JPH05110132A - Light-emitting semiconductor element - Google Patents

Light-emitting semiconductor element

Info

Publication number
JPH05110132A
JPH05110132A JP29616591A JP29616591A JPH05110132A JP H05110132 A JPH05110132 A JP H05110132A JP 29616591 A JP29616591 A JP 29616591A JP 29616591 A JP29616591 A JP 29616591A JP H05110132 A JPH05110132 A JP H05110132A
Authority
JP
Japan
Prior art keywords
doped
light
semiconductor
light emitting
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29616591A
Other languages
Japanese (ja)
Other versions
JP2743664B2 (en
Inventor
Takayoshi Anami
隆由 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29616591A priority Critical patent/JP2743664B2/en
Publication of JPH05110132A publication Critical patent/JPH05110132A/en
Application granted granted Critical
Publication of JP2743664B2 publication Critical patent/JP2743664B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve a quantum efficiency by having a compound light-emitting semiconductor part held between different conductive type semiconductor layers on a semiconductor substrate with the substrate surface directed to the face (111), by doping rare earth ion to the semiconductor light-emitting part and by introducing distortion into the light-emitting semiconductor part. CONSTITUTION:A light-emitting semiconductor element is manufactured by a molecular beam epitaxy method. The transition energy level 27 of the parent material of Er-doped distortion quantum well layer 13 is mainly determined by the composition of InGaAs, the degree of lattice mismatching, quantum well thickness, piezo-internal electrolysis, etc. In addition to the piezo-internal electrolysis by distortion, an internal electrolysis by PN junction is applied to the Er-doped distortion quantum well layer 111 in the same direction to further increase the excitation of Er by carrier. A stripe electrode is formed in this layer structure so that a single longitudinal mode oscillation is obtained. A threshold current is about the half of the threshold current of the same structure laminated on the face (100) and the increase of excitation of Er ions is recognized by piezo-electric effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高性能で高均一な半導体
発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high performance and highly uniform semiconductor light emitting device.

【0002】[0002]

【従来の技術】従来、半導体発光素子は主に半導体のバ
ンド帯や量子井戸構造の量子準位間の光学的遷移を利用
していた。この種の半導体発光素子では発光層の純度、
組成、層厚等の制御性が素子の特性を大きく左右した。
これに対し、希土類イオンを半導体中に添加し、電子−
正孔対がもつエネルギーで希土類イオンを励起し各イオ
ンに特有な、波長の狭い発光スペクトルを用いた半導体
発光素子が報告されている(例えば、アプライド・フィ
ジクス・レター W.T.Tsang etal.,A
ppl.Phys.Lett.49巻、(1986)
1686ページ)。この発光素子では4f殻電子系の励
起状態と基底状態間の遷移を利用しており、4f電子系
は固体の結合に直接関与していないから、発光波長は母
体の種類には大きく左右されない。そこで、例えばGa
InAsP母体にEr3+をドープした半導体レーザでは
発光波長のウエハ面内均一性は半導体母体材料に依らな
いので、極めて高い均一性を有し、その発振波長の温度
変化も摂氏一度当り1オングストローム程度と小さい。
2. Description of the Related Art Conventionally, semiconductor light emitting devices have mainly utilized optical transitions between semiconductor band bands and quantum levels of a quantum well structure. In this type of semiconductor light emitting device, the purity of the light emitting layer,
The controllability of the composition, layer thickness, etc. greatly affected the characteristics of the device.
On the other hand, when rare earth ions are added to the semiconductor,
A semiconductor light emitting device has been reported that excites rare earth ions with the energy of a hole pair and uses an emission spectrum with a narrow wavelength, which is unique to each ion (for example, Applied Physics Letter WT Tsang et al. A
ppl. Phys. Lett. Volume 49, (1986)
Page 1686). In this light emitting device, the transition between the excited state and the ground state of the 4f shell electron system is utilized, and since the 4f electron system is not directly involved in the bond of the solid, the emission wavelength is not largely influenced by the type of the host. So, for example, Ga
In the semiconductor laser in which the InAsP matrix is doped with Er 3+ , the in-plane uniformity of the emission wavelength on the wafer does not depend on the semiconductor matrix material, so it has extremely high uniformity, and the oscillation wavelength temperature change is about 1 angstrom per degree Celsius. And small.

