JPH03187976A - Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact - Google Patents

Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact

Info

Publication number
JPH03187976A
JPH03187976A JP1325342A JP32534289A JPH03187976A JP H03187976 A JPH03187976 A JP H03187976A JP 1325342 A JP1325342 A JP 1325342A JP 32534289 A JP32534289 A JP 32534289A JP H03187976 A JPH03187976 A JP H03187976A
Authority
JP
Japan
Prior art keywords
powder
solid solution
ceramic solid
solution powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1325342A
Other languages
Japanese (ja)
Inventor
Moriyoshi Kanamaru
守賀 金丸
Tsuneo Tateno
立野 常男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1325342A priority Critical patent/JPH03187976A/en
Publication of JPH03187976A publication Critical patent/JPH03187976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a ceramic solid solution powder, composed of a prescribed chemical composition and having an NaCl type crystal structure by converting powders of TiO2 and Al2O3 or Al2TiO5 powder into a solid solution under prescribed conditions. CONSTITUTION:A mixed powder composed of TiO2 powder and Al2O3 powder or Al2TiO5 powder is prepared. The resultant powder is then converted into a solid solution in a process for nitriding and/or carburizing in a reductive atmosphere. Thereby, the objective ceramic solid solution powder having a chemical composition expressed by the formula [x is 0-0.7; y is 0-1; z is 0-1; (y+z) is 0.9-1; a is 0.6-1] and an NaCl type crystal structure is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規なセラミック固溶体粉末およびその製法
並びに該固溶体粉末の焼結体に関するものであり、この
固溶体粉末は、靭性と耐摩耗性を必要とする切削工具や
ダイス、抽伸プラグ等の治具、工具類の原料、熱伝導性
と耐熱衝撃性を必要とするセラミックヒータ−等の電子
分量類の原料、或は耐食性、耐酸化性、耐摩耗性、破壊
靭性等を必要とするメカニカルシールやポンプ等の機械
部品類の原料として有用である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a novel ceramic solid solution powder, a method for producing the same, and a sintered body of the solid solution powder. The necessary cutting tools, dies, drawing plugs and other jigs, raw materials for tools, electronic materials such as ceramic heaters that require thermal conductivity and thermal shock resistance, or corrosion resistance, oxidation resistance, It is useful as a raw material for mechanical parts such as mechanical seals and pumps that require wear resistance and fracture toughness.

[従来の技術] TiCやTiNよりなるセラミックは耐食性および耐摩
耗性に優れたものであるところから、各種セラミック部
品やサーメット、超硬材料、C−BN焼結体等の主原料
あるいは副原料として多用さ、れている。
[Prior Art] Ceramics made of TiC and TiN have excellent corrosion resistance and wear resistance, so they are used as main or auxiliary raw materials for various ceramic parts, cermets, cemented carbide materials, C-BN sintered bodies, etc. Frequently used.

しかしながら上記のセラミックは耐酸化性が乏しく且つ
熱伝導性が小さいという欠点がある。そこでこうした欠
点を改善するものとして、TiNにAINを固溶させた
(Ti、AI)N系のコーテイング膜が開発された(た
とえば特開昭62−56565号等)。このTiN−A
IN系固溶固溶体なるコーテイング膜は、TiNに比べ
て耐酸化性や熱伝導性に優れ且つ高い硬度を有している
ところから、切削工具等の表面コーテイング材として優
れた性能を発揮する。
However, the above ceramics have the drawbacks of poor oxidation resistance and low thermal conductivity. In order to improve these drawbacks, a (Ti, AI)N-based coating film in which AIN is dissolved in TiN has been developed (for example, JP-A-62-56565). This TiN-A
A coating film made of an IN-based solid solution exhibits excellent performance as a surface coating material for cutting tools and the like because it has superior oxidation resistance and thermal conductivity and high hardness compared to TiN.

