JPH05111383A - 組換ヒト肝実質細胞増殖因子及びその製造方法 - Google Patents

組換ヒト肝実質細胞増殖因子及びその製造方法

Info

Publication number
JPH05111383A
JPH05111383A JP3163485A JP16348591A JPH05111383A JP H05111383 A JPH05111383 A JP H05111383A JP 3163485 A JP3163485 A JP 3163485A JP 16348591 A JP16348591 A JP 16348591A JP H05111383 A JPH05111383 A JP H05111383A
Authority
JP
Japan
Prior art keywords
hgf
gly
derived
lys
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3163485A
Other languages
English (en)
Other versions
JP2777678B2 (ja
Inventor
Toshiichi Nakamura
敏一 中村
Michio Hagiya
道雄 萩屋
Tatsuya Seki
達也 関
Manabu Shimonishi
学 下西
Shin Shimizu
伸 清水
Izumi Inohara
泉 猪原
Mariko Sakaguchi
磨理子 坂口
Osamu Asami
修 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26481383&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05111383(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to JP3163485A priority Critical patent/JP2777678B2/ja
Publication of JPH05111383A publication Critical patent/JPH05111383A/ja
Application granted granted Critical
Publication of JP2777678B2 publication Critical patent/JP2777678B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(57)【要約】 【構成】 ヒト白血球由来肝実質細胞増殖因子をコード
する塩基配列を含有するDNAを単離し、これを発現し
うる組換発現ベクターに導入し、該組換発現ベクターで
形質転換した形質転換体を培養し、該培養物から組換ヒ
ト白血球由来肝実質細胞増殖因子を採取、製造する。 【効果】 この組換ヒト白血球由来肝実質細胞増殖因子
は、肝実質細胞培養試薬、肝再生促進剤、肝機能の基礎
的研究、肝実質細胞に対する各種ホルモンや薬剤の作用
の研究、肝癌の発癌研究用、さらにこれに対する抗体を
用いる臨床診断試薬、肝疾患治療薬などへの利用に有用
である。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は肝実質細胞増殖活性を有
するポリペプチド、さらに詳しくは、生体外(in vitr
o)で肝実質細胞の維持、増殖を可能にする生理活性を
有するポリペプチドをコードする塩基配列を発現し得る
組換発現ベクター、形質転換体、および該ポリペプチド
の製造法に関するものである。本発明により製造された
ポリペプチドは肝実質細胞培養試薬、肝再生促進剤、肝
機能の基礎的研究、肝実質細胞に対する各種ホルモンや
薬剤の作用の研究、肝癌の発癌研究用、さらに該ポリペ
プチドに対する抗体を用いる臨床診断試薬、肝疾患治療
薬などへの利用が期待できる。
【0002】
【従来技術】従来、細胞増殖活性を有するポリペプチド
として、上皮細胞増殖因子(EGF)、線維芽細胞増殖
因子(FGF)、神経細胞増殖因子(NGF)、血小板
由来増殖因子(PDGF)、血管内皮細胞増殖因子(E
CGF)などが知られている。これらの増殖因子の他
に、生体外において肝実質細胞増殖活性を有するポリペ
プチドが1984年に中村らによって再生肝ラット血清
より部分精製され、肝実質細胞増殖因子(以下HGFと
略す)と命名された。
【0003】このHGFの発見まで肝実質細胞は各種の
株化細胞が活発に増殖する哺乳動物血清存在下でも該細
胞の増殖が全く認められず、通常約1週間で培養容器壁
からの脱落が起こり、生体外での長期培養は不可能であ
った。ところがこのHGFの存在下において肝細胞は極
めて良好に増殖し、該細胞の培養が可能となった(Bioc
hem, Biophys. Res. Commun.,122, 1450, 1984)。他の
研究者によってもこのHGF活性は、肝部分切除手術後
の血中、劇症肝炎患者の血中にも存在することが確認さ
れた。
【0004】このような状況の下で、本発明者らは、先
にラット血小板からHGFを分離精製して研究を重ね、
このラット血小板由来のHGFが2種のサブユニットか
らなることを見出し、かつHGFに含有される一部のア
ミノ酸配列27残基の同定に成功した(特願昭63−3
11866号明細書)。
【0005】
【発明が解決しようとする課題】生体内HGFは、肝組
織あるいは血小板などから極微量分泌されるポリペプチ
ドであるため、原材料組織の入手の困難さにより、安定
供給することはほとんど不可能に近い。特に、ヒトHG
Fにおいては現在までに唯一活性が確認されているのは
劇症肝炎患者血清中のみである。このヒトHGFを肝実
質細胞の培養や肝細胞の研究用、ひいては肝疾患治療薬
として利用するためには、ヒトHGFと同様な活性を有
するポリペプチドを遺伝子組換技術を応用して大量に供
給することが望まれる。
【0006】
【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を重ねた結果、ラット血小板由来H
GFのアミノ配列に基づいて合成したオリゴヌクレオチ
ドをプローブとしてラット肝臓mRNAより調製したc
DNAライブラリーよりラットHGFポリペプチドをコ
ードする塩基配列を含有するcDNAが得られることを
見出した。さらにラット由来の該cDNAをプローブと
してヒト肝臓mRNAより調製されたcDNAライブラ
リーよりヒトHGFポリペプチドをコードする塩基配列
を含有するcDNAが得られることを見出した。(Natur
e, 342, 440, 1989 )。
【0007】さらにヒト肝臓由来の該cDNAの一部ま
たは全部をプローブとして肝臓を除いた種々のヒト組織
由来のmRNAとのノザーンハイブリダイゼイションを
行ったところ、胎盤及び白血球mRNAにもHGF様転
写産物の存在が認められることを見出した。本発明者ら
は、このうち白血球由来のmRNAから作製したcDN
Aライブラリーより、ヒトHGFをコードする塩基配列
を含有するcDNAを単離しその塩基配列を明らかに
し、さらに該cDNAを含有する組換発現ベクターを作
製し、該組換発現ベクターによって形質転換された形質
転換体を得、該形質転換体を培養してヒト白血球由来H
GF遺伝子が発現することを見出し本発明を完成させる
に至った。
【0008】即ち、本発明はヒト白血球由来肝実質細胞
増殖因子をコードする塩基配列を含有するDNAを発現
しうる組換発現ベクター、該組換発現ベクターで形質転
換された形質転換体、該形質転換体を培養し、該培養物
から組換ヒト白血球由来肝実質細胞増殖因子を採取、製
造する方法及び組換ヒト白血球由来肝実質細胞増殖因子
に関するものである。
【0009】本発明のヒト肝実質細胞増殖因子をコード
するDNA組換発現ベクター、及び形質転換体は例えば
次のようにして調製される。即ち、(1)ヒトの白血球
よりmRNAを単離し、常法に従ってcDNAライブラ
リーを作製し、(2)すでに単離されているヒト肝臓由
来HGFcDNAの全部または一部をプローブとして上
記ヒト白血球由来cDNAライブラリーのスクリーニン
グを行い、単離されたクローンより目的とするcDNA
を抽出する。(3)このヒト白血球由来HGFのcDN
AよりヒトHGFをコードするcDNA断片を制限酵素
を用いて切り出し発現用ベクターに組み込み、(4)得
られた組換発現ベクターにより宿主細胞を形質転換して
形質転換体を得、(5)この形質転換体を培養して、そ
の培養上清からヒト白血球HGFを採取、製造すること
ができる。
【0010】以下、本発明の各工程について詳細に説明
する。 1)mRNAの単離とノーザンハイブリダイゼーション ヒト白血球のmRNAは常法に従って得ることができ
る。例えば、Biochemistry, 18, 5294 (1979) に記載さ
れているJ.M. Chirgvin らの方法によって、ヒトの白血
球のグアニジンチオシアン酸溶液から得たRNAをさら
にオリゴdTセルロースカラムを用いる液体クロマトグ
ラフィーに、またはオリゴdTラテックスに付すことに
よって該mRNAを調製することが可能である。また、
ヒト白血球mRNAは市販品としてクロンテック社など
から購入して利用することもできる。このようにして得
られたmRNAとヒト肝臓由来のHGFをコードするc
DNAとのノーザンハイブリダイゼイションは、例えば
Molecular cloning : ALaboratory Manual, Cold Sprin
g Harbor Laboratory, New York, 202 (1982)に記載さ
れているManiatisらの方法によって行うことができる。
プローブとしてはヒト肝臓由来HGFcDNAの全部又
は一部を32P標識して使用することができる。
【0011】2)cDNAの調製 上記によりHGF転写産物の存在が確認されたヒト白血
球mRNAを鋳型として逆転写酵素を用いて、例えば
H. Okayama らの方法(Mol. Cell.Biol.,2, 161, 1982
及びMol. Cell. Biol., 3, 280, 1983) あるいはU.Gu
bler らの方法(Gene, 25, 263, 1983)に従ってcDN
Aを合成し、このcDNAをプラスミドやファージに組
み込むことによりcDNAライブラリーを調製すること
ができる。cDNAを組み込むプラスミドベクターとし
ては、大腸菌由来のpBR322(東洋紡績)、pUC
18及びpUC19(東洋紡績)、枯草菌由来のpUB
110(シグマ社)などがある。これらのベクターは、
宿主細胞内に保存されていて複製、増幅されるものであ
れば、ここに例示したものに限定されるものではない。
mRNAを鋳型として合成されたcDNAをプラスミド
またはファージに組み込んでcDNAライブラリーを調
製する方法として、T. Maniatis らの方法(Molecular C
loning, A Laboratory Manual, Cold Spring Harbor La
boratory, NewYork, 239, 1982)またはT.V. Hyunhらの
方法(DNA Cloning:A Practical Approach, 1, 49, 198
5)を各々例示することができる。また、mRNAと同様
にヒト白血球のcDNAライブラリーを市販品としてク
ロンテック社などから購入して使うことも可能である。
【0012】3)cDNAライブラリースクリーニング cDNAライブラリーとして得られたプラスミドやファ
ージなどの組換発現ベクターは、大腸菌のような適切な
宿主細胞に保持される。宿主となりうる大腸菌として
は、例えばEscherichia coli NM514, C600( ストラタジ
ーン社)、NM522,JM101(ファルマシア社)などを例示
することができる。cDNAのベクターがプラスミドの
場合、塩化カルシウム法、塩化カルシウム・塩化ルビジ
ウム法などを用いて、またcDNAのベクターがファー
ジの場合、インビトロパッケージング法などを用いてあ
らかじめ増殖させた宿主細胞に保持させることができる
(Molecular Cloning, Cold Spring Harbor Laborator
y,New York, 249, 1982)。このようにして得られた形質
転換体から、ヒト肝臓由来HGFcDNAを32P標識し
たプローブを使用してコロニーハイブリダイゼーション