【0003】[0003]

【発明が解決しようとする課題】このように、希土類ド
ープ半導体発光素子は種々の優れた特性を有するが、そ
の最大の欠点は発光効率が一般に低い点にある。例え
ば、MBE法で成長したErドープGaAsの室温に於
ける量子効率は10-6程度と極めて低い。これは、この
発光素子では電子−正孔対と希土類イオン間のエネルギ
ー伝達過程が必要となるためこの過程の大小が量子効率
に影響を与えるからである。
As described above, the rare earth-doped semiconductor light emitting device has various excellent characteristics, but the greatest drawback thereof is that the luminous efficiency is generally low. For example, the quantum efficiency of Er-doped GaAs grown by the MBE method at room temperature is as low as about 10 -6 . This is because this light emitting device requires an energy transfer process between the electron-hole pair and the rare earth ion, and the magnitude of this process affects the quantum efficiency.

【0004】本発明の目的は、高い量子効率を有する希
土類ドープ半導体発光素子を提供することにある。
An object of the present invention is to provide a rare earth-doped semiconductor light emitting device having high quantum efficiency.

【0005】[0005]

【課題を解決するための手段】本発明が提供する手段
は、基板面方位が(111)面である半導体基板上に、
導電型の異なる半導体層に挟まれた化合物半導体発光部
を有する半導体発光素子におてい、該半導体発光部に希
土類イオンがドーピングされ、且つ該半導体発光部に歪
が導入されていることに特徴がある。
[Means for Solving the Problems] Means provided by the present invention are: a semiconductor substrate having a substrate plane orientation of (111) plane;
A semiconductor light emitting device having a compound semiconductor light emitting portion sandwiched between semiconductor layers of different conductivity types, characterized in that the semiconductor light emitting portion is doped with rare earth ions and strain is introduced into the semiconductor light emitting portion. is there.

【0006】[0006]

【作用】(111)面上に、基板と異なる格子定数を有
する化合物半導体歪層を積層すると結晶の反転対称性の
欠如によりピエゾ電気効果が生じ、積層方向に内部電界
が発生する。例えば、InGaAs系では1%の格子歪
に対し約105 V/cmの内部電界が生じる。この層に
電子や正孔が注入されると、内部電界によりそれぞれ別
の方向にキャリアが加速される。内部電界が十分に大き
いと、キャリアは衝突により希土類イオンを励起状態に
ポンピングすることができる。ポンピングに必要な電界
は、InP結晶中のErで約105 V/cmであり化合
物半導体歪層で十分作り出すことができる。以上の機構
により化合物半導体歪層に注入された電子−正孔対は有
効に希土類イオンにエネルギーを伝達することができ、
量子効率を高めることができる。
When a compound semiconductor strained layer having a lattice constant different from that of the substrate is laminated on the (111) plane, a piezoelectric effect occurs due to lack of crystal inversion symmetry, and an internal electric field is generated in the laminating direction. For example, in the InGaAs system, an internal electric field of about 10 5 V / cm is generated for a lattice strain of 1%. When electrons and holes are injected into this layer, carriers are accelerated in different directions by the internal electric field. If the internal electric field is large enough, the carriers can pump the rare earth ions to an excited state by collision. The electric field required for pumping is Er of about 10 5 V / cm in the InP crystal, which can be sufficiently created in the compound semiconductor strained layer. The electron-hole pairs injected into the compound semiconductor strained layer by the above mechanism can effectively transfer energy to rare earth ions,
The quantum efficiency can be increased.

【0007】[0007]

【実施例】図1は、本発明による半導体発光素子の実施
例の構造図である。これは分子線エピタキシー法により
製作する。製作手順は、ZnドープInP(111)B
の1.0度オフ基板11上に、Beドープ(5×1017
cm-3)In0.52Al0.48Asクラッド層12を1μm
積層し、その上にInPと約1%の格子不整合を有し且
つErを1×1018cm-3ドープしたIn0.65Ga0.35
As層13を35Å、ノンドープIn0.52Al0.48As
層14を150Å、交互に4周期積層し、更にSiドー
プ(5×1017cm-3)In0.52Al0.48Asクラッド
層15を1μm積層し、最後にSiドープ(3×1018
cm-3)In0.53Ga0.47Asキャップ層16を0.5
μm積層する。基板にオフ基板を用いるのは積層中に双
晶が発生するのを防ぐ為である。In0.65Ga0.35As
層13は約1%の格子不整合を有するが積層厚が35Å
と小さく臨界膜厚以内であるたヘめ、ミスフィット転位
等は生じない。
1 is a structural diagram of an embodiment of a semiconductor light emitting device according to the present invention. This is manufactured by the molecular beam epitaxy method. The manufacturing procedure is Zn-doped InP (111) B.
Of Be-doped (5 × 10 17
cm −3 ) In 0.52 Al 0.48 As clad layer 12 of 1 μm
In 0.65 Ga 0.35 which is laminated and has a lattice mismatch of about 1% with InP and is Er - doped at 1 × 10 18 cm -3.
35 Å As layer 13, non-doped In 0.52 Al 0.48 As
Layers 14 of 150 Å are alternately laminated for 4 periods, and further Si-doped (5 × 10 17 cm −3 ) In 0.52 Al 0.48 As clad layer 15 is laminated to 1 μm, and finally Si-doped (3 × 10 18
cm −3 ) In 0.53 Ga 0.47 As cap layer 16 to 0.5
μm is laminated. The off-substrate is used as the substrate in order to prevent twins from being generated during stacking. In 0.65 Ga 0.35 As
Layer 13 has a lattice mismatch of about 1% but a stack thickness of 35Å
It is small and within the critical film thickness, and misfit dislocations do not occur.