[発明が解決しようとする課題] ところが従来の(Ti、AI)N系固溶体は、基材表面
にスパッタリング等によりコーテイング膜として形成さ
れているだけであって、粉末状態のものとして提供され
た例はない。その理由は次の様に考えられる。即ちTi
NはNaCl型の結晶構造を有しているのに対し、AI
Nの結晶構造は6方最密構造であるため、通常のセラミ
ック原料溶解法や粉末焼結法では両者を固溶体化するこ
とができなかったからである。
[Problems to be Solved by the Invention] However, conventional (Ti, AI)N-based solid solutions are only formed as a coating film on the surface of a base material by sputtering, etc., and are provided in powder form. There isn't. The reason may be as follows. That is, Ti
While N has a NaCl-type crystal structure, AI
This is because the crystal structure of N is a hexagonal close-packed structure, and therefore it was not possible to form both into a solid solution using ordinary ceramic raw material melting methods or powder sintering methods.

そのため(Ti、AI)N系固溶体は、スパッタリング
法やイオンブレーティング法により薄膜状としてその優
れた特性を享受し得るに留まり、その優れた耐酸化性、
熱伝導性、硬度等の特性を他の分野で有効に生かすこと
がで艶なかった。
Therefore, the (Ti, AI)N-based solid solution can only enjoy its excellent properties in the form of a thin film by sputtering or ion blating, and its excellent oxidation resistance,
It was difficult to make effective use of its properties such as thermal conductivity and hardness in other fields.

本発明はこの様な事情に着目してなされたものであって
、その目的は、高硬度で耐酸化性および熱伝導性等の優
れた(Ti、AI)(C,N)系の固溶体を粉末状のも
のとして提供しようとするものであり、他の目的はその
様な粉末状固溶体を容易に得る。ことのできる方法を確
立しようとするものであり、更に他の目的は(Ti、A
I)(C,N)系固溶体の焼結体を提供しようとするも
のである。
The present invention was made in view of these circumstances, and its purpose is to create a (Ti, AI) (C, N)-based solid solution with high hardness and excellent oxidation resistance and thermal conductivity. It is intended to be provided as a powder, and another purpose is to easily obtain such a powder solid solution. The purpose of this study is to establish a method by which (Ti, A
I) The present invention aims to provide a sintered body of a (C,N)-based solid solution.

[課題を解決するための手段] 上記課題を解決することのできた本発明に係る固溶体粉
末とは、 (T 1 + −x A 111) (Cy Nt O
□−y−t) a[但し、0≦x≦0.7.0≦y≦1
.0≦z≦1 、0.fi <a<1.0 ]の化化学
酸を有し、NaCl型結晶構造を有するセラミック固溶
体粉末からなるところに要旨を有するものであり、この
セラミック固溶体粉末は、TiO2粉末とAl2O3粉
末よりなる混合粉末またはAl2TiO5粉末、あるい
はA 12 T t O、粉末と、TiO2粉末および
/もしくはAl2O3粉末との混合粉末を、還元性霊囲
気下で窒化および/もしくは炭化する過程で固溶化する
ことによって製造することができ、またこのセラミック
固溶体粉末を圧粉成形して焼結すると、高硬度で耐酸化
性および熱伝導性等の優れた任意形状の焼結体を得るこ
とができる。
[Means for Solving the Problems] The solid solution powder according to the present invention that can solve the above problems is (T 1 + -x A 111) (Cy Nt O
□-y-t) a[However, 0≦x≦0.7.0≦y≦1
.. 0≦z≦1, 0. fi < a < 1.0 ], and consists of a ceramic solid solution powder having a NaCl type crystal structure. This ceramic solid solution powder is a mixture of TiO2 powder and Al2O3 powder. Producing a powder or Al2TiO5 powder, or a mixed powder of A 12 T t O, powder, and TiO2 powder and/or Al2O3 powder by solid solutioning it in the process of nitriding and/or carbonizing under a reducing atmosphere. When this ceramic solid solution powder is compacted and sintered, a sintered body of any shape with high hardness and excellent oxidation resistance and thermal conductivity can be obtained.

