部の偏平
を起さずに蓉易に紡糸工程を通過せしめることができる
ので繊維性能の低下をきたすことはない。又本発明の実
施、とくに延伸乾燥工程に於ても偏平化を伴うこ゛とな
く容易に行うことができる等その紡糸法を採用した利点
は大きい。本発明の方法によりセルロースエステル中空
繊維から再生セルロース中空繊維を製造するには前記中
空繊維を脱アシル化いわゆるケン化反応を行う必要があ
るが、この反応は一般的には苛性アルカリ水溶液中で行
なうのが好しい。
In addition, when using the wet method or semi-wet method, liquid can be injected into the hollow fiber due to its characteristics, and the yarn direction can be changed by guides during the spinning process, without causing flattening of the hollow part during stretching between rollers. Since it can be easily passed through the spinning process, there is no deterioration in fiber performance. Further, there are great advantages in carrying out the present invention, particularly in employing the spinning method, as the stretching and drying process can be carried out very easily without flattening. In order to produce regenerated cellulose hollow fibers from cellulose ester hollow fibers by the method of the present invention, it is necessary to deacylate the hollow fibers, a so-called saponification reaction, but this reaction is generally carried out in an aqueous caustic solution. is preferable.

この際ケン化反応速度のコントロール又は膜性能をコン
トロールする目的て苛性アルカリを構成する金属と同種
の金属の塩をケン化液中に添加してケン化反応を行なわ
してもよいし、アルコール等を共存させてケン化しても
よい。本発明に於てはこのようにして得られた再生セル
ロース中空繊維を十分水洗後必要に応じて公知の可塑化
処理、すなわちグリセリン水溶液に浸漬した後該セルロ
ース中空繊維を50゜C以上の空気又は不活性ガス中て
延伸した状態で乾燥するのが必須の要件である。
At this time, for the purpose of controlling the saponification reaction rate or membrane performance, a salt of the same metal as the metal constituting the caustic alkali may be added to the saponification solution to perform the saponification reaction, or an alcohol, etc. It is also possible to coexist and saponify. In the present invention, the regenerated cellulose hollow fibers obtained in this manner are thoroughly washed with water, and then, if necessary, subjected to a known plasticizing treatment, that is, immersed in an aqueous glycerin solution, and then treated with air or heat at a temperature of 50°C or higher. It is an essential requirement that the film be dried in a stretched state in an inert gas.

このように延伸した状態で乾燥することにより得た本発
明の中空繊維は、この中空繊維束を乾燥しモジュールに
組立、殺菌後、使用に供する時に湿潤状態にもどしても
繊維の長さ方向の寸法安定性は非常に良好でその伸び率
は1.0%以下に押えることができ、その時のモジュー
ル内での繊維の伸びによる繊維の折れ、曲がり等を効率
よく防止できるため内部へ流す液体のチヤンネリングの
防止が可能となり、効率的な物質分離を行うことができ
るようになる。
The hollow fibers of the present invention obtained by drying the stretched state as described above can be obtained by drying the hollow fiber bundles, assembling them into modules, and sterilizing them. The dimensional stability is very good, and the elongation rate can be kept to 1.0% or less, which effectively prevents the fibers from folding or bending due to fiber elongation within the module. Channeling can be prevented and substances can be separated efficiently.

なお延伸した状態で乾燥するとは延伸した後に乾燥する
か、延伸と乾燥とを同時に実施するかを意味する。従来
、開発されてきた中空繊維は、その形態安定性を向上せ
しめるため延伸がかけてあり、膜の配向度が高くなるた
めに、その膜構造も緻密となるため、その透過性能は良
好なものとすることができなかつたが、本発明に於ては
原料となる中空繊維の製造工程に於ては延伸を施さない
か、或いは施しても膜構造の緻密化が促進されない程度
のものであるため、原料繊維の膜構造が緻密化すること
はなく、得られる繊維の透過性能が低下することはない
Note that drying in a stretched state means drying after stretching or stretching and drying at the same time. Hollow fibers that have been developed so far have been stretched to improve their morphological stability, which increases the degree of membrane orientation, resulting in a dense membrane structure and good permeation performance. However, in the present invention, stretching is not performed in the manufacturing process of the hollow fibers used as raw materials, or even if stretching is performed, the densification of the membrane structure is not promoted. Therefore, the membrane structure of the raw material fibers does not become dense, and the permeation performance of the obtained fibers does not deteriorate.

また、中空繊維の形態安定性の向上はケン化水洗后に中
空繊維を延伸することによつて、その目的を達成してい
るのであり、紡糸工程、或いはケン化工程に於て中空繊
維の偏平はこの延伸乾燥工程を施すことによつて真円状
に複元てきるため本発明によつて得られる中空繊維は透
一過性能良好にして、かつ、その形態安定性良好なもの
とすることができるのである。本発明を実施するに際し
て行なう、中空繊維の乾燥温度は、50℃以上、好まし
くは80〜200℃の空気又は不活性ガス中で、延伸倍
率としては0.1〜10%なる範囲の条件てある。
In addition, the purpose of improving the shape stability of hollow fibers is achieved by stretching the hollow fibers after washing with water for saponification. The hollow fibers obtained by the present invention have good permeability and good shape stability because they can be formed into perfect circular shapes by applying this stretching and drying process. This is possible. The drying temperature of the hollow fibers in carrying out the present invention is 50°C or higher, preferably 80 to 200°C in air or inert gas, and the stretching ratio is 0.1 to 10%. .

乾燥工程に於ける温度が50゜C未満では中空繊維の乾
燥を十分行なうことができず、一方乾燥温度が200℃
以上になると膜構造の変化が惹起される場合もあり、良
好な性能を有する中空繊維を常に製造することが難しく
なる。又、中空繊維の乾燥雰囲気としては空気、不活性
ガスなどの他、熱ローラー等の乾燥法も用い得るが、こ
れらの機械的乾燥法を採用する際には膜構造の変化や、
形態安定性が悪くなる場合もあるので乾燥雰囲気として
は空気、不活性ガスを採用するのが好しい。また、乾燥
時の延伸率は0.1〜10%なる範囲が好しく、延伸率
が0.1%未満ては得られる中空繊維の形態安定性が不
足する場合も生じ、一方、この延伸率が10%を越えて
大きくなると得られる中空繊維の壁膜中にピンホールな
どの構造欠陥が生じたり、糸切れなどの工程トラブルが
生ずるようになるので好しくない。本発明の実施に於て
は延伸乾燥時に中空繊維の偏平化が起り易いので、中空
繊維の内部には液体を充填した状態で行なうのが好しい
。本発明の方法によつて得た繊維は乾燥一湿潤時の伸び
の差が小さいため、モジュール組立前の洗浄時に伸びを
抑制するための可塑化処理を行なう必要はなく、ドライ
殺菌が可能であり、その運搬性、使用時の洗浄性を著る
しく改良し得たものとすることができたのである。
If the temperature in the drying process is less than 50°C, the hollow fibers cannot be sufficiently dried; on the other hand, if the drying temperature is 200°C
If the temperature exceeds that level, changes in the membrane structure may occur, making it difficult to consistently produce hollow fibers with good performance. In addition, as the drying atmosphere for the hollow fibers, in addition to air, inert gas, etc., drying methods such as a hot roller can also be used, but when adopting these mechanical drying methods, changes in the membrane structure,
Since the morphological stability may deteriorate, it is preferable to use air or an inert gas as the drying atmosphere. In addition, the stretching ratio during drying is preferably in the range of 0.1 to 10%; if the stretching ratio is less than 0.1%, the shape stability of the hollow fibers obtained may be insufficient; If it exceeds 10%, it is not preferable because structural defects such as pinholes may occur in the wall membrane of the hollow fibers obtained, and process troubles such as thread breakage may occur. In carrying out the present invention, since the hollow fibers are likely to flatten during stretching and drying, it is preferable to carry out the process with a liquid filled inside the hollow fibers. Since the fibers obtained by the method of the present invention have a small difference in elongation between dry and wet conditions, there is no need to perform plasticization treatment to suppress elongation during washing before module assembly, and dry sterilization is possible. , its transportability and cleaning properties during use have been significantly improved.

以下実施例により本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 酢化度55%のセルロースアセテート27部をジメチル
ホルムアミド67部、水6部に90℃で1.511寺間
かけて溶解し十分脱泡口過し紡糸原液とした。
Example 1 27 parts of cellulose acetate with a degree of acetylation of 55% was dissolved in 67 parts of dimethylformamide and 6 parts of water at 90° C. over 1.511 hours, thoroughly defoamed and filtered to obtain a spinning stock solution.

この紡糸原液を60℃となし二重管構造を有する紡糸ノ
ズルの外管環状スリット部へ4.8mL1分なる割合で
、又紡糸ノズル内管部へオクチルアセテートを3.5m
tI分なる割合で注入し、ノズルを通過した中空原液を
空気中に7cm落下せしめた後15℃に保たれた3唾量
%ジメチルホルムアミド水溶液中に導き凝固せしめ40
7TL′分の速度で捲取り十分水洗した。得られたセル
ロースアセテート中空繊維を室温3重量%苛性ソータ水
溶液中に3時間浸漬し十分水洗し、5重量%グリセリン
水溶液で処理し、3%延伸した状態て90℃で3吟間乾
燥した。
This spinning stock solution was heated to 60°C, and 4.8 mL/min was added to the outer annular slit of a spinning nozzle having a double tube structure, and 3.5 m of octyl acetate was added to the inner tube of the spinning nozzle.
The hollow stock solution that passed through the nozzle was allowed to fall 7 cm into the air, and then introduced into a 3% dimethylformamide aqueous solution kept at 15°C and solidified.
It was rolled up at a speed of 7 TL' and thoroughly washed with water. The obtained cellulose acetate hollow fibers were immersed in a 3% by weight caustic sorter aqueous solution at room temperature for 3 hours, thoroughly washed with water, treated with a 5% by weight glycerin aqueous solution, stretched 3% and dried at 90°C for 3 minutes.

得られた再生セルロース中空繊維の外径は335μ、内
径295μのほぼ真円状のものであつた。エタノールで
中空部を十分に洗浄後乾燥した糸を水中に浸した場合の
伸び率は0.3%であり、モジユ”−ル組立後の水洗時
にも繊維の配列は安定していた。又ピンホールはなく透
水速度は3.7(MlId,hr,wtHg)であり、
尿素、クレアニチンは十分透過しアルブミンの透過を十
分阻止しうる透析性能を有する中空繊維であつた。・比
較例1 実施例1においてケン化処理水洗後グリセリン処理をし
た中空繊維の乾燥を一定長の長さで又は全く無張力の状
態で90℃て3紛間乾燥する以外は実施例1に準する条
件で製造した2種の再生セル)ロースの乾燥一湿潤時の
伸びは次のとおりであつた。
The obtained regenerated cellulose hollow fibers had a substantially perfect circular shape with an outer diameter of 335μ and an inner diameter of 295μ. When the hollow part was sufficiently washed with ethanol and the dried thread was soaked in water, the elongation rate was 0.3%, and the fiber arrangement was stable even when washed with water after the module was assembled. There are no holes and the water permeation rate is 3.7 (MlId, hr, wtHg),
The hollow fibers had dialysis performance that could sufficiently permeate urea and creanitine and sufficiently block the permeation of albumin.・Comparative Example 1 The same procedure was followed as in Example 1, except that the hollow fibers treated with glycerin after saponification and water washing in Example 1 were dried in three powders at 90°C with a fixed length or with no tension at all. The dry and wet elongation of two types of regenerated celluloid loins produced under the following conditions were as follows.

伸び 一定長での乾燥 4.7% 無張力 〃 5.9% これらの中空繊維はモジュール組立後、洗浄時水を流す
と繊維の折れ、曲りが著しく、その実用性は全くなかつ
た。
Drying at constant elongation length: 4.7% No tension: 5.9% When these hollow fibers were washed with water after assembly of the module, the fibers were significantly bent and folded, making them completely useless.

実施例2 酢化度52.5%のセルロースアセテート25部、ジメ
チルスルホキシド65部、過塩素酸マグネシウム2部、
水8部を85゜Cで2時間かけて溶解し、十分脱泡口過
し紡糸原液とした。
Example 2 25 parts of cellulose acetate with a degree of acetylation of 52.5%, 65 parts of dimethyl sulfoxide, 2 parts of magnesium perchlorate,
8 parts of water was dissolved at 85° C. over 2 hours, and the mixture was thoroughly degassed to obtain a spinning stock solution.

この紡糸原液を50゜Cとなし二重管構造を有する紡糸
ノズルの外管環状スリット部へ4.8mLI分なる割合
で、又紡糸ノズル内管部へn−ブタノールを2.5mt
I分なる割合で注入し、ノズルを通過した中空状原液を
空気中に10cm落下せしめ、20゜Cに保たれた40
%ジメチルスルホキシド水溶液中に導いて凝固せしめ3
0mI分の速度で引取り、続いて70℃の温水中を通し
洗浄すると同時に1.3倍延伸し39771.ノMin
なる速度で捲取つた。この中空繊維を十分水洗の後硫酸
ソーダ15重量%、苛性ソーダ3重量℃の水溶液中で9
0℃で1分間ケン化した。その後十分水洗し、引続き2
重量%のグリセリン水溶液にて処理した。この再生セル
ロース中空繊維をローラー間で4%延伸しながら(ロー
ラー速度10〜10.4Tr1.I分)130゜Cで乾
燥した。
This spinning stock solution was heated to 50°C, and 4.8 mL of n-butanol was fed into the outer annular slit of the spinning nozzle having a double tube structure at a rate of 4.8 mL.
The hollow stock solution that passed through the nozzle was dropped 10 cm into the air at a temperature of 40°C maintained at 20°C.
% dimethyl sulfoxide aqueous solution and solidify it.
It was taken off at a speed of 0 mI, then washed through hot water at 70°C, and at the same time stretched 1.3 times to 39771. No Min
It rolled over at a fast pace. After thoroughly washing the hollow fibers with water, they were placed in an aqueous solution of 15% by weight of sodium sulfate and 3% by weight of caustic soda at 9°C.
Saponification was performed at 0°C for 1 minute. After that, wash thoroughly with water and continue with step 2.
It was treated with a glycerin aqueous solution of % by weight. The regenerated cellulose hollow fibers were dried at 130° C. while being stretched by 4% between rollers (roller speed 10-10.4 Tr 1.1 min).

得られたセルロースアセテート中空繊維は外径280μ
、内径240μのほぼ真円状のものであつた。
The obtained cellulose acetate hollow fiber has an outer diameter of 280μ
, and had an almost perfect circular shape with an inner diameter of 240μ.

エタノール水溶液で中空部を十分洗浄した後、乾燥し、
該乾燥中空糸を水中に浸漬した場合の伸び率は0.1で
あり、このため繊維を洗浄乾燥しモジュール組立後ドラ
イ殺菌し、実際に使用する場合の水洗時に繊維の配列の
みだれはなく安定してい、た。又ピンホールもなく透水
速度は2.5(Mllrfl,hr,TfrmHg)で
あり、尿素、クレアニチンは十分透過するがアルブミン
はほぼ完全に透過を阻止した。ケン化時に生じた中空部
の偏平は乾燥後は完全.−に復元し真円状となつていた
After thoroughly cleaning the hollow part with an aqueous ethanol solution, dry it.
When the dried hollow fibers are immersed in water, the elongation rate is 0.1. Therefore, the fibers are washed and dried, and after module assembly, dry sterilization is performed to ensure that the fiber arrangement is stable without deterioration when washed with water during actual use. Was. Further, there were no pinholes and the water permeation rate was 2.5 (Mllrfl, hr, TfrmHg), and urea and creanitine were sufficiently permeated, but albumin was almost completely blocked. The flattening of the hollow part that occurred during saponification completely disappears after drying. - It was restored to a perfect circular shape.

実施例3 酢化度55%のセルロースアセテート25部をジメチル
アセトアミド66部、塩化亜鉛6部、水3部に110℃
で1時間攪拌溶解し、十分脱泡口過し紡糸・原液とした
Example 3 25 parts of cellulose acetate with a degree of acetylation of 55% was added to 66 parts of dimethylacetamide, 6 parts of zinc chloride, and 3 parts of water at 110°C.
The mixture was stirred and dissolved for 1 hour, and thoroughly defoamed and filtered to obtain a stock solution for spinning.

この紡糸原液を70℃となし、二重管構造を有する紡糸
ノズルの外管環状スリット部に4.5m1/分なる割合
で、又紡糸ノズル内管部へイソプロピルミリステートを
2.0m11分なる割合で供給して、中空状原液を形成
せしめ空気中を5.0cm落下せしめた後10℃に保た
れた30%ジメチルアセトアミド水溶液中に導き凝固せ
しめ30TrLI分の速度で引取り、引続き30℃の水
中にて1.3倍延伸し397nI分の速度て捲取つた。
十分水洗の後、4w1,I分の速度で該中空繊維を連続
的に解除しながら、90℃の酢酸ソーダ3呼量%、苛性
ソーダ3重量%の水溶液に滞在時間が30秒となるよう
に導き引続き90℃の温水で洗浄し15ノ重量%のグリ
セリン水溶液中き導き引続き連続的に2.5%延伸しな
がら2TrLの長さの150゜Cに保たれた乾燥機中に
導き乾燥した。
This spinning stock solution was heated to 70°C, and the rate of 4.5 ml/min was applied to the outer annular slit part of the spinning nozzle having a double-tube structure, and the isopropyl myristate was applied to the inner pipe part of the spinning nozzle at a rate of 2.0 ml/min. The stock solution was supplied at a rate of 30 TrLI to form a hollow stock solution that was allowed to fall 5.0 cm in the air, then introduced into a 30% dimethylacetamide aqueous solution kept at 10°C to solidify, and then taken out at a rate of 30 TrLI, and then submerged in water at 30°C. The film was stretched 1.3 times and rolled up at a speed of 397 nI.
After thorough washing with water, the hollow fibers were continuously released at a rate of 4w1,1 minutes and introduced into an aqueous solution of 3% by weight of sodium acetate and 3% by weight of caustic soda at 90°C for a residence time of 30 seconds. Subsequently, it was washed with hot water at 90°C, placed in a 15% by weight aqueous glycerin solution, and then continuously stretched by 2.5% while being placed in a dryer with a length of 2 TrL maintained at 150°C for drying.

得られた再生セルロース中空繊維は外径255μ、内径
210μのほぼ真円状のもので断面形状の斑はほとんど
なかつた。
The obtained regenerated cellulose hollow fibers had a substantially perfect circular shape with an outer diameter of 255 μm and an inner diameter of 210 μm, and had almost no unevenness in cross-section.

エタノールで中空部を十分洗浄した後乾燥し再び水中に
浸した場合の伸び率は0.4%でモジュール組立後の水
洗時の繊維のみだれはなく良好なモジュールとして使用
できた。
When the hollow part was sufficiently washed with ethanol, dried, and immersed in water again, the elongation rate was 0.4%, and the fibers did not sag when washed with water after module assembly, indicating that it could be used as a good module.

ピンホールはなく透水速度は3.1(Mllrrl,h
r,m!Hg)で尿素、クレアニチンは十分透過するが
アルブミンはほぼ完全に透過を阻止した。
There are no pinholes and the water permeation rate is 3.1 (Mllrrl, h
r, m! Hg), urea and creanitine were sufficiently permeated, but albumin was almost completely blocked from permeating.

実施例4 酢化度55%のセルロースアセテート23部、ジメチル
アセトアミド63部、塩化亜鉛w部、水4部を100℃
で混合攪拌溶解せしめ十分脱泡口過し紡糸原液とした。
Example 4 23 parts of cellulose acetate with a degree of acetylation of 55%, 63 parts of dimethylacetamide, w parts of zinc chloride, and 4 parts of water were heated at 100°C.
The mixture was mixed, stirred and dissolved, and thoroughly degassed and filtered to obtain a spinning stock solution.

この紡糸原液を70℃となし二重管構造を有する紡糸ノ
ズルの外管環状スリット部に5.0m1I分なる割合で
、又紡糸ノズル内管部へ流動パラフィンを2.6m1I
分なる割合で注入し窒素ガス雰囲気中を10cm落下せ
しめ、20′C2O%ジメチルアセトアミド水溶液中で
凝固させた後、357TL.I分の速度で引取り、室温
の2%苛性ソーダ水溶液の入つたケンスに振落した。1
時間ケン化した後十分水洗し1呼量%のグリセリン水溶
液にて処理し、しかる後170℃の乾燥機中を送り速度
5m.I分捲取り速度5.5rnI分なる割合、すなわ
ち延伸を10%かけて通過させた。
This spinning stock solution was heated to 70°C, and liquid paraffin was poured into the outer pipe annular slit part of the spinning nozzle having a double pipe structure at a rate of 5.0 m1I, and liquid paraffin was poured into the inner pipe part of the spinning nozzle at a rate of 2.6 m1I.
357TL. It was taken off at a speed of 1 minute and shaken into a can containing a 2% aqueous solution of caustic soda at room temperature. 1
After saponifying for an hour, it was thoroughly washed with water, treated with a 1% glycerin aqueous solution, and then passed through a dryer at 170°C at a feed rate of 5m. The film was passed through at a winding speed of 5.5 rmin, ie, stretching was applied at 10%.

得られた再生セルロース中空繊維は外径315μ、内径
274μのほぼ真円状のもので断面形状に斑はほとんど
認められなかつた。中空糸内部をベンゼン及びアルコー
ルで十分水洗し乾燥した後、再び湿潤状態にもどした時
の繊維の長さ方向の伸びは0.1%で良好なモジュール
として使用てきた。
The obtained regenerated cellulose hollow fibers had an approximately perfect circular shape with an outer diameter of 315 μm and an inner diameter of 274 μm, and almost no irregularities were observed in the cross-sectional shape. After thoroughly washing the inside of the hollow fiber with benzene and alcohol and drying it, the lengthwise elongation of the fiber was 0.1% when it was returned to a wet state, and it has been used as a good module.

Claims (1)

【特許請求の範囲】 1 セルロースエステル中空繊維を実質的に脱アシル化
し再生セルロース中空繊維を製造するに際し、脱アシル
化後湿潤状態の再生セルロース中空繊維を50℃以上の
空気又は不活性ガス中で延伸した状態で乾燥することを
特徴とする再生セルロース中空繊維の製造方法。 2 セルロースエステル中空繊維がセルロースアセテー
トよりなることを特徴とする特許請求の範囲第1項記載
の再生セルロース中空繊維の製造方法。 3 セルロースエステル中空繊維としてセルロースエス
テルを有機溶剤に溶解した紡糸原液を湿式紡糸又は半湿
式紡糸によつて製造された中空糸を用いることを特徴と
する特許請求の範囲第1項記載の再生セルロース中空繊
維の製造方法。 4 延伸法として延伸率が0.1〜10%なる範囲とな
る条件を用いることを特徴とする特許請求の範囲第1項
記載の再生セルロース中空繊維の製造方法。
[Claims] 1. When producing regenerated cellulose hollow fibers by substantially deacylating cellulose ester hollow fibers, the regenerated cellulose hollow fibers in a wet state after deacylation are heated in air or inert gas at 50°C or higher. A method for producing regenerated cellulose hollow fibers, which comprises drying in a stretched state. 2. The method for producing regenerated cellulose hollow fibers according to claim 1, wherein the cellulose ester hollow fibers are made of cellulose acetate. 3. The regenerated cellulose hollow fibers according to claim 1, characterized in that the cellulose ester hollow fibers are hollow fibers produced by wet spinning or semi-wet spinning a spinning dope in which cellulose ester is dissolved in an organic solvent. Fiber manufacturing method. 4. The method for producing regenerated cellulose hollow fibers according to claim 1, characterized in that the stretching method uses conditions such that the stretching ratio is in the range of 0.1 to 10%.
JP14518578A 1978-08-22 1978-11-24 Manufacturing method of recycled cellulose hollow fiber Expired JPS6054402B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14518578A JPS6054402B2 (en) 1978-11-24 1978-11-24 Manufacturing method of recycled cellulose hollow fiber
CA000333930A CA1141114A (en) 1978-11-24 1979-08-16 Regenerated cellulose hollow fiber and process for manufacturing same
EP19790301711 EP0008536B1 (en) 1978-08-22 1979-08-21 Process for manufacturing regenerated cellulose hollow fiber
DE7979301711T DE2967152D1 (en) 1978-08-22 1979-08-21 Process for manufacturing regenerated cellulose hollow fiber
US06/070,651 US4388256A (en) 1978-11-24 1979-08-28 Process for manufacturing regenerated cellulose hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14518578A JPS6054402B2 (en) 1978-11-24 1978-11-24 Manufacturing method of recycled cellulose hollow fiber

Publications (2)

Publication Number Publication Date
JPS5571810A JPS5571810A (en) 1980-05-30
JPS6054402B2 true JPS6054402B2 (en) 1985-11-29

Family

ID=15379382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14518578A Expired JPS6054402B2 (en) 1978-08-22 1978-11-24 Manufacturing method of recycled cellulose hollow fiber

Country Status (1)

Country Link
JP (1) JPS6054402B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163610U (en) * 1987-04-15 1988-10-25

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742918A (en) * 1980-08-29 1982-03-10 Mitsubishi Rayon Co Ltd Hollow cellulosic derivative fiber
JPS57133211A (en) * 1981-02-09 1982-08-17 Toyobo Co Ltd Production of hollow fiber of cellulose ester
JP2539799B2 (en) * 1986-10-17 1996-10-02 住友電気工業株式会社 Method for manufacturing gas selective permeable membrane
JPH0418876U (en) * 1990-06-06 1992-02-17
WO2018182028A1 (en) * 2017-03-30 2018-10-04 東レ株式会社 Separation film and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163610U (en) * 1987-04-15 1988-10-25

Also Published As

Publication number Publication date
JPS5571810A (en) 1980-05-30

Similar Documents

Publication Publication Date Title
US4388256A (en) Process for manufacturing regenerated cellulose hollow fiber
JPH0460692B2 (en)
US5505890A (en) Process for manufacturing cellulose acetate membranes
JPS6054402B2 (en) Manufacturing method of recycled cellulose hollow fiber
JPH02258035A (en) Manufacture of hollow fiber dialyzing membrane
JPS59166208A (en) Manufacture of gas separating membrane
EP0008536B1 (en) Process for manufacturing regenerated cellulose hollow fiber
JPH07207520A (en) Production of silk fibroin fiber
US3527853A (en) Process for manufacturing semipermeable cellulose acetate membranes suitable for desalination
JPS6043442B2 (en) Manufacturing method of cellulose derivative hollow fiber with excellent permselectivity
JPS6120644B2 (en)
EP3549623B1 (en) Use of a blood component selective adsorption filtering medium and blood filter
JP2000517262A (en) Method for producing cellulose molded article
JPS6043443B2 (en) Method for producing recycled cellulose hollow fibers
JPH05168878A (en) Antimicrobial liquid separation membrane
JPH0120245B2 (en)
JPS6229524B2 (en)
JPH05161833A (en) Production of semipermeable membrane having high water permeability
JPS6043441B2 (en) Manufacturing method of recycled cellulose hollow fiber
JPS6058210A (en) Preparation of cellulose ester type hollow yarn membrane
JPS6042285B2 (en) Method for producing permselective cellulose acetate hollow fibers
JP2926082B2 (en) Hydrophilic membrane
JPS60193504A (en) Hollow fiber membrane for dialysis
JPS621007B2 (en)
JP2018075523A (en) Method for producing fiber-reinforced polyvinylidene fluoride porous hollow fiber membrane