【0008】図2は、上記積層構造のバンド図である。
Erドープ歪量子井戸層13の母体の遷移エネルギー準
位27は、InGaAsの組成、格子不整合度、量子井
戸厚、ピエゾ内部電界等により主に決定される。本実施
例では室温で約0.8eVとなる。Erドープ歪量子井
戸層111には歪によるピエゾ内部電界約100KV/
cmのほかに、同方向にPN接合による内部電界約70
KV/cmが印可されておりキャリアによるErの励起
を更に増長している。この層構造にストライプ電極を形
成し、室温パルス動作を測定する。発振波長は1.54
μm、単一縦モード発振を得る。閾値電流は、比較のた
め(100)面上に積層した同構造の閾値電流の約半分
であり、ピエゾ電気効果によりErイオンの励起増長が
確認される。また本半導体発光素子はErイオンの遷移
波長に利得が集中するため、発振時のサイド・モード抑
制効果が顕著であり比として約30dBを得る。
FIG. 2 is a band diagram of the above laminated structure.
The transition energy level 27 of the matrix of the Er-doped strained quantum well layer 13 is mainly determined by the composition of InGaAs, the degree of lattice mismatch, the quantum well thickness, the piezoelectric internal electric field, and the like. In this embodiment, the voltage is about 0.8 eV at room temperature. The Er-doped strained quantum well layer 111 has a piezoelectric internal electric field of about 100 KV /
In addition to the cm, an internal electric field of about 70 due to the PN junction in the same direction.
KV / cm is applied to further enhance Er excitation by carriers. A stripe electrode is formed on this layer structure, and room temperature pulse operation is measured. Oscillation wavelength is 1.54
μm, single longitudinal mode oscillation is obtained. The threshold current is about half of the threshold current of the same structure laminated on the (100) plane for comparison, and the excitation extension of Er ions is confirmed by the piezoelectric effect. Further, in this semiconductor light emitting device, since the gain is concentrated on the transition wavelength of Er ions, the side mode suppressing effect at the time of oscillation is remarkable, and the ratio is about 30 dB.

【0009】以上ここでは一つの実施例についてのみ述
べたが、本発明は何らこれによって限定されるものでは
ない。半導体成長方法も液相成長法、有機金属気相成長
法等いずれでもよい。またドープする希土類イオンもE
rに限定されずYb、Nb等であってもよい。積層する
材料系もInGaAsP系、InGaSb系等III −V
族であってもZnSSe,ZnTe等のII−VI族化合物
半導体でもよい。さらに用いる基板も(111)面なら
A面、B面いずれでもよく、歪半導体発光部が化合物半
導体ならSi等の元素半導体であってもよい。歪半導体
発光部の歪は引張性でも圧縮性の歪でもかまわない。ま
た半導体発光ダイオード等他の半導体発光素子において
も同様な効果が成立する。
Although only one embodiment has been described above, the present invention is not limited thereto. The semiconductor growth method may be a liquid phase growth method, a metal organic vapor phase growth method, or the like. The rare earth ions to be doped are also E
It is not limited to r and may be Yb, Nb, or the like. The material system to be laminated is also InGaAsP system, InGaSb system, etc. III-V
Group II or II-VI group compound semiconductors such as ZnSSe and ZnTe may be used. Further, if the substrate used is the (111) plane, either the A plane or the B plane may be used, and if the strained semiconductor light emitting portion is a compound semiconductor, it may be an element semiconductor such as Si. The strain of the strained semiconductor light emitting portion may be tensile or compressive. The same effect can be achieved in other semiconductor light emitting devices such as semiconductor light emitting diodes.

【0010】[0010]

【発明の効果】以上に説明したように本発明の半導体発
光素子によれば、高い発光効率を有する希土類ドープ半
導体発光素子が得られる。
As described above, according to the semiconductor light emitting device of the present invention, a rare earth-doped semiconductor light emitting device having high luminous efficiency can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による半導体発光素子の構造
を示す断面図である。
FIG. 1 is a sectional view showing a structure of a semiconductor light emitting device according to an embodiment of the present invention.