[作用] 前述の如<TiNとAINは結晶構造が全く異なるもの
であるから、これらを混合溶融しあるいは粉末焼結した
としても(TiA1)Nよりなる固溶体粉末を得ること
ができず、またこの処理系にC源を共存させたとしても
(T i 、 A I)(C。
[Function] As mentioned above, since TiN and AIN have completely different crystal structures, even if they are mixed and melted or powder sintered, a solid solution powder consisting of (TiA1)N cannot be obtained; Even if a C source coexists in the processing system, (T i , A I) (C.

N)よりなる固溶体粉末を得ることはできない。It is not possible to obtain a solid solution powder consisting of N).

一方、TiおよびA1の酸化物であるT i O2とA
l2O3はいずれも結晶構造がNaCl型で類似してお
り、これらの混合物を加熱処理するとAl2TiO5よ
りなる固溶体を容易に得ることができる。そこで本発明
者らは出発原料としてNaC’l型結晶構造のTiO2
およびAl2O3を用いてこれをA12TiOB固溶体
に代え、或は出発原料としてA1zTiOB粉末を使用
し、これを還元窒化して窒化物および/もしくは炭化物
に変えれば、粉末状の(Ti、AI)(C。
On the other hand, T i O2, which is an oxide of Ti and A1, and A
Both l2O3 have similar crystal structures of the NaCl type, and a solid solution of Al2TiO5 can be easily obtained by heat-treating a mixture of these. Therefore, the present inventors used TiO2 with NaC'l type crystal structure as a starting material.
If this is replaced with an A12TiOB solid solution by using and Al2O3, or by using A1zTiOB powder as a starting material and reducing and nitriding it to convert it into a nitride and/or carbide, powdered (Ti, AI) (C) can be obtained.

N、O)固溶体が得られるのではないかと考え、研究を
進めた。
We thought that it might be possible to obtain a solid solution (N, O), and proceeded with our research.

その結果、TiO2粉末とAl2O3粉末よりなる混合
粉末またはA12Ti06粉末、あるいはAl2TiO
5粉末とT i O2粉末および/もしくはAl2O3
粉末との混合粉末を、還元性雰囲気下で窒化および/も
しくは炭化すると共に、該窒化および/もしくは炭化す
る過程で固溶化すれば(Ti、AI)(’C,N、、O
)よりなるNaCl型結晶構造の固溶体が粉末状物とし
て容易に得られることを知った。
As a result, a mixed powder consisting of TiO2 powder and Al2O3 powder, A12Ti06 powder, or Al2TiO
5 powder and T i O2 powder and/or Al2O3
If the mixed powder with powder is nitrided and/or carbonized in a reducing atmosphere and made into a solid solution during the nitriding and/or carbonizing process, (Ti, AI) ('C, N,, O
) was found to be easily obtained as a powder with a NaCl-type crystal structure.

尚、本発明においては、固溶体粉末の化学組成を (T i (−8A I +1) (Cy  N z 
 O+−y−z)a ・・・[1]但し、0<x≦0.
7 0≦y≦1 0≦z≦1 0.9≦ (y+z)  ≦1.0 o、6< a < 1.0 に特定するが、上記化学組成の設定理由は次の通りであ
る。
In the present invention, the chemical composition of the solid solution powder is (T i (-8A I +1) (Cy N z
O+-y-z)a ... [1] However, 0<x≦0.
7 0≦y≦1 0≦z≦1 0.9≦(y+z)≦1.0 o, 6<a<1.0 The reason for setting the above chemical composition is as follows.

まず[+1式においてXがOであるものは、金属成分中
にAIが含まれていないことを意味するものであって、
当然のことながら複合セラミック固溶体としての特性が
発揮されない。しかしXが0.7を超えると、固溶体中
のAIが固溶限界を超えることになり、原料であるAl
2O3が残留して希望物性が低下する。
First, in the formula [+1, X is O, which means that AI is not included in the metal component,
Naturally, the properties as a composite ceramic solid solution are not exhibited. However, when X exceeds 0.7, AI in the solid solution exceeds the solid solution limit, and the raw material Al
2O3 remains and desired physical properties deteriorate.

次にyと2は0〜1の全範囲に及び得るものであり、0
.9≦(y+z)≦1.0の要件を満たす限りあらゆる
組合せが可能である。たとえば(C1N、0)の実現可
能な組合せとしては、NおよびOが零でCが100%を
占めるものCおよび0が零でNが100%を占めるもの
0が零で(C+N)が100%を占めるもの0が零以上
0.1以下で(C+N)が0.9〜1.0であるもの が挙げられ、これらのうちどの要件に当てはまるもので
あってもよい。しかしくy+z)が0.9未満であるも
のは必然的に0が0.1を超えるものとなり、固溶体中
にTio2.Al2O,またはAl2TiO5の酸化物
が残留することになるので、(C+N’)は0.9以上
となる様に残留酸素量を抑えなければならない。
Next, y and 2 can span the entire range from 0 to 1, and 0
.. Any combination is possible as long as the requirement of 9≦(y+z)≦1.0 is satisfied. For example, possible combinations of (C1N, 0) include: N and O are zero and C occupies 100%; C and 0 are zero and N occupies 100%; 0 is zero and (C+N) is 100%. Examples include those in which 0 is 0 or more and 0.1 or less, and (C+N) is 0.9 to 1.0, and any of these requirements may be met. However, if y+z) is less than 0.9, 0 will inevitably exceed 0.1, and Tio2. Since oxides of Al2O or Al2TiO5 will remain, the amount of residual oxygen must be suppressed so that (C+N') is 0.9 or more.

またaが0.6以下であるものは、固溶体中にフリーの
TiやAIが残存し、一方1.0以上になるとTiO2
やAl2O3が残留したりフリーカーボンが析出してく
る。
In addition, when a is 0.6 or less, free Ti and AI remain in the solid solution, while when a is 1.0 or more, TiO2
and Al2O3 remain and free carbon precipitates.

従って本発明のセラミック固溶体粉末を製造するに当た
っては、上記[1,1式の化学、組成を満たす様にTi
O2粉末、Al2O3粉末もしくはA12TiO,粉末
の配合量を設定すると共に、添加するC量を設定し、且
つ炭・窒化条件を適正にコントロールしなければならな
い、。尚、炭・窒化の為の炭素源としてはカーボンブラ
ック等が最も一般的であり、窒素源としては窒素ガスが
最も一般的である。従って本発明方法を実施するに当た
っては、上記の酸化物粉末に適量のカーボンブラック等
を配合し、これを窒素ガス雰囲気下で1000〜200
0℃程度に加熱して酸化物を炭・窒化物に変換すると共
に固溶化させればよく、該炭・窒化条件(炭素配合量、
加熱温度、窒素圧力等)をうまく制御して残存酸素量を
前述の許容範囲以下に低減することにより、目的とする
セラミック固溶体粉末を得ることができる。このとき前
記[+1式におけるCとNの組成比率は、酸化物粉末中
に混入されるC源の添加量によって調整すればよい。 
かくして得られる固溶体はNaCl型の結晶構造を有す
る粉末であり、この粉末はTiNに比べて耐酸化性、熱
伝導性および硬度の非常に優れたものである。しかもこ
の粉末は圧粉成形後焼結することによって任意の形状に
加工することができるので、その優れた特徴を様々の分
野に亘って幅広く活用することが可能となる。
Therefore, in producing the ceramic solid solution powder of the present invention, Ti
It is necessary to set the blending amount of O2 powder, Al2O3 powder or A12TiO powder, set the amount of C to be added, and appropriately control the carbonization and nitriding conditions. The most common carbon source for carbonization and nitriding is carbon black, and the most common nitrogen source is nitrogen gas. Therefore, when carrying out the method of the present invention, an appropriate amount of carbon black, etc. is blended with the above oxide powder, and this is mixed with 1,000 to 200
It is sufficient to heat the oxide to about 0°C to convert the oxide to carbon/nitride and make it a solid solution, and the carbon/nitriding conditions (carbon content,
The desired ceramic solid solution powder can be obtained by skillfully controlling the heating temperature, nitrogen pressure, etc. to reduce the amount of residual oxygen below the above-mentioned allowable range. At this time, the composition ratio of C and N in the formula [+1] may be adjusted by the amount of the C source mixed into the oxide powder.
The solid solution thus obtained is a powder having a NaCl type crystal structure, and this powder has much better oxidation resistance, thermal conductivity, and hardness than TiN. Moreover, since this powder can be processed into any shape by compacting and sintering, its excellent characteristics can be widely utilized in various fields.

以下、実施例を挙げて本発明を具体的に説明するが、本
発明はもとより下記実施例によって制限を受けるもので
はない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to examples, but the present invention is not limited by the following examples.

[実、施例] ゑ】■11 TiO、粉末とA、1203粉−末を第1表、に示す比
率で配合し、こガ・にカーボンブラックを20重量%添
加した後、笹媒中で湿式混合し乾燥した。
[Examples] E]■11 TiO, powder and A, 1203 powder were blended in the ratio shown in Table 1, and after adding 20% by weight of carbon black to Koga, in a bamboo medium. Wet mixed and dried.

得られた混合粉末を、窒素雰囲気下1600℃で2時間
加熱することにより還元、窒化を行なった。
The obtained mixed powder was reduced and nitrided by heating at 1600° C. for 2 hours in a nitrogen atmosphere.

得られた各粉末の結晶構造をX線回折法により調べると
共に、各粉末を窒素雰囲気中1700℃で30分ホット
プレスして焼結成形体とし硬度を調べた。結果は第1表
に一括して示す通りであり、いずれもNaCl型結晶構
造のBl型固溶体単相であって高い硬度を有しているこ
とが分かる。
The crystal structure of each of the obtained powders was examined by X-ray diffraction, and each powder was hot-pressed at 1700° C. for 30 minutes in a nitrogen atmosphere to form a sintered compact, and its hardness was examined. The results are summarized in Table 1, and it can be seen that all of the samples were single-phase Bl-type solid solutions with an NaCl-type crystal structure and had high hardness.

上記実験N013で得た粉末のX線回折チャートを代表
して第1図に示す、また該固溶体粉末の化学分析結果は
第2表に示す通りであり、(Tio、a。AIo、4゜
) (c 0.4゜No、6゜)。98の化学組成を有
するものであった。
The X-ray diffraction chart of the powder obtained in the above experiment No. 13 is shown in FIG. 1 as a representative, and the chemical analysis results of the solid solution powder are as shown in Table 2. (Tio, a. AIo, 4°) (c 0.4°No, 6°). It had a chemical composition of 98.

1 夾直■l Ti0z粉末とAl2O3粉末を第3表に示す比率で配
合し、溶媒中で湿式混合した後乾燥した。この混合粉末
を大気雰囲気中1300℃で2時間焼成した。この焼結
粉末は、X線回折分析の結果A1.TiO舊相とTi1
2相の2相であることが確認された。
1. TiOz powder and Al2O3 powder were mixed in the ratio shown in Table 3, wet mixed in a solvent, and then dried. This mixed powder was fired at 1300° C. for 2 hours in an air atmosphere. The result of X-ray diffraction analysis of this sintered powder was A1. TiO 舊phase and Ti1
It was confirmed that there were two phases.

上記で得た焼結粉末にカーボンブラックを20重量%配
合して溶媒中で湿式混合した後乾燥し、次いで窒素雰囲
気中1600℃で2時間加熱して還元窒化を行なりた。
20% by weight of carbon black was blended into the sintered powder obtained above, wet mixed in a solvent, dried, and then heated at 1600° C. for 2 hours in a nitrogen atmosphere to perform reductive nitridation.

得られた還元窒化粉末をX線回折により構成相の同定を
行なうと共に、該粉末を窒素雰囲気下に1700℃×3
0分でホットプレスして得た焼結体の硬度を測定し、第
3表に示す結果を得た。
The constituent phases of the obtained reduced nitrided powder were identified by X-ray diffraction, and the powder was heated at 1700°C x 3 in a nitrogen atmosphere.
The hardness of the sintered body obtained by hot pressing for 0 minutes was measured, and the results shown in Table 3 were obtained.

比較例1.2 T i 02粉末とAl2O,粉末を第4表に示す比率
で混合し、これにカーボンブラックを20重量%添加し
た後、実施例1または実施例2と同様にして還元窒化処
理を行なった。
Comparative Example 1.2 Ti02 powder, Al2O, and powder were mixed in the ratio shown in Table 4, and 20% by weight of carbon black was added thereto, followed by reduction nitriding treatment in the same manner as in Example 1 or Example 2. I did this.

得られた粉末の構成相同定結果と、実施例1と同様にし
て得た焼結体の硬度を第4.5表に示す。
The results of identifying the constituent phases of the obtained powder and the hardness of the sintered body obtained in the same manner as in Example 1 are shown in Table 4.5.

第4.5表からも明らかである様に、配合原料中のA1
成分が多過ぎる場合は、得られる固溶体のAl固溶限界
を超えて系中にAl2O5が残留し、目的とするBl型
固溶体単相のものが得られなくなる。
As is clear from Table 4.5, A1 in the blended raw materials
If there are too many components, Al2O5 will remain in the system exceeding the Al solid solution limit of the resulting solid solution, making it impossible to obtain the desired single-phase Bl type solid solution.

5 [発明の効果] 本発明は以上の様に構成されており、従来は薄膜状でし
か得ることのできなかった(Ti。
5 [Effects of the Invention] The present invention is configured as described above, and conventionally it could only be obtained in the form of a thin film (Ti.

AI)(C,N)系のセラミック固溶体を粉末状として
得ることができ、圧粉成形後焼結することによって任意
の形状に加工することができるので、TiN系セラミッ
クの耐酸化性、熱伝導性および硬度を改善したものとし
て、冒頭で示した様な種々の用途に亘って幅広く活用し
得ることになった。
AI) (C,N)-based ceramic solid solution can be obtained in powder form, and can be processed into any shape by compacting and sintering, which improves the oxidation resistance and thermal conductivity of TiN-based ceramics. As a product with improved properties and hardness, it can now be used in a wide variety of applications as mentioned at the beginning.

Claims (5)

【特許請求の範囲】[Claims] (1)(Ti_1_−_xAl_x)(C_yN_zO
_1_−y_−_z)_a[但し、0≦x≦0.7,0
≦y≦1,0≦z≦1,0.9<(y+z)≦1.0,
0.6<a<1.0] の化学組成を有し、NaCl型結晶構造を有するもので
あることを特徴とするセラミック固溶体粉末。
(1) (Ti_1_-_xAl_x) (C_yN_zO
_1_-y_-_z)_a [However, 0≦x≦0.7,0
≦y≦1,0≦z≦1,0.9<(y+z)≦1.0,
A ceramic solid solution powder having a chemical composition of 0.6<a<1.0] and a NaCl type crystal structure.
(2)TiO_2粉末とAl_2O_3粉末よりなる混
合粉末を、還元性雰囲気下で窒化および/もしくは炭化
する過程で固溶化し、請求項(1)記載のセラミック固
溶体粉末を得ることを特徴とするセラミック固溶体粉末
の製法。
(2) A ceramic solid solution characterized in that a mixed powder of TiO_2 powder and Al_2O_3 powder is made into a solid solution in the process of nitriding and/or carbonizing in a reducing atmosphere to obtain the ceramic solid solution powder according to claim (1). Powder manufacturing method.
(3)Al_2TiO_5粉末を、還元性雰囲気下で窒
化および/もしくは炭化する過程で固溶化し、請求項(
1)記載のセラミック固溶体粉末を得ることを特徴とす
るセラミック固溶体粉末の製法。
(3) Al_2TiO_5 powder is made into a solid solution in the process of nitriding and/or carbonizing in a reducing atmosphere, and
1) A method for producing a ceramic solid solution powder, which is characterized by obtaining the ceramic solid solution powder as described above.
(4)Al_2TiO_5粉末とTiO_2粉末および
/もしくはAl_2O_3粉末との混合粉末を、還元性
雰囲気下で窒化および/もしくは炭化する過程で固溶化
し、請求項(1)記載のセラミック固溶体粉末を得るこ
とを特徴とするセラミック固溶体粉末の製法。
(4) A mixed powder of Al_2TiO_5 powder and TiO_2 powder and/or Al_2O_3 powder is made into a solid solution in the process of nitriding and/or carbonizing in a reducing atmosphere to obtain the ceramic solid solution powder according to claim (1). Characteristic manufacturing method of ceramic solid solution powder.
(5)請求項(1)に記載の固溶体粉末を焼結してなる
セラミック固溶体粉末焼結体。
(5) A ceramic solid solution powder sintered body obtained by sintering the solid solution powder according to claim (1).
JP1325342A 1989-12-14 1989-12-14 Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact Pending JPH03187976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325342A JPH03187976A (en) 1989-12-14 1989-12-14 Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325342A JPH03187976A (en) 1989-12-14 1989-12-14 Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact

Publications (1)

Publication Number Publication Date
JPH03187976A true JPH03187976A (en) 1991-08-15

Family

ID=18175739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325342A Pending JPH03187976A (en) 1989-12-14 1989-12-14 Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact

Country Status (1)

Country Link
JP (1) JPH03187976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094165A (en) * 2010-12-27 2011-06-15 北京工业大学 Highly wear-resistant mechanical seal moving ring and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102094165A (en) * 2010-12-27 2011-06-15 北京工业大学 Highly wear-resistant mechanical seal moving ring and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0170889B1 (en) Zrb2 composite sintered material
JPH07118070A (en) Silicon nitride ceramic sintered compact
JP2847818B2 (en) Conductive zirconia sintered body and method for producing the same
JPH03187976A (en) Ceramic solid solution powder, its production and ceramic solid solution powder sintered compact
JPS623072A (en) Silicon carbide base sintered body and manufacture
JPS63156068A (en) Manufacture of boron carbide-silicon carbide composite sintered body
JPH025711B2 (en)
JPH0224789B2 (en)
JPS6110073A (en) Aluminum nitride sintered body
JPH01212268A (en) Superconducting sintered body
JPS6337069B2 (en)
JPH01239068A (en) Sintered material of titanium boride base and production thereof
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
JPH0511062B2 (en)
JPS63270359A (en) Sintered tin composite ceramics
JPH0321502B2 (en)
JPH0461828B2 (en)
JPS6395155A (en) Composite sintered body comprising carbide and oxide
JPS63270363A (en) Sintered ceramic composite
JPS6126570A (en) Boride sintered body and manufacture
JPS5930768A (en) Manufacture of high corrosion resistance silicon nitride reaction sintered body
JPH04275982A (en) Boron nitride-aluminum nitride combined sintered body and its production
JPS6339542B2 (en)
JPS5857393B2 (en) High-strength titanium nitride/metal boride composite ceramics
JPS63282161A (en) Sintered silicon carbide body and its production