法(Gene,10, 63,1980) 、プラークハイブリダイゼーシ
ョン法(Science, 196, 180, 1977) などによってcDN
Aクローンを釣り上げることができる。また、目的とす
るポリペプチドに対する抗体を用いて、標識抗体法(DNA
Cloning : A Practical Approach,1, 49, 1985)によっ
て、cDNAをクローニングすることも可能である。
【0013】次に該形質転換体から常法(Molecular Clo
ning, A Laboratory Manual, ColdSpring Harbor Labor
atory, New York, 1982) に従ってプラスミドやファー
ジなどの組換DNAを単離し、そのままあるいは制限酵
素で消化してからcDNA塩基配列が決定される。塩基
配列はマクサムとギルバートの化学法(Proc. Natl. Aca
d. Sci. USA., 74, 560, 1977)やサンガーのジデオキシ
法(Proc. Natl. Acad.Sci. USA., 74, 5463,1977) など
によって決定される。記述のmRNAと塩基配列の決定
されたcDNAの一部あるいはcDNAの一部の合成D
NAをプライマーにして、プライマーエクステンション
法 (Proc. Natl. Acad. Sci. USA.,76, 731, 1979 )に
よって新たにcDNAを合成し、上記と同様にしてcD
NAライブラリーから第1のcDNAに連絡した第2の
cDNAを含有するプラスミドやファージなどの組換D
NAをクローニングすることが可能である。このプライ
マーエクステンションとクローニングの工程は、必要に
より複数回繰り返される。
【0014】4)ヒトHGF組換発現ベクターの構築 クローン化されたヒト白血球HGFのアミノ酸配列の全
部あるいはその一部をコードするcDNAを含有する数
種のプラスミドやファージなどの組換ベクターから制限
酵素によってcDNAを切り出し、ヒト白血球由来HG
Fの発現に適したベクターのプロモーターの下流に制限
酵素とDNAリガーゼを用いて再結合して組換発現ベク
ターを作製することができる。より詳しくは、ヒト白血
球由来HGFを効率良く発現させるために組換発現ベク
ターは転写の下流方向に順番に必要により (1)プロモー
ター、 (2)リボゾーム結合部位、 (3)開始コドン、 (4)
ヒト白血球由来HGFをコードする塩基配列を含有する
DNA、(5) 終止コドン、(6) ターミネーターを含むよ
うに構築される。本発明で用いることができるDNAの
ベクターとして大腸菌由来のプラスミドpBR322、
pUC18(東洋紡績)、枯草菌由来のプラスミドpU
B110(シグマ社)、酵母由来のプラスミドpRB1
5(ATCC 37062) 、バクテリオファージλgt10、λ
gt11(ストラタジーン社)、ウィルスSV40(B
RL社)、BPV(ATCC VR-703)、レトロウィルスの遺
伝子由来のベクターなどが列挙出来るが、宿主内で複
製、増幅可能なベクターであれば特に限定はない。特
に、ヒト白血球由来HGFを簡便に発現させるには、S
V40のようなウィルスの遺伝子由来のベクターを用い
るのが好ましい。例えば、前述のクローン化されたヒト
白血球由来HGFをコードするDNAをSV40ベクタ
ーの後期領域に結合した組換発現ベクターは、COS細
胞(Cell, 23, 175, 1981)と呼ばれるサル細胞株に導入
して発現させることが可能である。プロモーター及びタ
ーミネーターに関しても、目的とするヒト白血球由来H
GFをコードする塩基配列の発現に用いられる宿主に対
応したものであれば特に限定はない。例えば、プロモー
ターとして宿主が大腸菌である場合、trpプロモータ
ー、lacプロモーターなどを、宿主が枯草菌である場
合、SPO1プロモーター、SPO2プロモーターなど
を、宿主が酵母である場合、GAPプロモーター、PG
Kプロモーターなどを、宿主がマウス線維芽細胞やチャ
イニーズハムスター卵巣細胞のような動物細胞の場合、
ウィルス由来のSV40プロモーター、HSV1TKプ
ロモーターなどを例示することができる。また、ターミ
ネーターとしては、宿主が大腸菌の場合、trpターミ
ネーター、lppターミネーターなどを、宿主が枯草菌
の場合amy F ターミネーターなどを、宿主が酵母の場合
CYC1ターミネーターなどを、宿主が動物細胞の場
合、SV40ターミネーター、HSV1TKターミネー
ターなどを例示することができる。これらのプロモータ
ーとターミネーターは用いる宿主に応じて適切に組み合
わされる。本発明においてヒト白血球由来HGFをコー
ドする塩基配列を含有するDNAは、そのDNAが発現
されるポリペプチドが、肝実質細胞増殖活性を有するな
らば特に制限はなく、例えば後述する配列表・配列番号
1に示した塩基配列が例示され、さらには上記塩基配列
の一部が置換、欠損、挿入、あるいはこれらが組み合わ
された塩基配列を有するDNAであってもよい。ヒト白
血球由来HGFをコードする塩基配列を含有する該DN
Aの翻訳開始コドンとしてATG、翻訳終止コドンとし
てTAA、TGA、あるいはTAGを有してもよい。ま
た、必要に応じて開始コドン、あるいは終止コドンを1
つ以上組み合わせたり、他のコドンと組み合わせて配列
してもよく、これらに特に限定はない。さらにこの組換
発現ベクターで形質転換した宿主の選択マーカーとなり
得るアンピシリン耐性遺伝子、ネオマイシン耐性遺伝
子、DHFR遺伝子など1種または2種以上が該ベクタ
ーの適切な位置に含有されていることが好ましい。
【0015】5)宿主細胞の形質転換とその培養 このようにして構築されたヒトHGF白血球組換発現ベ
クターは、コンピテント細胞法(J. Mol. Biol., 53, 1
54, 1970)、プロトプラスト法(Proc. Natl.Acad. Sc
i. USA, 75, 1929, 1978) リン酸カルシウム法(Scienc
e, 221, 551, 1983)DEAEデキストラン法(Science,
215, 166, 1983)、電気パルス法(Proc. Natl. Acad.
USA, 81, 7161,1984) 、インビトロパッケージング法
(Proc. Natl. Acad. Sci. USA, 72, 581, 1975) 、ウ
イルスベクター法(Cell, 37, 1053, 1984) 、またはマ
イクロインジェクション法(Exp. Cell. Res., 153, 34
7, 1984)などによって宿主に導入され、形質転換体が作
製される。このとき、宿主として既述の大腸菌の他に枯
草菌、酵母、動物細胞などが用いられる。特にマウス線
維芽細胞C127(J. Virol.,26, 291, 1978) やチャ
イニーズハムスター卵巣細胞CHO(Proc. Natl. Aca
d. Sci. USA, 77, 1929, 1978) などの哺乳動物由来の
宿主細胞を用いるのが好適である。得られた形質転換体
は、目的とする組換ヒト白血球HGFを産生させるため
にその宿主に応じた適切な培地中で培養される。培地中
には該形質転換体の生育に必要な炭素源、窒素源、無機
物、ビタミン、血清および薬剤などが含有される。培地
の1例としては、形質転換体の宿主が大腸菌の場合、L
B培地(日水製薬)M9培地(J. Exp. Mol. Genet., Co
ld Spring Harbor Laboratory, New York, 1972, p.43
1) などを、宿主が酵母の場合、YEPD培地(Genetic
Engineering,vol. 1, Plenum Press, New York, 1979,
p.117) などを、宿主が動物細胞の場合、20%以下の
ウシ胎児血清を含有するMEM培地、DMEM培地、R
PMI1640培地(日水製薬)などを挙げることがで
きる。形質転換体の培養は、通常20℃〜45℃、pHは
5〜8の範囲で行われ、必要に応じて通気、攪拌が行わ
れる。また、宿主が接着性の動物細胞などの場合は、ガ
ラスビーズ、コラーゲンビーズ、あるいはアセチルセル
ロースフォローファイバーなどの担体が用いられる。こ
れら以外の培地組成あるいは培養条件下でも形質転換体
が生育すれば実施でき、これらに限定されるものではな
い。
【0016】6)ヒトHGFの精製 このようにして形質転換体の培養上清中または形質転換
体中に生成した組換ヒト白血球HGFは、公知の塩析
法、溶媒沈澱法、透析法、限外濾過法、ゲル電気泳動
法、あるいはゲル濾過クロマトグラフィ、イオン交換ク
ロマトグラフィ、逆相クロマトグラフィ、アフィニティ
クロマトグラフィなどを組み合わせて分離精製すること
ができる。特に、硫酸アンモニウムによる塩析法、S−
セファロースイオンクロマトグラフィ、ヘパリンセファ
ロースアフィニテイクロマトグラフィおよびフェニルセ
ファロース逆相クロマトグラフィの組み合わせ、あるい
は硫酸アンモニウムによる塩析法、S−セファロースイ
オンクロマトグラフィ、および抗HGF抗体セファロー
スアフィニティクロマトクラフィの組み合わせなどが好
ましく有効な精製法である。以上に述べた方法によって
得られた組換ヒト白血球由来HGFは、ラット肝、ラッ
ト血小板及び組換ヒト肝由来HGFと同様にラット肝実
質細胞の増殖を顕著に促進する活性を示した。
【0017】7)HGF活性の測定 HGF活性は、Proc. Natl. Acad. Sci. USA, 80, 7229
(1983) に記載の方法に準じて次のように測定した。ウ
イスター系ラットからコラーゲナーゼ還流法によって肝
実質細胞を分離精製した。得られたラット肝実質細胞を
5%ウシ血清、2×10-9Mインスリンおよび2×10
-9Mデキサメサゾンを添加したウイリアムスE培地(フ
ローラボラトリー社)に懸濁し、24ウエルマルチプレ
ートに1.25×105 個/ウエルの濃度で播いた。5%
CO2および30%O2 および65%N2 の存在下、3
7℃で20時間培養後、0.1μg/mlのアプロチニン
を添加したウイリアムスE培地に交換すると同時に所定
量の被験試料を添加した。15時間後、15μCi/ml
125Iデオキシウリジン10μl/ウエルを添加し
た。コントロール群には、 125Iデオキシウリジン添加
の15分前に5μg/mlのアフィディコリンを添加し
た。さらに4時間培養して 125Iでラベルした。細胞を
pH7.4のPBSで2回洗浄後、冷10%トリクロロ酢
酸水溶液(TCA)で固定した。細胞を1ウエル当たり
0.5mlの1N水酸化ナトリウム水溶液で可溶化し、そ
の放射能をガンマカウンターにより測定した。また放射
能測定後の試料の1部をとってローリー法(J. Biol. C
hem., 193, 265, 1951) に従い蛋白量を測定した。被験
試料を添加したとき肝実質細胞に取り込まれた 125Iの
量をコントロールとのカウントの差として求め、これを
ラット肝実質細胞蛋白質1mg当たりに換算して、DNA
合成活性(dpm/mg蛋白質)とした。被験試料のH
GF活性は同一試験において上皮細胞成長因子(EG
F)10ng/mlを用いた時の肝実質細胞のDNA合成
活性の50%に相当する活性を1単位と定義して表示し
た。
【0018】
【発明の効果】本発明により肝実質細胞の生体外での増
殖を可能とする新規な生理活性ペプチドの大量供給が可
能となる。本発明により供給される組換ヒト白血球由来
HGFは、臨床診断試薬や肝疾患治療薬として有用であ
る。さらに、本発明によりつくられる組換ヒト白血球由
来HGFの作用により増殖維持される肝実質細胞は、例
えば肝機能の基礎的研究用肝実質細胞に対する各種ホル
モンや薬剤の作用の研究用、肝癌の発癌研究用あるいは
肝炎ウィルスの生体外培養のための宿主細胞として極め
て有用である。
【0019】
【実施例】以下本発明を実施例によりさらに詳しく説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
【0020】実施例1 1)ヒト組織mRNAとヒト肝由来HGFcDNAのノ
ーザンハイブリダイゼーション ヒト脳、胎盤、白血球、肺、及び肝臓mRNA(クロン
テック社)それぞれ2μgを Maniatis らの方法(Mole
cular Cloning : A Laboratory Manual, ColdSpring Ha
rbor Laboratory, New York, 202, 1982)に準じて0.
66Mホルムアルデヒド含有アガロース電気泳動に供し
た後、ナイロンフィルター・ジーンスクリーンプラス
(デュポン社)上に固定した。ヒト肝臓由来HGFcD
NAのBamHI−KpnI 2.2kb断片をアガロ
ース電気泳動により分離、精製し、マルチプライムDN
A標識システム(アマシャム社)を用いて〔α32P〕d
CTPで標識することにより調製したプローブ、5×S
SPE緩衝液(1×SSPE:180mM NaCl
10mMリン酸ナトリウム、1mM EDTA、pH
6.8)、5×デンハート溶液、10%デキストラン硫
酸、40%ホルムアルデヒド、0.1%SDS、0.1
mg/ml大腸菌DNAからなるハイブリダイゼーション溶
液に上記ナイロンフィルターを浸し、42℃で16時間
ハイブリダイゼーション反応した。反応後、ナイロンフ
ィルターは60℃で0.1%SDSを含む1×SSC緩
衝液によって3回洗浄してから風乾した。このナイロン
フィルターを増感スクリーン・ライトニングプラス(デ
ュポン社)とX線フィルム、RX(富士写真フィルム)
に密着させ、−80℃で16時間露光した。現像の結
果、肝臓mRNAと同様に胎盤及び白血球mRNAにも
HGF様転写産物の存在が認められた。
【0021】2)ヒト白血球由来のcDNAライブラリ
ーの作製 ヒト白血球mRNA3μgを鋳型にし、ヒト肝臓由来H
GFcDNAの3’非翻訳領域に含有する5'ACATT
CTCTGAAATCTTCAT3'の塩基配列を有する
オリゴヌクレオチドをプライマーとして、cDNA合成
システムプラス(アマシャム社)を用いてGublerらの方
法(Gene, 25, 263, 1983)に準じてcDNAを合成し
た。cDNAはフェノール/クロロホルム(1:1、V
/V)抽出とエタノール沈澱によって精製した後、0.
5M NaCl及び1mM EDTAを含む10mMト
リス塩酸緩衝液(STE緩衝液と略す)に溶解し、0.
7μg/20μlとした。このcDNAをcDNAクロ
ーニングシステムλgt10(アマシャム社)を用いて
Huynh らの方法(DNA Cloning I, APractical Appro
ach, 1, 49, 1982) に準じ、次のようにλgt10の
EcoRI部位にクローニングした。T4DNAリガー
ゼを用いてcDNAの両末端にEcoRIアダプターを
付加した。STE緩衝液で平衡化したcDNA精製用ゲ
ル濾過カラムに反応液をアプライし、同緩衝液で溶出し
てcDNA画分500μlを集めた。常法によってエタ
ノール沈澱を2回繰り返した後、減圧乾燥してリンカー
付加cDNAを得た。再びSTE緩衝液に50ng/μ
lの濃度で溶解したのち、あらかじめ準備されたλgt
10アーム1μgにアダプター付加cDNA0.1μg
をT4DNAリガーゼを用いて挿入した。この反応液は
冷エタノール処理した後、軽く乾燥して得られた組換D
NAの全量を5μlの1mM EDTAを含む10mM
トリス塩酸緩衝液pH7.5(TE緩衝液と略す)に溶
解した。この組換DNAをインビトロパッケージング反
応に供し、λgt10組換ファージを得た。ファージプ
レーティング用大腸菌を用いたタイトレーションにより
測定したcDNA1μgから得られた組換ファージ数は
5.0×106 個であった。このようにして作製したc
DNAライブラリーは使用するまで少量のクロロホルム
を加えたSE緩衝液(100mM NaCl, 10mM
MgSO4,0.01%ゼラチン含有20mMトリス塩
酸緩衝液、pH7.5)中、4℃で保存した。
【0022】3)ヒト白血球由来HGF遺伝子cDNA
の単離と塩基配列の決定 マルチプライムDNA標識システム(アマシャム社)を
用いて〔α32P〕dCTPで標識したヒト肝臓由来HG
FcDNAの一部であるHAC69の0.2kb Ec
oRI断片をプローブとし、上記cDNAライブラリー
からヒト白血球由来HGF遺伝子のクローニングを行っ
た。ハイブリダイゼーション反応温度及び洗浄温度を6
0℃、洗浄液は0.1%SDSを含む2×SSC緩衝液
とし、スクリーニングを行い、陽性クローンHLC2及
びHLC3を得た。それぞれのファージから常法により
単離、精製したHLC2及びHLC3cDNAを塩基配
列解析及び制限酵素切断解析に供した。図1にHLC3
の制限酵素地図、配列表・配列番号1に塩基配列の一部
及び演繹されるアミノ酸配列を示す。ヒト白血球由来H
GFクローン、HLC3は以前に決定されたヒト肝臓由
来HGF(Nature, 342, 440, 1989) と同様の特徴を有
しているが、コード領域内の塩基配列に38ヶ所差異が
あり、その結果演繹されるアミノ酸配列に14ヶ所の差
異を生じた。また、HLC2cDNAはHLC3cDN
Aとほぼ同一の塩基配列を有しているが、HLC3cD
NAの484番目から498番目までの塩基が欠失して
いた(配列表・配列番号2)。
【0023】4)サルCOS細胞用ヒト白血球由来HG
F発現ベクターの構築 サルCOS細胞用ヒトHGF発現ベクターCDM〔dL
eHGF〕およびCDM〔LeHGF〕の構築図を図2
に示す。上記3)で得られたHLC2及びHLC3ファ
ージDNAを制限酵素BamHIとKpnIで消化し、
2.2kbのDNA断片を分離、精製した。HLC2及
びHLC3のKpnI切断部位、その3’側に含有する
配列及びHpaI、SmaI、SalI切断部位から成
るオリゴヌクレオチド5'CACAGTCATAGCTG
TTAACCCGGG3'5'TCGACCCGGGTT
AACAGCTATGACTGTGGTAC3'を合成
し、KpnI−SalIアダプターとした。上記HLC
2及びHLC3のBamHI−KpnI DNA断片、
KpnI−SalIアダプター及びあらかじめ制限酵素
BamHIとSalIで消化したブルースクリプトKS
M13+(ストラタジーン社)を混合し、T4DNAリ
ガーゼで結合して2種類のプラスミドpBS〔dLeH
GF〕及びpBS〔LeHGF〕を得た。得られたpB
S〔dLeHGF〕及びpBS〔LeHGF〕を制限酵
素BamHIとSalIで消化しT4DNAポリメラー
ゼで平滑末端とした後、あらかじめ制限酵素BstXI
で消化しT4DNAポリメラーゼで平滑末端としたCO
S細胞用発現ベクターCDM8(Nature, 329, 840, 19
87) と混合し、T4DNAリガーゼで結合してヒト白血
球由来HGF発現ベクターCDM〔dLeHGF〕及び
CDM〔LeHGF〕を得た。
【0024】5)サルCOS細胞の形質転換とヒト白血
球由来HGF遺伝子の発現 得られたCDM〔dLeHGF〕及びCDM〔LeHG
F〕プラスミドをエタノール沈澱した後、10mMPB
S緩衝液に溶解し、2μg/mlに調製した。次に10%
ウシ胎児血清(ギブコ社)を含むDMEM培地(日水製
薬)中で飽和細胞密度まで増殖させたCOS−1細胞
(ATCC CRL-1650)を10mMPBS緩衝液で2回洗浄し
た後、トリプシン処理した。同緩衝液で3回洗浄後、細
胞密度2×107 個/mlになるように再び同緩衝液に浮
遊化した。先に調製したプラスミド溶液250μlと細
胞浮遊液250μlを混合し、氷冷下で10分間放置し
た。この氷冷したプラスミド細胞混液高電圧パルス遺伝
子導入装置ZA−1200(PDS社)を用いて、印加電圧
4KV/1cm パルス時間20ミリ秒の条件下で高電圧パ
ルスをかけた。得られた細胞を上記の培地で希釈し、3
7℃5%CO2 存在下にて3日間培養した。培養3日目
の培養上清中のHGF活性を測定したところ、それぞれ
20単位/ml及び5単位/mlであった。一方、HGFc
DNAを挿入していない発現ベクターCDM8を同じ方
法によりCOS−1細胞に導入して培養したが、その培
養上清中にはHGF活性を認めなかった。
【0025】実施例2 1)マウスC127細胞用ヒト白血球由来HGF発現ベ
クターの構築 マウスC127細胞用ヒト白血球由来HGF発現ベクタ
ーpBPMT〔LeHGF〕(微工研条寄第2897
号)及びpBPMT〔dLeHGF〕(微工研条寄第2
898号)の構築を図3に示す。実施例1で得られたプ
ラスミドpBS〔LeHGF〕及びpBS〔dLeHG
F〕をそれぞれ制限酵素XbaIとSalIで消化し、
T4DNAポリメラーゼで平滑末端とした後、あらかじ
め制限酵素EcoRVで消化したC127細胞用発現ベ
クターpBPMTと混合し、T4DNAリガーゼで結合
してヒトHGF発現ベクターpBPMT〔LeHGF〕
(微工研条寄第2897号)及びpBPMT〔dLeH
GF〕(微工研条寄第2898号)を得た。得られたヒ
ト白血球由来HGF発現ベクターは、MT−1プロモー
ターとSV40初期遺伝子のポリ(A)付加シグナルの
間にヒト白血球由来HGF遺伝子を有し、この発現ベク
ターによるマウスC127細胞の形質転換はウシパピロ
ーマウィルス(BPV)により行われる。また、形質転
換された細胞の選択は、トランスポゾンTn5のneo 遺
伝子(Gene, 19,329, 1982)にヘルペスシンプレックス
ウィルスタイプ1のチミジンキナーゼ(HSV1 T
K)遺伝子由来のプロモーターとポリ(A)付加シグナ
ルを連結したneo キメラ遺伝子によって可能となる。
【0026】2)マウスC127細胞の形質転換とヒト
HGF遺伝子の発現 ヒト白血球由来HGF発現ベクターpBPMT〔LeH
GF〕(微工研条寄第2897号)及びpBPMT〔d
LeHGF〕(微工研条寄第2898号)はWiglerらの
方法(Cell,11, 223, 1977) によりマウスC127細胞
へ導入した。上記(1) で得られた29μgのpBPMT
〔LeHGF〕(微工研条寄第2897号)プラスミド
およびpBPMT〔dLeHGF〕(微工研条寄第28
98号)をそれぞれ240μlの0.5M塩化カルシウ
ムに溶解し、20mM HEPES,280mM Na
Cl及び1.5mMリン酸ナトリウムからなる2×HE
PES緩衝液(pH7.1)、240μlを攪拌しながら加
えた。室温で30分攪拌を続け、プラスミドとリン酸カ
ルシウムの共沈澱を形成させた。あらかじめ、10%ウ
シ胎児血清(ギブコ社)及び10mMグルタミンを添加
したDMEM培地(日水製薬)を用いて5×105 個の
C127細胞を5%CO2 の存在下で37℃、24時間
培養した。培地交換した後、プラスミドとリン酸カルシ
ウム共沈澱を加え、室温で20分間放置した。さらに3
7℃で4時間インキュベートした後、培地を除去し、1
5%グリセリンを添加した1×HEPES緩衝液を加
え、室温で5分間放置した。培地で細胞を洗浄した後、
培地交換し、さらに37℃で2日間インキュベートした。
細胞を10倍に希釈して1mg/mlのG418(シグマ
社)を含む同培地を用いて5%CO2 の存在下で37
℃、7日間培養して形質転換細胞を得た。得られた細胞
株から培養上清中のHGF活性の高い細胞を限界希釈法
でスクリーニングし、ヒト白血球由来HGF高生産株B
PI−14株(pBPMT〔LeHGF〕(微工研条寄
第2897号))及びBPD−27株(pBPMT〔d
LeHGF〕(微工研条寄第2898号))を得た。こ
れらの細胞の培養上清中のHGF生産能はそれぞれ12
万単位/l/日、15万単位/l/日であった。
【0027】実施例3 1)チャイニーズハムスターCHO細胞用ヒト白血球由
来HGF発現ベクターの構築 チャイニーズハムスターCHO細胞用ヒト白血球由来H
GF発現ベクターpEVSSV〔LeHGF〕(微工研
条寄第2899号)及びpEVSSV〔dLeHGF〕
(微工研条寄第2900号)の構築図を図4に示す。実
施例1で得られたプラスミドpBS〔LeHGF〕及び
pBS〔dLeHGF〕をそれぞれ制限酵素XbaIと
SalIで消化し、T4DNAポリメラーゼで平滑末端
とした後、あらかじめ制限酵素EcoRVで消化したC
HO細胞用発現ベクターpEVSSVと混合し、T4D
NAリガーゼで結合してヒト白血球由来HGF発現ベク
ターpEVSSV〔LeHGF〕(微工研条寄第289
9号)及びpEVSSV〔dLeHGF〕(微工研条寄
第2900号)を得た。得られたヒト白血球由来HGF
発現ベクターはSV40初期プロモーターとポリ(A)
付加シグナルの間にヒト白血球由来HGF遺伝子を有す
る。また、形質転換された細胞の選択は、マウスジヒド
ロ葉酸還元酵素(DHFR)遺伝子にSV40初期プロ
モーターとポリ(A)付加シグナルで連結したDHFR
キメラ遺伝子により可能となる。
【0028】2)チャイニーズハムスターCHO細胞の
形質転換とヒト白血球由来HGF遺伝子の発現 ヒト白血球由来HGF発現ベクターpEVSSV〔Le
HGF〕(微工研条寄第2899号)及びpEVSSV
〔dLeHGF〕(微工研条寄第2900号)は実施例
2と同様にしてチャイニーズハムスターCHO細胞のD
HFR欠損CHODUKX細胞に導入した。得られた細
胞株はリボヌクレオシドとデオキシリボヌクレオシドを
含まず、透析した10%ウシ胎児血清(ギブコ社)と1
%グルタミンと50nMメソトレキセートを含むα−M
EM培地(フローラボラトリー社)を用いて、培養上清
中のHGF活性の高い細胞を限界希釈法でスクリーニン
グした。発生したコロニーは、安定なヒト白血球由来H
GF高生産株を得るために、同培地において9世代まで
増殖させた。この細胞株は100nM、250nM、5
00nM、 750nM、及び1000nMとメソトレキセ
ートの濃度を順次増加させながら同培地で生育させ、さ
らに安定なヒト白血球由来HGF高産生株EVI−65
株(pEVSSV〔LeHGF〕(微工研条寄第289
9号))及びEVD−104株(pEVSSV〔dLe
HGF〕(微工研条寄第2900号))を得た。これら
の細胞のヒト白血球由来HGF産生能はそれぞれ9万単
位/l/日、13万単位/l/日であった。
【0029】実施例4 形質転換C127細胞培養上清からの組換ヒト白血球由
来HGFの精製 実施例2で得られたヒト白血球由来HGF産生マウスC
127組換細胞株BPD−27(15塩基欠失型HGF
産生株)の培養上清液より、組換ヒト白血球由来HGF
を精製した。 1)陽イオン交換クロマトグラフィー BPD−27株の培養液500mlに終濃度0.01%と
なるようにTween80を添加し、ステリベクスHV
フィルター(日本ミリポア・リミテッド)により濾過し
た。この濾液に1/20容の1M Tris・HCl (pH8.
5)緩衝液を加え、緩衝液A(50mM Tris ・HCl,1
0mM Hepes、2mM CaCl2 、150mM NaCl 、
0.01%Tween80、pH8.5)で平衡化した
S−セファロースFF(ファルマシア社製、カラムサイ
ズ内径1.6cm、高さ5cm)に添加した。緩衝液Aで未
吸着物質を洗浄後、0.15Mから1.0MのNaClによ
る直線濃度勾配(全量100ml)で吸着物を溶出した。
クロマトパターンを図5に示す。HGF活性をもつ画分
を集め、S−セファロース溶出液とした。
【0030】2)アフィニティークロマトグラフィー S−セファロース溶出液を1N酢酸でpH7.5に調整
後、2倍容の0.01%Tween80を含む蒸留水で
希釈し、緩衝液B(10mM Tris ・HCl 、0.3M NaC
l 、0.01%Tween80、pH7.5)で平衡化
した。ヘパリン・セファロースCL−6B(ファルマシ
ア社製、カラムサイズ内径1cm、高さ3cm)に添加し
た。緩衝液Bでカラムを洗浄後、0.3Mから2.0M
のNaClによる直線濃度勾配(全量30ml)により溶出し
た。そのクロマトパターンを図6に示す。HGF活性を
もつ画分を集め、ヘパリン溶出液とした。
【0031】3)逆相HPLC 0.1%TFA(トリフルオロ酢酸、v/v%)を含む
蒸留水で平衡化したフェニル5PW RPカラム(トー
ソー社製、内径0.75cm、高さ7.5cm)にヘパリン
溶出液を添加し、0.1%TFAを含む0%から90%
へのアセトニトリルの濃度勾配により溶出を行った。組
換ヒト白血球由来HGFは約40%のアセトニトリル濃
度にて溶出された。そのクロマトグラムを図7に示す。
精製された組換ヒトHGFの収量は約20μgであり、
培養上清液からの活性回収率は18%であった。
【0032】4)SDS−ポリアクリルアミド電気泳動 前記3段のクロマトグラフィーで精製された15塩基欠失
型ヒト組換白血球由来HGFを2−メルカプトエタノー
ル還元下及び非還元下でSDS−ポリアクリルアミド電
気泳動にかけた。結果を図8に示す。精製組換HGFは
非還元条件(2−ME(−))では分子量7万〜9万の
単一バンドを示し、還元条件下(2−ME(+))で
は、分子量6万〜7.5万のα鎖と分子量3万〜4万の
β鎖に分かれた。即ち組換HGFはα鎖とβ鎖からなる
ヘテロダイマーであることが示された。
【0033】5)組換ヒト白血球由来HGF(15塩基
欠失型)の肝細胞増殖活性 ラット初代培養肝実質細胞は、現在知られているin vit
roの系の中では最もinvivo に近い肝機能を持つ系であ
る。「HGF活性の測定法」に記述した方法に従って得
たラット肝実質細胞に対し、精製した15塩基欠失型組
換ヒト白血球由来HGFを添加したところ、1〜20n
g/mlの濃度で強い細胞増殖を誘起した。この培養系に
増殖活性を示す因子としては他にもインスリンやEGF
があるが、該組換HGFは単独で両者よりも強い活性を
有し、かつこれら3者の共存下では相加的な作用を示し
た。
【0034】実施例5 ヒト白血球由来HGF遺伝子によるチャイニーズハムス
ターCHO細胞の形質転換とその発現 ヒト白血球由来HGF発現ベクターpEVSSV(dL
eHGF)(微工研条寄第2900号)はWiglerらの方
法(Cell, 11, 233,1977)によりチャイニーズハムスタ
ーCHO細胞のDHFR欠損細胞に導入した。約30μ
gのpEVSSV(dLeHGF)プラスミドをそれぞ
れ240μlの0.5M塩化カルシウムに溶解し、20
mM HEPES、280mM塩化ナトリウムおよび
1.5mMリン酸ナトリウムからなる2×HEPES緩
衝液(pH7.1)、240μlを攪拌しながら加え
た。室温で30分攪拌を続けプラスミドとリン酸カルシ
ウムの共沈殿を形成させた。続いて、10%ウシ胎児血
清(ギブコ社)と1%グルタミンとを含むα−MEM培
地(フローラボラトリー社)を用いて5×105 個のC
HO細胞を5%CO2 存在下で37℃、24時間培養し
た。培地交換した後プラスミドとリン酸カルシウム共沈
殿を加え室温で20分間放置した。さらに37℃で4時
間インキュベートしたのち、培地を除去し、15%グリ
セリンを添加した1×HEPES緩衝液を加え室温で5
分間放置した。培地で細胞を洗浄した後、培地交換しさ
らに37℃で7日間培養して形質転換細胞を得た。得ら
れた細胞株はリボヌクレオシドとデオキシリボヌクレオ
シドを含まず、透析した10%ウシ胎児血清(ギブコ
社)、2%グルタミンを含むα−MEM培地(フローラ
ボラトリー社)を用いて安定なHGF高生産株を得るた
めに100nM、250nM、500nM、750n
M、1μM、2μMとメソトレキセート濃度を順次増加
させながら同培地で継代培養を繰り返した。得られたヒ
ト白血球由来HGF産生組換細胞をクローン選別を行
い、安定なヒト白血球由来HGF産生株515Cを得
た。これらの細胞のHGF産生能は約80万単位/l/
日であった。
【0035】実施例6 形質転換CHO細胞培養上清からの組換ヒト白血球由来
HGFの精製 実施例5で得られたヒト白血球由来HGF産生チャイニ
ーズハムスターCHO組換細胞株515C(15塩基欠
失型HGF産生株)をリボヌクレオシドとデオキシリボ
ヌクレオシドを含まず、10%ウシ胎児血清(ギブコ
社)と1%グルタミンと2μMメソトレキセートを含む
α−MEM培地(フローラボラトリー社)で培養し、そ
の培養上清液より、組換ヒト白血球由来HGFを精製し
た。 1)陽イオン交換クロマトグラフィー 515C株の培養液500mlに最終濃度0.01%とな
るようにTween 80を添加し、ステリベックスHVフィル
ター(日本ミリポア・リミテッドにより濾過した。この
濾液に1/20容の1M Tris・HCl(pH8.
5)緩衝液を加え、150mM NaClを含む緩衝液
C(50mM Tris・HCl、0.01%Tween 8
0、pH8.5)で平衡化したS−セファロースFF
(ファルマシア社製、カラムサイズ内径1.6cm、高さ
5cm)に添加した。緩衝液Cカラムを150mM Na
Clを含む緩衝液Cおよび400mM NaClを含む
緩衝液C(図9で矢印Aで印した)で洗浄後1M Na
Clを含む緩衝液C(図9で矢印Bで印した)で溶出し
た。クロマトパターンを図9に示す。1M NaClを
含む緩衝液Cで溶出したピーク部分(図9で←→と印し
た)を集め、S−セファロース溶出液とした。
【0036】2)アフィニティークロマトグラフィー S−セファロース溶出液を1N塩酸でpH7.5に調製
後、2倍容の0.01%Tween 80を含む蒸留水で希釈
し、緩衝液B(10mM Tris・HCl、0.3M
塩化ナトリウム、0.01%Tween 80、pH7.5)で
平衡化した、ヘパリン・セファロースCL−6B(ファ
ルマシア社製、カラムサイズ内径1cm、高さ5cm)に添
加した。緩衝液Bでカラムを洗浄後、0.3Mから2.
0Mの塩化ナトリウムによる直線濃度勾配(全量40m
l)により吸着物を溶出した。そのクロマトパターンを
図10に示す。HGF活性を持つ画分を集め、ヘパリン
溶出液とした。
【0037】3)疎水性クロマトグラフィー 4M NaClを含む20mMリン酸緩衝液(pH7.
0)で平衡化したフェニル5PWカラム(トーソー製、
内径0.75cm、高さ7.5cm)にヘパリン溶出液を添
加し、溶媒A:4M塩化ナトリウムを含む20mMリン
酸緩衝液(pH7.0)から溶媒B:50%エチレング
リコールを含む20mMリン酸緩衝液(pH7.0)へ
の濃度勾配により溶出を行った。HGF活性は2M N
aCl、25%エチレングリコール濃度で溶出された。
そのクロマトグラムを図11に示す。精製された組換ヒ
ト白血球由来HGFの収量は約500μgであり、培養
上清液からの活性回収率は25%であった。
【0038】4)精製組換ヒト白血球由来HGFの特性 3)項で得られた組換ヒト白血球由来HGFの生物学
的、化学的および物理化学的特性について測定した。 SDS−ポリアクリルアミド電気泳動 組換HGFを2−メルカプトエタノール還元下および非
還元下でSDS−ポリアクリルアミド電気泳動を行っ
た。泳動後ゲルは銀染色法により染色したその結果を図
12に示す。組換HGFは非還元下で分子量7万〜9万
ダルトン、還元下では分子量6万〜7.5万のα鎖と分
子量3万〜4万のβ鎖に分かれた。またβ鎖は2本のバ
ンドに分かれたが、これはβ鎖における結合糖鎖本数の
差異を示している。
【0039】糖組成、分析(中性糖およびアミノ糖) 精製組換HGFを蒸発乾固後、2.5Nのトリフロロ酢
酸存在下で110℃、6時間加水分解した。加水分解物
を蒸発乾固後、水に再溶解し、試料とした。試料をアニ
オン交換樹脂を用いるHPLCにより糖組成、分析を実
施した。その結果フコース、ガラクトース、マンノー
ス、N−アセチルグルコサミンが検出され、組換HGF
が糖タンパクであることが確認された。
【0040】生物活性 精製組換HGFの肝細胞増殖活性を「HGF活性の測
定」の項に記載の方法に従って活性を測定した。その結
果、精製組換HGFの比活性は20〜50万unit/mgと
測定された。
【0041】実施例7 一本鎖型組換ヒト白血球由来HGFの製造 実施例5で得られたヒト白血球由来HGF(15塩基欠
失型HGF)産生CHO515C株を10%ウシ胎児血
清(ギブコ社)と1%グルタミンと2μMメソトレキセ
ートを添加した。リボヌクレオシドとデオキシヌクレオ
シドを含有しないα−MEM培地(フローラボラトリー
社)で、37℃、5%CO2 下培養し、細胞をコンフル
エントになるまで培養した。培養後、培養液を抜き取
り、PBSで2回細胞を洗浄した。次で1%グルタミン
と500μMメソトレキセートとプロテアーゼ阻害剤で
ある400unit/mlアプロチニンを加えたα−MEM培
地(リボヌクレオシドとデオキシヌクレオシド不含)を
加え、37℃、5%CO2 下培養した。約1日培養後、
培養上清液を採取し、実施例6に示す方法とほぼ同様の
クロマト操作により組換HGFを精製した。培養上清液
からの活性回収率は約15%であった。
【0042】精製した15塩基欠失型組換ヒト白血球由
来HGFをSDS−アクリルアミド電気泳動にかけた。
その結果を図13に示す。精製された組換HGFは非還
元条件下で分子量7万〜9万ダルトンのバンドを示し、
更にメルカプトエタノール還元条件下でも、分子量8万
〜9万5千ダルトンの単一バンドを示した。
【0043】この結果、得られた組換HGFは一本鎖型
のものであることが示された。更に精製されたこの一本
鎖型組換HGFの生物活性を測定した。即ち「HGF活
性の測定」の項に記載の初代培養ラット肝細胞に対する
増殖活性を測定した。その結果一本鎖型組換HGFは肝
細胞増殖活性を示し、その比活性は実施例6の4)の項
で得られた活性とほぼ等しく、20〜50万unit/mgで
あると測定された。
【0044】
【配列表】配列番号:1 配列の長さ:2214 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA 起源 生物名:ヒト 配列の特徴 特徴を示す記号:sig peptide 存在位置:1−93 特徴を決定した方法:E 特徴を示す記号:CDS 存在位置:1−2184 特徴を決定した方法:E 配列 GGATCCG CCAGCCCGTC CAGCAGCACC -1 ATG TGG GTG ACC AAA CTC CTG CCA GCC CTG CTG CTG CAG CAT GTC CTC 48 Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu 1 5 10 15 CTG CAT CTC CTC CTG CTC CCC ATC GCC ATC CCC TAT GCA GAG GGA CAA 96 Leu His Leu Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln 20 25 30 AGG AAA AGA AGA AAT ACA ATT CAT GAA TTC AAA AAA TCA GCA AAG ACT 144 Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr 35 40 45 ACC CTA ATC AAA ATA GAT CCA GCA CTG AAG ATA AAA ACC AAA AAA GTG 192 Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val 50 55 60 AAT ACT GCA GAC CAA TGT GCT AAT AGA TGT ACT AGG AAT AAA GGA CTT 240 Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu 65 70 75 80 CCA TTC ACT TGC AAG GCT TTT GTT TTT GAT AAA GCA AGA AAA CAA TGC 288 Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys 85 90 95 CTC TGG TTC CCC TTC AAT AGC ATG TCA AGT GGA GTG AAA AAA GAA TTT 336 Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe 100 105 110 GGC CAT GAA TTT GAC CTC TAT GAA AAC AAA GAC TAC ATT AGA AAC TGC 384 Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys 115 120 125 ATC ATT GGT AAA GGA CGC AGC TAC AAG GGA ACA GTA TCT ATC ACT AAG 432 Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys 130 135 140 AGT GGC ATC AAA TGT CAG CCC TGG AGT TCC ATG ATA CCA CAC GAA CAC 480 Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His 145 150 155 160 AGC TTT TTG CCT TCG AGC TAT CGG GGT AAA GAC CTA CAG GAA AAC TAC 528 Ser Phe Leu Pro Ser Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr 165 170 175 TGT CGA AAT CCT CGA GGG GAA GAA GGG GGA CCC TGG TGT TTC ACA AGC 576 Cys Arg Asn Pro Arg Gly Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser 180 185 190 AAT CCA GAG GTA CGC TAC GAA GTC TGT GAC ATT CCT CAG TGT TCA GAA 624 Asn Pro Glu Val Arg Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser Glu 195 200 205 GTT GAA TGC ATG ACC TGC AAT GGG GAG AGT TAT CGA GGT CTC ATG GAT 672 Val Glu Cys Met Thr Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp 210 215 220 CAT ACA GAA TCA GGC AAG ATT TGT CAG CGC TGG GAT CAT CAG ACA CCA 720 His Thr Glu Ser Gly Lys Ile Cys Gln Arg Trp Asp His Gln Thr Pro 225 230 235 240 CAC CGG CAC AAA TTC TTG CCT GAA AGA TAT CCC GAC AAG GGC TTT GAT 768 His Arg His Lys Phe Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp 245 250 255 GAT AAT TAT TGC CGC AAT CCC GAT GGC CAG CCG AGG CCA TGG TGC TAT 816 Asp Asn Tyr Cys Arg Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr 260 265 270 ACT CTT GAC CCT CAC ACC CGC TGG GAG TAC TGT GCA ATT AAA ACA TGC 864 Thr Leu Asp Pro His Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr Cys 275 280 285 GCT GAC AAT ACT ATG AAT GAC ACT GAT GTT CCT TTG GAA ACA ACT GAA 912 Ala Asp Asn Thr Met Asn Asp Thr Asp Val Pro Leu Glu Thr Thr Glu 290 295 300 TGC ATC CAA GGT CAA GGA GAA GGC TAC AGG GGC ACT GTC AAT ACC ATT 960 Cys Ile Gln Gly Gln Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr Ile 305 310 315 320 TGG AAT GGA ATT CCA TGT CAG CGT TGG GAT TCT CAG TAT CCT CAC GAG 1008 Trp Asn Gly Ile Pro Cys Gln Arg Trp Asp Ser Gln Tyr Pro His Glu 325 330 335 CAT GAC ATG ACT CCT GAA AAT TTC AAG TGC AAG GAC CTA CGA GAA AAT 1056 His Asp Met Thr Pro Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn 340 345 350 TAC TGC CGA AAT CCA GAT GGG TCT GAA TCA CCC TGG TGT TTT ACC ACT 1104 Tyr Cys Arg Asn Pro Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr 355 360 365 GAT CCA AAC ATC CGA GTT GGC TAC TGC TCC CAA ATT CCA AAC TGT GAT 1152 Asp Pro Asn Ile Arg Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp 370 375 380 ATG TCA CAT GGA CAA GAT TGT TAT CGT GGG AAT GGC AAA AAT TAT ATG 1200 Met Ser His Gly Gln Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met 385 390 395 400 GGC AAC TTA TCC CAA ACA AGA TCT GGA CTA ACA TGT TCA ATG TGG GAC 1248 Gly Asn Leu Ser Gln Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp 405 410 415 AAG AAC ATG GAA GAC TTA CAT CGT CAT ATC TTC TGG GAA CCA GAT GCA 1296 Lys Asn Met Glu Asp Leu His Arg His Ile Phe Trp Glu Pro Asp Ala 420 425 430 AGT AAG CTG AAT GAG AAT TAC TGC CGA AAT CCA GAT GAT GAT GCT CAT 1344 Ser Lys Leu Asn Glu Asn Tyr Cys Arg Asn Pro Asp Asp Asp Ala His 435 440 445 GGA CCC TGG TGC TAC ACG GGA AAT CCA CTC ATT CCT TGG GAT TAT TGC 1392 Gly Pro Trp Cys Tyr Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys 450 455 460 CCT ATT TCT CGT TGT GAA GGT GAT ACC ACA CCT ACA ATA GTC AAT TTA 1440 Pro Ile Ser Arg Cys Glu Gly Asp Thr Thr Pro Thr Ile Val Asn Leu 465 470 475 480 GAC CAT CCC GTA ATA TCT TGT GCC AAA ACG AAA CAA TTG CGA GTT GTA 1488 Asp His Pro Val Ile Ser Cys Ala Lys Thr Lys Gln Leu Arg Val Val 485 490 495 AAT GGG ATT CCA ACA CGA ACA AAC ATA GGA TGG ATG GTT AGT TTG AGA 1536 Asn Gly Ile Pro Thr Arg Thr Asn Ile Gly Trp Met Val Ser Leu Arg 500 505 510 TAC AGA AAT AAA CAT ATC TGC GGA GGA TCA TTG ATA AAG GAG AGT TGG 1584 Tyr Arg Asn Lys His Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp 515 520 525 GTT CTT ACT GCA CGA CAG TGT TTC CCT TCT CGA GAC TTG AAA GAT TAT 1632 Val Leu Thr Ala Arg Gln Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr 530 535 540 GAA GCT TGG CTT GGA ATT CAT GAT GTC CAC GGA AGA GGA GAT GAG AAA 1680 Glu Ala Trp Leu Gly Ile His Asp Val His Gly Arg Gly Asp Glu Lys 545 550 555 560 TGC AAA CAG GTT CTC AAT GTT TCC CAG CTG GTA TAT GGC CCT GAA GGA 1728 Cys Lys Gln Val Leu Asn Val Ser Gln Leu Val Tyr Gly Pro Glu Gly 565 570 575 TCA GAT CTG GTT TTA ATG AAG CTT GCC AGG CCT GCT GTC CTG GAT GAT 1776 Ser Asp Leu Val Leu Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp 580 585 590 TTT GTT AGT ACG ATT GAT TTA CCT AAT TAT GGA TGC ACA ATT CCT GAA 1824 Phe Val Ser Thr Ile Asp Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu 595 600 605 AAG ACC AGT TGC AGT GTT TAT GGC TGG GGC TAC ACT GGA TTG ATC AAC 1872 Lys Thr Ser Cys Ser Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn 610 615 620 TAT GAT GGC CTA TTA CGA GTG GCA CAT CTC TAT ATA ATG GGA AAT GAG 1920 Tyr Asp Gly Leu Leu Arg Val Ala His Leu Tyr Ile Met Gly Asn Glu 625 630 635 640 AAA TGC AGC CAG CAT CAT CGA GGG AAG GTG ACT CTG AAT GAG TCT GAA 1968 Lys Cys Ser Gln His His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu 645 650 655 ATA TGT GCT GGG GCT GAA AAG ATT GGA TCA GGA CCA TGT GAG GGG GAT 2016 Ile Cys Ala Gly Ala Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp 660 665 670 TAT GGT GGC CCA CTT GTT TGT GAG CAA CAT AAA ATG AGA ATG GTT CTT 2064 Tyr Gly Gly Pro Leu Val Cys Glu Gln His Lys Met Arg Met Val Leu 675 680 685 GGT GTC ATT GTT CCT GGT CGT GGA TGT GCC ATT CCA AAT CGT CCT GGT 2112 Gly Val Ile Val Pro Gly Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly 690 695 700 ATT TTT GTC CGA GTA GCA TAT TAT GCA AAA TGG ATA CAC AAA ATT ATT 2160 Ile Phe Val Arg Val Ala Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile 705 710 715 720 TTA ACA TAT AAG GTA CCA CAG TCA TAG 2187 Lys Thr Tyr Lys Val Pro Gln Ser 725
【0045】
【配列表】配列番号:2 配列の長さ:2199 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:c DNA 起源 生物名:ヒト 配列の特徴 特徴を示す記号:sig peptide 存在位置:1−93 特徴を決定した方法:E 特徴を示す記号:CDS 存在位置:1−2169 特徴を決定した方法:E 配列 GGATCCG CCAGCCCGTC CAGCAGCACC -1 ATG TGG GTG ACC AAA CTC CTG CCA GCC CTG CTG CTG CAG CAT GTC CTC 48 Met Trp Val Thr Lys Leu Leu Pro Ala Leu Leu Leu Gln His Val Leu 5 10 15 CTG CAT CTC CTC CTG CTC CCC ATC GCC ATC CCC TAT GCA GAG GGA CAA 96 Leu His Leu Leu Leu Leu Pro Ile Ala Ile Pro Tyr Ala Glu Gly Gln 20 25 30 AGG AAA AGA AGA AAT ACA ATT CAT GAA TTC AAA AAA TCA GCA AAG ACT 144 Arg Lys Arg Arg Asn Thr Ile His Glu Phe Lys Lys Ser Ala Lys Thr 35 40 45 ACC CTA ATC AAA ATA GAT CCA GCA CTG AAG ATA AAA ACC AAA AAA GTG 192 Thr Leu Ile Lys Ile Asp Pro Ala Leu Lys Ile Lys Thr Lys Lys Val 50 55 60 AAT ACT GCA GAC CAA TGT GCT AAT AGA TGT ACT AGG AAT AAA GGA CTT 240 Asn Thr Ala Asp Gln Cys Ala Asn Arg Cys Thr Arg Asn Lys Gly Leu 65 70 75 80 CCA TTC ACT TGC AAG GCT TTT GTT TTT GAT AAA GCA AGA AAA CAA TGC 288 Pro Phe Thr Cys Lys Ala Phe Val Phe Asp Lys Ala Arg Lys Gln Cys 85 90 95 CTC TGG TTC CCC TTC AAT AGC ATG TCA AGT GGA GTG AAA AAA GAA TTT 336 Leu Trp Phe Pro Phe Asn Ser Met Ser Ser Gly Val Lys Lys Glu Phe 100 105 110 GGC CAT GAA TTT GAC CTC TAT GAA AAC AAA GAC TAC ATT AGA AAC TGC 384 Gly His Glu Phe Asp Leu Tyr Glu Asn Lys Asp Tyr Ile Arg Asn Cys 115 120 125 ATC ATT GGT AAA GGA CGC AGC TAC AAG GGA ACA GTA TCT ATC ACT AAG 432 Ile Ile Gly Lys Gly Arg Ser Tyr Lys Gly Thr Val Ser Ile Thr Lys 130 135 140 AGT GGC ATC AAA TGT CAG CCC TGG AGT TCC ATG ATA CCA CAC GAA CAC 480 Ser Gly Ile Lys Cys Gln Pro Trp Ser Ser Met Ile Pro His Glu His 145 150 155 160 AGC TAT CGG GGT AAA GAC CTA CAG GAA AAC TAC TGT CGA AAT CCT CGA 528 Ser Tyr Arg Gly Lys Asp Leu Gln Glu Asn Tyr Cys Arg Asn Pro Arg 165 170 175 GGG GAA GAA GGG GGA CCC TGG TGT TTC ACA AGC AAT CCA GAG GTA CGC 576 Gly Glu Glu Gly Gly Pro Trp Cys Phe Thr Ser Asn Pro Glu Val Arg 180 185 190 TAC GAA GTC TGT GAC ATT CCT CAG TGT TCA GAA GTT GAA TGC ATG ACC 624 Tyr Glu Val Cys Asp Ile Pro Gln Cys Ser Glu Val Glu Cys Met Thr 195 200 205 TGC AAT GGG GAG AGT TAT CGA GGT CTC ATG GAT CAT ACA GAA TCA GGC 672 Cys Asn Gly Glu Ser Tyr Arg Gly Leu Met Asp His Thr Glu Ser Gly 210 215 220 AAG ATT TGT CAG CGC TGG GAT CAT CAG ACA CCA CAC CGG CAC AAA TTC 720 Lys Ile Cys Gln Arg Trp Asp His Gln Thr Pro His Arg His Lys Phe 225 230 235 240 TTG CCT GAA AGA TAT CCC GAC AAG GGC TTT GAT GAT AAT TAT TGC CGC 768 Leu Pro Glu Arg Tyr Pro Asp Lys Gly Phe Asp Asp Asn Tyr Cys Arg 245 250 255 AAT CCC GAT GGC CAG CCG AGG CCA TGG TGC TAT ACT CTT GAC CCT CAC 816 Asn Pro Asp Gly Gln Pro Arg Pro Trp Cys Tyr Thr Leu Asp Pro His 260 265 270 ACC CGC TGG GAG TAC TGT GCA ATT AAA ACA TGC GCT GAC AAT ACT ATG 864 Thr Arg Trp Glu Tyr Cys Ala Ile Lys Thr Cys Ala Asp Asn Thr Met 275 280 285 AAT GAC ACT GAT GTT CCT TTG GAA ACA ACT GAA TGC ATC CAA GGT CAA 912 Asn Asp Thr Asp Val Pro Leu Glu Thr Thr Glu Cys Ile Gln Gly Gln 290 295 300 GGA GAA GGC TAC AGG GGC ACT GTC AAT ACC ATT TGG AAT GGA ATT CCA 960 Gly Glu Gly Tyr Arg Gly Thr Val Asn Thr Ile Trp Asn Gly Ile Pro 305 310 315 320 TGT CAG CGT TGG GAT TCT CAG TAT CCT CAC GAG CAT GAC ATG ACT CCT 1008 Cys Gln Arg Trp Asp Ser Gln Tyr Pro His Glu His Asp Met Thr Pro 325 330 335 GAA AAT TTC AAG TGC AAG GAC CTA CGA GAA AAT TAC TGC CGA AAT CCA 1056 Glu Asn Phe Lys Cys Lys Asp Leu Arg Glu Asn Tyr Cys Arg Asn Pro 340 345 350 GAT GGG TCT GAA TCA CCC TGG TGT TTT ACC ACT GAT CCA AAC ATC CGA 1104 Asp Gly Ser Glu Ser Pro Trp Cys Phe Thr Thr Asp Pro Asn Ile Arg 355 360 365 GTT GGC TAC TGC TCC CAA ATT CCA AAC TGT GAT ATG TCA CAT GGA CAA 1152 Val Gly Tyr Cys Ser Gln Ile Pro Asn Cys Asp Met Ser His Gly Gln 370 375 380 GAT TGT TAT CGT GGG AAT GGC AAA AAT TAT ATG GGC AAC TTA TCC CAA 1200 Asp Cys Tyr Arg Gly Asn Gly Lys Asn Tyr Met Gly Asn Leu Ser Gln 385 390 395 400 ACA AGA TCT GGA CTA ACA TGT TCA ATG TGG GAC AAG AAC ATG GAA GAC 1248 Thr Arg Ser Gly Leu Thr Cys Ser Met Trp Asp Lys Asn Met Glu Asp 405 410 415 TTA CAT CGT CAT ATC TTC TGG GAA CCA GAT GCA AGT AAG CTG AAT GAG 1296 Leu His Arg His Ile Phe Trp Glu Pro Asp Ala Ser Lys Leu Asn Glu 420 425 430 AAT TAC TGC CGA AAT CCA GAT GAT GAT GCT CAT GGA CCC TGG TGC TAC 1344 Asn Tyr Cys Arg Asn Pro Asp Asp Asp Ala His Gly Pro Trp Cys Tyr 435 440 445 ACG GGA AAT CCA CTC ATT CCT TGG GAT TAT TGC CCT ATT TCT CGT TGT 1392 Thr Gly Asn Pro Leu Ile Pro Trp Asp Tyr Cys Pro Ile Ser Arg Cys 450 455 460 GAA GGT GAT ACC ACA CCT ACA ATA GTC AAT TTA GAC CAT CCC GTA ATA 1440 Glu Gly Asp Thr Thr Pro Thr Ile Val Asn Leu Asp His Pro Val Ile 465 470 475 480 TCT TGT GCC AAA ACG AAA CAA TTG CGA GTT GTA AAT GGG ATT CCA ACA 1488 Ser Cys Ala Lys Thr Lys Gln Leu Arg Val Val Asn Gly Ile Pro Thr 485 490 495 CGA ACA AAC ATA GGA TGG ATG GTT AGT TTG AGA TAC AGA AAT AAA CAT 1536 Arg Thr Asn Ile Gly Trp Met Val Ser Leu Arg Tyr Arg Asn Lys His 500 505 510 ATC TGC GGA GGA TCA TTG ATA AAG GAG AGT TGG GTT CTT ACT GCA CGA 1584 Ile Cys Gly Gly Ser Leu Ile Lys Glu Ser Trp Val Leu Thr Ala Arg 515 520 525 CAG TGT TTC CCT TCT CGA GAC TTG AAA GAT TAT GAA GCT TGG CTT GGA 1632 Gln Cys Phe Pro Ser Arg Asp Leu Lys Asp Tyr Glu Ala Trp Leu Gly 530 535 540 ATT CAT GAT GTC CAC GGA AGA GGA GAT GAG AAA TGC AAA CAG GTT CTC 1680 Ile His Asp Val His Gly Arg Gly Asp Glu Lys Cys Lys Gln Val Leu 545 550 555 560 AAT GTT TCC CAG CTG GTA TAT GGC CCT GAA GGA TCA GAT CTG GTT TTA 1728 Asn Val Ser Gln Leu Val Tyr Gly Pro Glu Gly Ser Asp Leu Val Leu 565 570 575 ATG AAG CTT GCC AGG CCT GCT GTC CTG GAT GAT TTT GTT AGT ACG ATT 1776 Met Lys Leu Ala Arg Pro Ala Val Leu Asp Asp Phe Val Ser Thr Ile 580 585 590 GAT TTA CCT AAT TAT GGA TGC ACA ATT CCT GAA AAG ACC AGT TGC AGT 1824 Asp Leu Pro Asn Tyr Gly Cys Thr Ile Pro Glu Lys Thr Ser Cys Ser 595 600 605 GTT TAT GGC TGG GGC TAC ACT GGA TTG ATC AAC TAT GAT GGC CTA TTA 1872 Val Tyr Gly Trp Gly Tyr Thr Gly Leu Ile Asn Tyr Asp Gly Leu Leu 610 615 620 CGA GTG GCA CAT CTC TAT ATA ATG GGA AAT GAG AAA TGC AGC CAG CAT 1920 Arg Val Ala His Leu Tyr Ile Met Gly Asn Glu Lys Cys Ser Gln His 625 630 635 640 CAT CGA GGG AAG GTG ACT CTG AAT GAG TCT GAA ATA TGT GCT GGG GCT 1968 His Arg Gly Lys Val Thr Leu Asn Glu Ser Glu Ile Cys Ala Gly Ala 645 650 655 GAA AAG ATT GGA TCA GGA CCA TGT GAG GGG GAT TAT GGT GGC CCA CTT 2016 Glu Lys Ile Gly Ser Gly Pro Cys Glu Gly Asp Tyr Gly Gly Pro Leu 660 665 670 GTT TGT GAG CAA CAT AAA ATG AGA ATG GTT CTT GGT GTC ATT GTT CCT 2064 Val Cys Glu Gln His Lys Met Arg Met Val Leu Gly Val Ile Val Pro 675 680 685 GGT CGT GGA TGT GCC ATT CCA AAT CGT CCT GGT ATT TTT GTC CGA GTA 2112 Gly Arg Gly Cys Ala Ile Pro Asn Arg Pro Gly Ile Phe Val Arg Val 690 695 700 GCA TAT TAT GCA AAA TGG ATA CAC AAA ATT ATT TTA ACA TAT AAG GTA 2160 Ala Tyr Tyr Ala Lys Trp Ile His Lys Ile Ile Leu Thr Tyr Lys Val 705 710 715 720 CCA CAG TCA TAG 2172 Pro Gln Ser
【図面の簡単な説明】
【図1】HLC3の制限酵素地図である。
【図2】COS細胞用ヒト白血球由来HGF発現ベクタ
ーの構築図である。
【図3】マウスC127細胞用ヒト白血球由来HGF発
現ベクターの構築図である。
【図4】チャイニーズハムスターCHO細胞用ヒト白血
球由来HGF発現ベクターの構築図である。
【図5】S−セファロース溶出液のフラクションと溶出
成分の吸光度およびそれらのDNA合成活性との関係を
示す線図である。
【図6】ヘパリン溶出液のフラクションと溶出成分の吸
光度およびそれらのDNA合成活性との関係を示す線図
である。
【図7】逆相HPLCにおいて、通液したアセトニトリ
ル濃度と、溶出した成分の吸光度との関係を示す線図で
ある。
【図8】精製組換ヒトHGFの還元下および非還元下で
のSDS−ポリアクリルアミド電気泳動パターンを示
す。
【図9】S−セファロース溶出液のクロマトパターンを
示す線図である。
【図10】ヘパリン溶出液のフラクションと溶出成分の
吸光度およびそれらのDNA合成活性との関係を示す線
図である。
【図11】フェニル5PWカラムクロマトグラフィーに
おける溶出液のフラクションと溶出成分の吸光度および
それらのDNA合成活性との関係を示す線図である。
【図12】精製組換ヒトHGFの還元下および非還元下
でのSDS−ポリアクリルアミド電気泳動パターンを示
す。
【図13】精製一本鎖型組換ヒトHGFの還元下および
非還元下でのSDS−ポリアクリルアミド電気泳動パタ
ーンを示す。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12N 15/85 C12P 21/02 C 8214−4B // A61K 37/02 ACS 8314−4C 37/24 ADT 8314−4C (C12P 21/02 C12R 1:91) (72)発明者 下西 学 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社医薬研究所内 (72)発明者 清水 伸 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社医薬研究所内 (72)発明者 猪原 泉 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社医薬研究所内 (72)発明者 坂口 磨理子 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社医薬研究所内 (72)発明者 浅見 修 愛知県江南市東野塔後8番1号

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 ヒト白血球由来肝実質細胞増殖因子をコ
    ードする塩基配列を含有するDNA。
  2. 【請求項2】 ヒト白血球由来肝実質細胞増殖因子をコ
    ードする塩基配列を発現しうる組換発現ベクター。
  3. 【請求項3】 ヒト白血球由来肝実質細胞増殖因子をコ
    ードする塩基配列を発現し得る組換発現ベクターにより
    形質転換された形質転換体。
  4. 【請求項4】 ヒト白血球由来肝実質細胞増殖因子をコ
    ードする塩基配列を発現しうる組換発現ベクターにより
    形質転換された形質転換体を培養し、該培養液から組換
    ヒト白血球由来肝実質細胞増殖因子を採取することを特
    徴とする組換ヒト白血球由来肝実質細胞増殖因子の製造
    法。
  5. 【請求項5】 請求項4記載の方法にて得られた組換ヒ
    ト白血球由来肝実質細胞増殖因子。
  6. 【請求項6】 請求項4記載の方法にて得られた組換一
    本鎖型ヒト白血球由来肝実質細胞増殖因子。
JP3163485A 1990-06-11 1991-06-06 組換ヒト肝実質細胞増殖因子及びその製造方法 Expired - Fee Related JP2777678B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3163485A JP2777678B2 (ja) 1990-06-11 1991-06-06 組換ヒト肝実質細胞増殖因子及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-152474 1990-06-11
JP15247490 1990-06-11
JP3163485A JP2777678B2 (ja) 1990-06-11 1991-06-06 組換ヒト肝実質細胞増殖因子及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10037890A Division JP3082171B2 (ja) 1990-06-11 1998-01-12 組換ヒト肝実質細胞増殖因子及びその製造方法

Publications (2)

Publication Number Publication Date
JPH05111383A true JPH05111383A (ja) 1993-05-07
JP2777678B2 JP2777678B2 (ja) 1998-07-23

Family

ID=26481383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3163485A Expired - Fee Related JP2777678B2 (ja) 1990-06-11 1991-06-06 組換ヒト肝実質細胞増殖因子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2777678B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634323B2 (ja) * 1990-07-13 1997-07-23 雪印乳業株式会社 Tcf‐▲ii▼のアミノ酸配列をコードするdnaを含むプラスミド,形質転換細胞及びこれを用いて生理活性物質を生産する方法
WO2000007615A1 (fr) 1998-08-05 2000-02-17 Sumitomo Pharmacueticals Co., Ltd. Preparations destinees a l'administration d'un facteur de croissance des hepatocytes
US6436388B2 (en) 1997-03-15 2002-08-20 Ikue Kudo Method of treating rhabdomyolysis by administering hepatocyte growth factor
US6664279B2 (en) 2000-02-01 2003-12-16 Ishihara Sangyo Kaisha, Ltd. Remedies or preventives for liver diseases containing diaminotrifluoromethylpyridine derivatives
WO2008096865A1 (ja) * 2007-02-09 2008-08-14 Nippon Zenyaku Kogyo Co., Ltd. 臓器の機能不全又は変性に起因する疾患の治療剤
EP2266500A2 (en) 2003-08-01 2010-12-29 Cellseed Inc. Three-dimensional tissue structure
WO2014115562A1 (ja) 2013-01-25 2014-07-31 国立大学法人大阪大学 多能性幹細胞由来細胞による3次元人工組織の作成とそれを用いた骨軟骨再生治療
CN112867801A (zh) * 2018-11-30 2021-05-28 Illumina公司 使用单一测定分析多种分析物
US11547743B2 (en) 2014-04-28 2023-01-10 Eisai R&D Management Co., Ltd. Lyophilized formulation of HGF
US11548926B2 (en) 2016-03-17 2023-01-10 Eisai R&D Management Co., Ltd. Method for producing an active hepatocyte growth factor (HGF)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989374B1 (en) 1999-10-08 2006-01-24 Anges Mg, Inc. Gene therapy for cardiomyopathy
CA2649820C (en) 2006-04-20 2017-12-05 Kringle Pharma Inc. Agent for treating polyglutamine aggregation-caused disease or suppressing onset thereof
EP2351574B1 (en) 2008-10-10 2016-08-24 Kringle Pharma, Inc. Promoter for regeneration of tendon-bone junction tissue or ligament-bone junction tissue

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634323B2 (ja) * 1990-07-13 1997-07-23 雪印乳業株式会社 Tcf‐▲ii▼のアミノ酸配列をコードするdnaを含むプラスミド,形質転換細胞及びこれを用いて生理活性物質を生産する方法
US6436388B2 (en) 1997-03-15 2002-08-20 Ikue Kudo Method of treating rhabdomyolysis by administering hepatocyte growth factor
WO2000007615A1 (fr) 1998-08-05 2000-02-17 Sumitomo Pharmacueticals Co., Ltd. Preparations destinees a l'administration d'un facteur de croissance des hepatocytes
US6664279B2 (en) 2000-02-01 2003-12-16 Ishihara Sangyo Kaisha, Ltd. Remedies or preventives for liver diseases containing diaminotrifluoromethylpyridine derivatives
EP2266500A2 (en) 2003-08-01 2010-12-29 Cellseed Inc. Three-dimensional tissue structure
EP2266499A2 (en) 2003-08-01 2010-12-29 Cellseed Inc. Three-dimensional tissue structure
WO2008096865A1 (ja) * 2007-02-09 2008-08-14 Nippon Zenyaku Kogyo Co., Ltd. 臓器の機能不全又は変性に起因する疾患の治療剤
JP2008195628A (ja) * 2007-02-09 2008-08-28 Nippon Zenyaku Kogyo Kk 臓器の機能不全又は変性に起因する疾患の治療剤
WO2014115562A1 (ja) 2013-01-25 2014-07-31 国立大学法人大阪大学 多能性幹細胞由来細胞による3次元人工組織の作成とそれを用いた骨軟骨再生治療
US11547743B2 (en) 2014-04-28 2023-01-10 Eisai R&D Management Co., Ltd. Lyophilized formulation of HGF
US11548926B2 (en) 2016-03-17 2023-01-10 Eisai R&D Management Co., Ltd. Method for producing an active hepatocyte growth factor (HGF)
CN112867801A (zh) * 2018-11-30 2021-05-28 Illumina公司 使用单一测定分析多种分析物

Also Published As

Publication number Publication date
JP2777678B2 (ja) 1998-07-23

Similar Documents

Publication Publication Date Title
DE69636752T2 (de) Menschlicher wachstumsfaktor 2, spezifisch für vaskuläre endothelzellen
US5723318A (en) DNA coding for megakaryocyte potentiator
DE69630710T2 (de) Humaner tumornekrosefaktor delta und epsilon
AU650893B2 (en) O-glycosylated alpha-2 interferon
JP2000300282A (ja) 組換ヒト肝実質細胞増殖因子及び組換発現ベクター
US20040086967A1 (en) Human criptin growth factor
JP2634323B2 (ja) Tcf‐▲ii▼のアミノ酸配列をコードするdnaを含むプラスミド,形質転換細胞及びこれを用いて生理活性物質を生産する方法
WO1995021919A2 (en) Protein having tpo activity
JP2777678B2 (ja) 組換ヒト肝実質細胞増殖因子及びその製造方法
DE69530944T2 (de) Keratinozyten-wachstumsfaktor 2
EP0668352A1 (en) Protein having TPO activity
JP2706704B2 (ja) 組換ヒト肝実質細胞増殖因子
AU640686B2 (en) A megakaryocytopoietic factor
US20020165358A1 (en) TCF mutant
JP3082171B2 (ja) 組換ヒト肝実質細胞増殖因子及びその製造方法
JP3287869B2 (ja) ヒト神経成長因子2の製造法
EP0261625B1 (en) Human b-cell differentiation factor and process of producing said factor
JPH03130091A (ja) 組換ヒト肝実質細胞増殖因子
JP3292873B2 (ja) 組換肝実質細胞増殖因子
JP3318323B2 (ja) 組換肝実質細胞増殖因子
JP2816971B2 (ja) 組換肝実質細胞増殖因子
AU702669B2 (en) Protein having TPO activity
DE69636232T2 (de) Wachstumsfaktor HTTER36
JP3612348B2 (ja) 肝実質細胞増殖因子誘導体
AU656453B2 (en) Thrombin-binding substance and process for preparing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110508

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees