JPH0511062B2 - - Google Patents

Info

Publication number
JPH0511062B2
JPH0511062B2 JP62317869A JP31786987A JPH0511062B2 JP H0511062 B2 JPH0511062 B2 JP H0511062B2 JP 62317869 A JP62317869 A JP 62317869A JP 31786987 A JP31786987 A JP 31786987A JP H0511062 B2 JPH0511062 B2 JP H0511062B2
Authority
JP
Japan
Prior art keywords
sintered body
powder
weight
tic
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62317869A
Other languages
Japanese (ja)
Other versions
JPH0259469A (en
Inventor
Takamasa Ishigaki
Kimitoshi Sato
Jusuke Moryoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP62317869A priority Critical patent/JPH0259469A/en
Publication of JPH0259469A publication Critical patent/JPH0259469A/en
Publication of JPH0511062B2 publication Critical patent/JPH0511062B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はチタンのオキシカーバイドと酸化アル
ミニウムの複合焼結体の製造方法に関する。この
複合焼結体は切削工具用材料、耐摩耗部材、酸化
雰囲気で使用可能な発熱体材料および電気伝導性
材料として有用なものである。 従来技術 Al2O3は高強度、高硬度などの優れた特性を持
つが、低靱性であるという欠点を有している。そ
こで、高靱性、高硬度、高強度であるTiCを複合
化させることにより両長所を兼ね備えたTiC−
Al2O3複合焼結体とすることは知られている。 また、TiCは電気伝導性に優れているが、耐酸
化性が劣る欠点を有する。そこで耐酸化性に優れ
たAl2O3と複合化することによつて、両長所を兼
ね備えたTiC−Al2O3導電性セラミツクスとする
ことも知られている。 しかし、いずれの焼結体も低温、高加重による
ホツトプレス法によつて製造している。即ち、成
分の一つであるTiCは難焼結性であるため、常圧
で焼結させるには高温度で焼結させる必要があ
り、高温で焼結させようとするとAl2O3が蒸発す
るので緻密な複合焼結体として得なかつたため、
上記の方法によつて製造していたのである。 このように従来法によると高加重を必要とする
ため、製造装置も高価となり、それだけ製造コス
トも高くなると共に複雑形状の焼結体を作ること
はできなかつた。 また得られる焼結体はTiC−Al2O3の二相系に
しかなり得なかつた。 発明の目的 本発明は従来法の欠点をなくすべくなされたも
ので、その目的は、常圧焼成により、炭化チタン
と酸化アルミニウムを原料とし、これらの長所を
兼ね備えた従来のものより高密度の複合焼結体を
製造する方法を提供するにある。 発明の構成 本発明者は前記目的を達成すべく鋭意研究の結
果、炭化チタン粉末と酸化アルミニウム粉末の特
定配合した圧粉体を作り、この圧粉体を酸化アル
ミニウム粉末に包埋し、中性または還元雰囲気下
で、1700〜1900℃で常圧焼結すると、常圧焼結に
拘らず、従来法では得られなかつた高密度の複合
焼結体が得られることを知見した。また得られる
焼結体はTiのオキシカーバイドと酸化アルミニ
ウムの複合焼結体であることが分かつた。これら
の知見に基づいて本発明を完成した。 本発明の要旨は、炭化チタン粉末10〜60重量%
と酸化アルミニウム粉末90〜40重量%の均質混合
物を圧粉体に成形し、この圧粉体を酸化アルミニ
ウム粉末に包埋し、中性または還元雰囲気下で、
1700〜1900℃で常圧焼結することを特徴とするチ
タンのオキシカーバイドと酸化アルミニウムの複
合焼結体の製造方法にある。 本発明における炭化チタン粉末と酸化アルミニ
ウム粉末の配合割合は、炭化チタンが10〜60重量
%、酸化アルミニウムが90〜40重量%の範囲であ
る。炭化チタン粉末が10重量%より少ないと得ら
れる焼結体の靱性、電気伝導性、硬度が小さくな
り、60重量%を超えると高緻密のものとならず、
耐酸化性も劣るものとなる。 圧粉体を酸化アルミニウム粉末に包埋するの
は、焼結雰囲気を制御し、また圧粉体からの酸化
アルミニウムの蒸発を防ぎ、組成変化のないよう
にすると共に緻密化を高めるためである。この圧
粉体はAl2O3に対し0.5重量%以下のMgOを混合
すると焼結密度を高めることができる。 常圧焼成の温度は、1700℃より低いとAl2O3
蒸発量は少ないが、焼結に必要な物質移動の駆動
力が十分でなく、焼結が十分でない。1900℃を超
えると、成形圧粉体をAl2O3粉末に包埋しても
Al2O3の蒸発量が多くなり、組成変化をもたらす
ばかりでなく、緻密な焼結体が得られない。従つ
て1700〜1900℃の範囲内で焼結することが必要で
ある。雰囲気は中性または還元性であることが必
要で、それはTiCの酸化を防止するためである。 本発明の方法で得られる焼結体は、炭化チタン
の炭素サイトを酸素で置換したチタンのオキシカ
ーバイドTiCxOy(1<x<O,1<y<Oで、1
≦x+y≦0.5,0.05≦y/x≦0.20)と酸化アル
ミニウムの複合焼結体となる。 TiCxOyにおいて、x+yは原料のTiCの不定比
性によつて支配される。また炭素と酸素の比
(y/x)は焼結温度が低いと小さくなり、高い
と大きくなる。本発明において焼結温度が1700℃
の時y/x=0.05、1900℃のy/x=0.20とな
る。従つて本発明の方法においては0.05≦y/x
≦0.20のものが得られる。 第1図は出発原料がTiC30重量%、Al2O370重
量%の組成の時の焼結温度と得られる焼結体の相
対密度の関係図である。○印は圧粉体をAl2O3
末に包埋し、●印は包埋しないで常圧焼結した場
合を示す。第1図が示すように、Al2O3の蒸発は
1700℃以上になると激しくなるが、Al2O3粉末に
包埋するとAl2O3の蒸発を抑制し得られ、その効
果は温度上昇に従い大きくなり、相対密度の大き
なものとなし得る。しかし、1900℃を超えると
Al2O3粉末で包埋してもAl2O3の蒸発は抑制する
ことができず、相対密度の大きい緻密な焼結体と
なし得ない。 第2図は出発原料の組成割合を変化させて1800
℃で常圧焼結した場合における相対密度との関係
図である。○印は圧粉体をAl2O3粉末に包埋した
とき、●印は包埋しないときを示す。本発明の焼
結体は炭化チタンの性質を有することが必要であ
るため、原料炭化チタンの量は10重量%以上必要
である。しかし、その量が60重量%を超えると高
緻密な焼結体となし得ない。 第3図は焼結体の室温導電率と焼結体組成
(TiCxOyの重量%)との関係図を示す。これより
明らかなように本発明の焼結体は電気伝導性が優
れたものである。 実施例 1 平均粒径1.5μmのTiC粉末と平均粒径0.2μmの
Al2O3粉末を使用し、TiCの組成割合が10,30,
60重量%である混合粉末を作り、これにエタノー
ルを加えて24時間湿式混合した。この混合粉末を
乾燥させた後、一軸加圧成形および静水圧プレス
によつてペレツト状の成形体とした。この成形体
をSiC質ルツボ中でAl2O3粉末に包埋して、Ar気
流中で高周波誘導加熱炉により1700〜1900℃で加
熱焼結した。これにより相対密度90〜96%の緻密
な焼結体が得られた。 得られた焼結体について化学分析を行い、TiC
は酸素が固溶したチタンのオキシカーバイド
(TiCxOy)に変化していることが分かつた。表−
1にTiC30重量%、Al2O370重量%、の組成で、
焼成温度1700℃、1900℃における焼結体の組成を
示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a composite sintered body of titanium oxycarbide and aluminum oxide. This composite sintered body is useful as a cutting tool material, a wear-resistant member, a heating element material that can be used in an oxidizing atmosphere, and an electrically conductive material. Prior art Al 2 O 3 has excellent properties such as high strength and high hardness, but has the drawback of low toughness. Therefore, by combining TiC, which has high toughness, high hardness, and high strength, we created TiC-
It is known to form an Al 2 O 3 composite sintered body. Furthermore, although TiC has excellent electrical conductivity, it has the disadvantage of poor oxidation resistance. Therefore, it is known that TiC--Al 2 O 3 conductive ceramics, which have both advantages, can be made by combining TiC with Al 2 O 3 , which has excellent oxidation resistance. However, both sintered bodies are manufactured by a hot press method using low temperature and high load. In other words, since TiC, one of the components, is difficult to sinter, it is necessary to sinter it at a high temperature in order to sinter it at normal pressure, and if you try to sinter it at a high temperature, Al 2 O 3 will evaporate. Because of this, it was not possible to obtain a dense composite sintered body.
It was manufactured using the method described above. As described above, the conventional method requires a high load, which makes the manufacturing equipment expensive, which increases the manufacturing cost accordingly, and makes it impossible to produce a sintered body with a complicated shape. Moreover, the obtained sintered body could only be a two-phase system of TiC-Al 2 O 3 . Purpose of the Invention The present invention was made in order to eliminate the drawbacks of the conventional method.The purpose of the present invention is to create a composite material with higher density than the conventional method which combines the advantages of titanium carbide and aluminum oxide using atmospheric pressure sintering as raw materials. The present invention provides a method for manufacturing a sintered body. Composition of the Invention As a result of intensive research to achieve the above object, the present inventor created a green compact containing a specific combination of titanium carbide powder and aluminum oxide powder, embedded this green compact in aluminum oxide powder, and neutralized it. Alternatively, it has been found that when pressureless sintering is performed at 1700 to 1900°C in a reducing atmosphere, a high-density composite sintered body that cannot be obtained by conventional methods can be obtained regardless of pressureless sintering. It was also found that the obtained sintered body was a composite sintered body of Ti oxycarbide and aluminum oxide. The present invention was completed based on these findings. The gist of the invention is titanium carbide powder 10-60% by weight
A homogeneous mixture of 90 to 40% by weight of aluminum oxide powder and aluminum oxide powder is formed into a green compact, the green compact is embedded in aluminum oxide powder, and the powder is heated under a neutral or reducing atmosphere.
The present invention provides a method for producing a composite sintered body of titanium oxycarbide and aluminum oxide, which is characterized by pressureless sintering at 1700 to 1900°C. The blending ratio of titanium carbide powder and aluminum oxide powder in the present invention is in the range of 10 to 60% by weight of titanium carbide and 90 to 40% by weight of aluminum oxide. If the titanium carbide powder is less than 10% by weight, the toughness, electrical conductivity, and hardness of the obtained sintered body will be low, and if it exceeds 60% by weight, it will not be highly dense.
The oxidation resistance will also be poor. The purpose of embedding the green compact in aluminum oxide powder is to control the sintering atmosphere, prevent evaporation of aluminum oxide from the green compact, prevent compositional changes, and increase densification. The sintered density of this green compact can be increased by mixing 0.5% by weight or less of MgO with respect to Al 2 O 3 . If the atmospheric pressure firing temperature is lower than 1700°C, the amount of evaporation of Al 2 O 3 will be small, but the driving force for mass transfer required for sintering will not be sufficient, and sintering will not be sufficient. If the temperature exceeds 1900℃, even if the molded green compact is embedded in Al 2 O 3 powder,
The amount of evaporation of Al 2 O 3 increases, which not only causes a change in composition, but also makes it impossible to obtain a dense sintered body. Therefore, it is necessary to sinter within the range of 1700 to 1900°C. The atmosphere needs to be neutral or reducing to prevent oxidation of the TiC. The sintered body obtained by the method of the present invention is a titanium oxycarbide TiC x O y (1<x<O, 1<y<O, 1
≦x+y≦0.5, 0.05≦y/x≦0.20), resulting in a composite sintered body of aluminum oxide. In TiC x O y , x+y is controlled by the non-stoichiometric nature of the raw material TiC. Further, the ratio of carbon to oxygen (y/x) becomes smaller when the sintering temperature is lower, and becomes larger when the sintering temperature is higher. In the present invention, the sintering temperature is 1700℃
At , y/x = 0.05, and at 1900°C, y/x = 0.20. Therefore, in the method of the present invention, 0.05≦y/x
≦0.20 is obtained. FIG. 1 is a diagram showing the relationship between the sintering temperature and the relative density of the obtained sintered body when the starting materials have a composition of 30% by weight of TiC and 70% by weight of Al 2 O 3 . The ○ mark indicates the case where the green compact is embedded in Al 2 O 3 powder, and the ● mark indicates the case of pressureless sintering without embedding. As shown in Figure 1, the evaporation of Al 2 O 3 is
The evaporation of Al 2 O 3 can be suppressed by embedding it in Al 2 O 3 powder, although it becomes severe at temperatures above 1700°C, and the effect increases as the temperature rises, resulting in a large relative density. However, when it exceeds 1900℃
Even if it is embedded with Al 2 O 3 powder, the evaporation of Al 2 O 3 cannot be suppressed, and a dense sintered body with a high relative density cannot be obtained. Figure 2 shows 1800% by changing the composition ratio of starting materials.
It is a relationship diagram with relative density in the case of normal pressure sintering at °C. The ○ mark indicates when the green compact is embedded in Al 2 O 3 powder, and the ● mark indicates when it is not embedded. Since the sintered body of the present invention needs to have the properties of titanium carbide, the amount of raw material titanium carbide needs to be 10% by weight or more. However, if the amount exceeds 60% by weight, a highly dense sintered body cannot be obtained. FIG. 3 shows a relationship between the room temperature conductivity of the sintered body and the composition of the sintered body (wt% of TiC x O y ). As is clear from this, the sintered body of the present invention has excellent electrical conductivity. Example 1 TiC powder with an average particle size of 1.5 μm and a TiC powder with an average particle size of 0.2 μm
Using Al 2 O 3 powder, the composition ratio of TiC is 10, 30,
A mixed powder having a concentration of 60% by weight was prepared, ethanol was added thereto, and wet mixing was performed for 24 hours. After drying this mixed powder, it was formed into a pellet-like compact by uniaxial pressure molding and isostatic pressing. This compact was embedded in Al 2 O 3 powder in a SiC crucible and heated and sintered at 1700 to 1900° C. in a high frequency induction heating furnace in an Ar flow. As a result, a dense sintered body with a relative density of 90 to 96% was obtained. Chemical analysis was performed on the obtained sintered body, and TiC
was found to have changed to titanium oxycarbide (TiC x O y ) in which oxygen was dissolved as a solid solution. Table -
1 with a composition of 30% by weight of TiC and 70% by weight of Al 2 O 3 ,
The composition of the sintered body at firing temperatures of 1700°C and 1900°C is shown.

【表】 実施例 2 平均粒径1.5μmのTiC粉末と平均粒径0.2μmの
Al2O3粉末を使用し、TiCが30,60重量%割合の
混合粉末を作り、実施例1と同様にして圧粉成形
体を作つた。これをAl2O3粉末に包埋し、Ar気流
中で1850℃に加熱焼結した。得られた焼結体の組
成およびこの焼結体の3点曲げ強度、ビツカース
硬度、じん性を示すと表−2に示す通りであつ
た。これが示すように高硬度、高じん性、高強度
であり、切削工具、耐摩耗部材、構造材料に適す
る材料である。 また、この焼結体を1500℃で5時間空気中に放
置してその重量変化を調査することにより耐酸化
性を調べた。その結果を表−3に示す。本焼結体
はTiC焼結体と比較して耐酸化性が優れている。 また焼結体の室温導電率とチタンのオキシカー
バイド量との関係を示すと第3図の通りである。
[Table] Example 2 TiC powder with an average particle size of 1.5 μm and an average particle size of 0.2 μm
Using Al 2 O 3 powder, a mixed powder containing 30% and 60% by weight of TiC was prepared, and a powder compact was produced in the same manner as in Example 1. This was embedded in Al 2 O 3 powder and heated and sintered at 1850°C in an Ar flow. The composition of the obtained sintered body, and the three-point bending strength, Vickers hardness, and toughness of this sintered body are shown in Table 2. As this shows, it has high hardness, high toughness, and high strength, making it a material suitable for cutting tools, wear-resistant members, and structural materials. Further, the oxidation resistance was investigated by leaving this sintered body in the air at 1500° C. for 5 hours and examining the change in weight. The results are shown in Table-3. This sintered body has superior oxidation resistance compared to TiC sintered body. Further, FIG. 3 shows the relationship between the room temperature conductivity of the sintered body and the amount of oxycarbide in titanium.

【表】【table】

【表】 実施例 3 実施例1と同様なTiC,Al2O3粉末をTiC30重
量%、Al2O370重量%に混合した混合粉末に、平
均粒径0.2μmのMgO粉末をAl2O3の0.5重量%量さ
らに混合した。 この混合物を実施例1と同様にして圧粉成形体
を作り、これをAl2O3粉末に包埋して、Ar気流
中、1850℃で加熱焼結した。得られた焼結体は
MgO粉末を混合しない場合は96%の相対密度で
あつたのに対し、相対密度99%の高緻密のものと
なつた。この焼結体を化学分析した結果、その組
成はTiC0.85O0.1530.3重量%,Al2O369.4重量%,
MgO0.3重量%であつた。 MgO無添加の場合における焼結体組成TiC0.85
O0.1530.3重量%,Al2O369.7重量%と比較して、
オキシカーバイドの化学組成、重量組成の変化は
認められなかつた。 発明の効果 本発明の方法によると、TiC粉末とAl2O3粉末
とを原料とし、常圧焼結により従来法では得られ
なかつた優れた特性を有するTiCxOyとAl2O3の複
合焼結体を高密度のものとして得られる。従つ
て、従来法におけるような高圧装置を必要としな
く、そのため複雑形状のものも容易に製造可能で
ある。
[Table] Example 3 MgO powder with an average particle size of 0.2 μm was added to a mixed powder of TiC and Al 2 O 3 powders similar to those in Example 1 mixed with 30% by weight of TiC and 70% by weight of Al 2 O 3 . 3 was further mixed in an amount of 0.5% by weight. A powder compact was made from this mixture in the same manner as in Example 1, embedded in Al 2 O 3 powder, and heated and sintered at 1850° C. in an Ar flow. The obtained sintered body is
When MgO powder was not mixed, the relative density was 96%, whereas the relative density was 99%, making it highly dense. Chemical analysis of this sintered body revealed that its composition was TiC 0.85 O 0.15 30.3% by weight, Al 2 O 3 69.4% by weight,
MgO was 0.3% by weight. Sintered body composition TiC without MgO addition 0.85
Compared to O 0.15 30.3% by weight, Al 2 O 3 69.7% by weight,
No change in the chemical composition or weight composition of oxycarbide was observed. Effects of the Invention According to the method of the present invention, TiC powder and Al 2 O 3 powder are used as raw materials, and by pressureless sintering , TiC A composite sintered body with high density can be obtained. Therefore, there is no need for a high-pressure device as in the conventional method, and it is therefore possible to easily manufacture products with complex shapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料組成がTiC30重量%,Al2O370重
量%の焼結体における焼結温度と相対密度の関係
図、第2図は原料のTiC量と得られる焼結体の相
対密度の関係図(焼結温度1800℃)、第3図は焼
結体の室温導電率とチタンのオキシカーバイド量
との関係図を示す。 ○印……圧粉体をAl2O3に包埋した場合、●印
……圧粉体をAl2O3粉末に包埋しない場合。
Figure 1 shows the relationship between sintering temperature and relative density for a sintered body with a raw material composition of 30% by weight of TiC and 70% by weight of Al 2 O 3. Figure 2 shows the relationship between the amount of TiC in the raw material and the relative density of the resulting sintered body. Figure 3 shows a relationship between the room temperature conductivity of the sintered body and the amount of oxycarbide in titanium. ○ mark: When the green compact is embedded in Al 2 O 3 , ● mark: When the green compact is not embedded in Al 2 O 3 powder.

Claims (1)

【特許請求の範囲】 1 炭化チタン粉末10〜60重量%と酸化アルミニ
ウム粉末90〜40重量%の均質混合物を圧粉体に成
形し、この圧粉体を酸化アルミニウム粉末に包埋
し、中性または還元雰囲気下で、1700〜1900℃で
常圧焼結することを特徴とするチタンのオキシカ
ーバイドと酸化アルミニウムの複合焼結体の製造
方法。 2 圧粉体に微量の酸化マグネシウムを配合する
特許請求の範囲第1項記載の複合焼結体の製造方
法。
[Claims] 1. A homogeneous mixture of 10 to 60% by weight of titanium carbide powder and 90 to 40% by weight of aluminum oxide powder is formed into a green compact, and this green compact is embedded in aluminum oxide powder to form a neutral Alternatively, a method for producing a composite sintered body of titanium oxycarbide and aluminum oxide, characterized by sintering under normal pressure at 1700 to 1900°C in a reducing atmosphere. 2. The method for producing a composite sintered body according to claim 1, wherein a small amount of magnesium oxide is blended into the green compact.
JP62317869A 1987-12-16 1987-12-16 Production of titanium oxycarbide-aluminum oxide composite sintered body Granted JPH0259469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317869A JPH0259469A (en) 1987-12-16 1987-12-16 Production of titanium oxycarbide-aluminum oxide composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317869A JPH0259469A (en) 1987-12-16 1987-12-16 Production of titanium oxycarbide-aluminum oxide composite sintered body

Publications (2)

Publication Number Publication Date
JPH0259469A JPH0259469A (en) 1990-02-28
JPH0511062B2 true JPH0511062B2 (en) 1993-02-12

Family

ID=18092967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317869A Granted JPH0259469A (en) 1987-12-16 1987-12-16 Production of titanium oxycarbide-aluminum oxide composite sintered body

Country Status (1)

Country Link
JP (1) JPH0259469A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062152B2 (en) * 2008-11-28 2012-10-31 Tdk株式会社 Method for manufacturing sintered body
CN105481365A (en) * 2014-09-15 2016-04-13 中国科学院上海硅酸盐研究所 Preparation method of highly-densified titanium carbide ceramic

Also Published As

Publication number Publication date
JPH0259469A (en) 1990-02-28

Similar Documents

Publication Publication Date Title
EP0331160B1 (en) Functional ceramic shaped article and process for producing the same
JPH07118070A (en) Silicon nitride ceramic sintered compact
EP0170889A2 (en) ZrB2 Composite sintered material
KR900005510B1 (en) Method for producing siliconcarbide-sinteringbody
JPH0511062B2 (en)
WO1989008077A1 (en) PROCESS FOR PRODUCING SUPERCONDUCTING (Bi, Tl)-Ca-(Sr, Ba)-Cu-O CERAMIC
JP2727628B2 (en) Method for producing conductive zirconia sintered body
JPH0544427B2 (en)
JP2000515481A (en) Method for producing molded body composed of ceramic composite structure
JPH01115876A (en) Oxidation-resistant sintered form of high strength
JP3898346B2 (en) Conductive ceramic materials
JPS6337069B2 (en)
JPS6144768A (en) High strength boride sintered body
JPS6110073A (en) Aluminum nitride sintered body
JPH06122554A (en) High-toughness titanium carbonitride-zirconium oxide-based ceramics material
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JPH0461828B2 (en)
JPH03187976A (en) Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact
JPH0227307B2 (en)
JPS6126570A (en) Boride sintered body and manufacture
JP2002293638A (en) Silicon nitride sintered compact
JPH0331669B2 (en)
JPH0437654A (en) Method for sintering ceramic composite material
JPH11100269A (en) Low temperature produced mo(al, si)2 based material and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term