【図2】図1の実施例におけるバンド構造を示す図であ
る。
FIG. 2 is a diagram showing a band structure in the embodiment of FIG.

【符号の説明】[Explanation of symbols]

11 ZnドープInP(111)B基板 12 BeドープIn0.52Al0.48Asクラッド層 13 ErドープIn0.65Ga0.35As層 14 ノンドープIn0.52Al0.48As層 15 SiドープIn0.52Al0.48Asクラッド層 16 SiドープIn0.53Ga0.47Asキャップ層 27 遷移エネルギー11 Zn-doped InP (111) B substrate 12 Be-doped In 0.52 Al 0.48 As clad layer 13 Er-doped In 0.65 Ga 0.35 As layer 14 Non-doped In 0.52 Al 0.48 As layer 15 Si-doped In 0.52 Al 0.48 As clad layer 16 Si-doped In 0.53 Ga 0.47 As cap layer 27 Transition energy

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板面方位が(111)面である半導体
基板上に、導電型の異なる半導体層に挟まれた化合物半
導体発光部を有してなる半導体発光素子において、該半
導体発光部に希土類イオンがドーピングされ、且つ該半
導体発光部に歪が導入されていることを特徴とする半導
体発光素子。
1. A semiconductor light emitting device having a compound semiconductor light emitting portion sandwiched between semiconductor layers having different conductivity types on a semiconductor substrate having a substrate plane orientation of (111) plane, wherein the semiconductor light emitting portion has a rare earth element. A semiconductor light emitting device, characterized in that it is doped with ions and strain is introduced into the semiconductor light emitting portion.
JP29616591A 1991-10-15 1991-10-15 Semiconductor light emitting device Expired - Fee Related JP2743664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29616591A JP2743664B2 (en) 1991-10-15 1991-10-15 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29616591A JP2743664B2 (en) 1991-10-15 1991-10-15 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH05110132A true JPH05110132A (en) 1993-04-30
JP2743664B2 JP2743664B2 (en) 1998-04-22

Family

ID=17830002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29616591A Expired - Fee Related JP2743664B2 (en) 1991-10-15 1991-10-15 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2743664B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374003A (en) * 2001-06-14 2002-12-26 Ngk Insulators Ltd Semiconductor device, and substrate for the same
JP2006164938A (en) * 2004-11-11 2006-06-22 Sony Corp Light-emitting element, method of manufacturing the same, and light emission device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198718A (en) * 1985-02-28 1986-09-03 Fujitsu Ltd Liquid-phase epitaxial growth method
JPH03227092A (en) * 1990-01-31 1991-10-08 Nec Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198718A (en) * 1985-02-28 1986-09-03 Fujitsu Ltd Liquid-phase epitaxial growth method
JPH03227092A (en) * 1990-01-31 1991-10-08 Nec Corp Semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374003A (en) * 2001-06-14 2002-12-26 Ngk Insulators Ltd Semiconductor device, and substrate for the same
JP2006164938A (en) * 2004-11-11 2006-06-22 Sony Corp Light-emitting element, method of manufacturing the same, and light emission device

Also Published As

Publication number Publication date
JP2743664B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US8017932B2 (en) Light-emitting device
JPH09139543A (en) Semiconductor laser element
JPH09116225A (en) Semiconductor light emitting device
EP2678881A1 (en) Semiconductor device and fabrication method
US5644587A (en) Semiconductor laser device
US5571748A (en) Methods for producing compound semiconductor devices
JP2743664B2 (en) Semiconductor light emitting device
US5272362A (en) Semiconductor light emitting device
Wang et al. Engineering laser gain spectrum using electronic vertically coupled InAs-GaAs quantum dots
JP3192560B2 (en) Semiconductor light emitting device
JP2002368342A (en) Multiplex quantum well semiconductor element
US5190891A (en) Method for fabricating a semiconductor laser device in which the p-type clad layer and the active layer are grown at different rates
Lo et al. Stimulated emission in ultrathin (20 Å) Al x Ga1− x As‐GaAs single quantum well heterostructures
JP3206316B2 (en) Semiconductor laser
JP2000261037A (en) Semiconductor light emitting device
JP2000223776A (en) Semiconductor light emitting element
JPH05283743A (en) Semiconductor light-emitting element
JPH07321409A (en) Semiconductor laser element
JPH08181386A (en) Semiconductor optical element
JP3364970B2 (en) Polarized electron beam generator
JP3044604B2 (en) Semiconductor laser
JP4070199B2 (en) Semiconductor optical device
JPH0632335B2 (en) Method for manufacturing semiconductor laser
CN113972561A (en) Perovskite semiconductor optical amplifier
JPH08307005A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees