JPH08181386A - Semiconductor optical element - Google Patents

Semiconductor optical element

Info

Publication number
JPH08181386A
JPH08181386A JP32024094A JP32024094A JPH08181386A JP H08181386 A JPH08181386 A JP H08181386A JP 32024094 A JP32024094 A JP 32024094A JP 32024094 A JP32024094 A JP 32024094A JP H08181386 A JPH08181386 A JP H08181386A
Authority
JP
Japan
Prior art keywords
layer
active layer
gan
light emitting
quantum well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32024094A
Other languages
Japanese (ja)
Inventor
Satoshi Kamiyama
智 上山
Masakatsu Suzuki
政勝 鈴木
Takeshi Uenoyama
雄 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32024094A priority Critical patent/JPH08181386A/en
Publication of JPH08181386A publication Critical patent/JPH08181386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To remarkably reduce the state density of holes, and improve the efficiency of a light emitting element, by constituting at least an active layer as zincblende structure. CONSTITUTION: A surface nitride layer is formed on a (001) GaAs substrate 1 by high temperature annealing in, e.g. an ammonia atmosphere. After that, a first clad layer 3 of N-Al0.2 Ga0.8 N, a multiquantum well active layer 4 of GaN/Al0.2 Ga0.8 N, a second clad layer 5 of P-Al0.2 Ga0.8 N, and a P-GaN contact layer 6 are continuously formed by an organometal vapor deposition method. All of the GaAs substrate 1-GaN contact layer 6 are constituted of zincblende type crystal. In AlGaInN system, zincblende type crystal is used in the active layer 4, and further quantum effect, 2-axial type strain, etc., are controlled. Thereby a short wavelength semiconductor light emitting element whose luminous efficiency is higher than the conventional element can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光情報処理分
野などに用いられる発光素子、特にAlGaInN系短波長の
半導体光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device used in the fields of optical communication, optical information processing, etc., and more particularly to an AlGaInN type short wavelength semiconductor optical device.

【0002】[0002]

【従来の技術】近年、多くの分野で半導体レーザの需要
が高まり、GaAs系、およびInP系を中心として活発に研
究開発が進められてきた。それに伴いMBE,MOVPEをはじ
めとする半導体レーザの結晶成長技術が大きな進展を遂
げ、高品質の化合物半導体結晶が再現性よく作製できる
ようになってきた。そして現在では発振波長630nm程度
のGaInP/AlGaInP系半導体レーザが製品化されている。
さらに短波長化を目指して色々な材料で半導体発光素子
の開発が進められている。なかでもZnCdSe系材料で発振
波長500nm前後の短波長半導体レーザの室温連続発振が
最近になって達成され、世の中の注目を集めて、現在実
用化に向けての開発が進められている。
2. Description of the Related Art In recent years, the demand for semiconductor lasers has increased in many fields, and research and development have been actively promoted centering on GaAs and InP. Along with this, the crystal growth technology of semiconductor lasers such as MBE and MOVPE has made great progress, and high-quality compound semiconductor crystals can be produced with good reproducibility. At present, GaInP / AlGaInP-based semiconductor lasers with an oscillation wavelength of about 630 nm have been commercialized.
The development of semiconductor light emitting devices is progressing with various materials aiming at shorter wavelengths. Among these, ZnCdSe-based materials have recently achieved room temperature continuous oscillation of short-wavelength semiconductor lasers with an oscillation wavelength of around 500 nm. Attention has been paid to this world and development for practical use is currently underway.

【0003】ただし、動作電圧が高く、しかも電流注入
時の結晶中の格子欠陥の増殖が激しいために、実用レベ
ルの信頼性を得ることが困難であり実用化にはまだ多く
の時間を要すると考えられている。
However, since the operating voltage is high and the proliferation of lattice defects in the crystal during current injection is intense, it is difficult to obtain a practical level of reliability and it takes a lot of time for practical use. It is considered.

【0004】その一方、もう一つの短波長レーザとして
有望視されている材料に、ウルツ鉱型GaN系材料があ
る。この材料系ではエピタキシャル成長をするための格
子整合する高品質な基板が存在しないため、ZnCdSe系と
比べて半導体発光素子の開発が遅れていたが、近年屋外
でも使用可能な1cdを越える高輝度な発光ダイオードが
実現されるようになっており、今後半導体レーザの実現
が期待されている。発光ダイオードとしては素子寿命が
105時間程度と他の実用化されている半導体発光素子材
料と比較しても遜色なく、半導体レーザへの応用も十分
可能と思われる。
On the other hand, another promising material for a short-wavelength laser is a wurtzite GaN-based material. Since there is no high-quality lattice-matched substrate for epitaxial growth in this material system, the development of semiconductor light-emitting devices has been delayed compared to ZnCdSe systems, but in recent years high-luminance light emission exceeding 1 cd that can be used outdoors Diodes have been realized, and semiconductor lasers are expected to be realized in the future. As a light emitting diode, the device life is
Compared with other practically used semiconductor light emitting device materials for about 105 hours, it seems that it can be applied to semiconductor lasers.

【0005】[0005]

【発明が解決しようとする課題】しかしながらこのよう
な発光ダイオードを屋外表示用として使用するため、あ
るいは消費電力を低減するために、さらなる高効率化が
望まれている。また、現在研究が進められている半導体
レーザの実現のためには、現状の材料で発光効率が十分
とは言えず、より高い発光効率が必要となる。
However, in order to use such a light emitting diode for outdoor display or to reduce power consumption, further improvement in efficiency is desired. Further, in order to realize a semiconductor laser that is currently being researched, it cannot be said that the current materials have sufficient luminous efficiency, and higher luminous efficiency is required.

【0006】本発明は従来よりも発光効率の高い、短波
長半導体発光素子を提供することを目的とするものであ
る。
An object of the present invention is to provide a short wavelength semiconductor light emitting device having higher luminous efficiency than ever before.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、ホールの状態密度が小さい閃亜鉛鉱構造、
例えばGaN系材料等を発光層に用いて、従来のウルツ鉱
型結晶よりも格段に発光効率の高い短波長半導体発光素
子を実現するものである。
In order to achieve the above object, the present invention provides a sphalerite structure having a small hole density of states,
For example, a GaN-based material or the like is used for the light emitting layer to realize a short wavelength semiconductor light emitting device having significantly higher light emission efficiency than the conventional wurtzite type crystal.

【0008】[0008]

【作用】AlGaInN系材料では、活性層に閃亜鉛鉱型の結
晶を用い、さらに量子効果や2軸性歪等を制御すること
により、ホールの状態密度を大きく低減させることが可
能となり、発光素子の効率を向上させることができる。
[Function] In the AlGaInN-based material, by using a zinc blende type crystal for the active layer and further controlling the quantum effect and biaxial strain, it is possible to greatly reduce the density of states of holes, and thus the light emitting element The efficiency of can be improved.

【0009】[0009]

【実施例】現在、GaN系発光デバイスとして実用化され
ているものはすべてウルツ鉱構造の結晶が用いられてい
る。GaN系結晶にはウルツ鉱型のほかにGaAs等の従来のI
II-V族化合物半導体と同様の結晶構造である閃亜鉛鉱型
とがある。
EXAMPLES Currently, wurtzite structure crystals are used for all the GaN-based light-emitting devices that are practically used. In addition to the wurtzite type for GaN-based crystals, conventional I such as GaAs
There is a zinc blende type which has the same crystal structure as the II-V group compound semiconductor.

【0010】しかし、ウルツ鉱型結晶は材料的に、特に
価電子帯の状態密度が大きい。状態密度が大きいと、発
光素子として動作させるためには非常に高い密度のキャ
リアを活性層に注入しなければならない。その結果発光
効率は低く、特に半導体レーザのように単一のエネルギ
ーでの発光を利用する場合には効率の低下が著しくな
る。
However, wurtzite type crystals have a large state density in terms of materials, particularly in the valence band. When the density of states is high, carriers having a very high density must be injected into the active layer in order to operate as a light emitting device. As a result, the light emission efficiency is low, and particularly when light emission with a single energy is used as in a semiconductor laser, the efficiency is significantly reduced.

【0011】そこで本実施例では、このようなウルツ鉱
型GaN系材料とは異なる、閃亜鉛鉱型を用いた半導体発
光素子について説明する。
Therefore, in this embodiment, a semiconductor light emitting device using a zinc blende type different from such a wurtzite type GaN-based material will be described.

【0012】(実施例1)図1に閃亜鉛鉱型GaN/AlGaN量
子井戸半導体レーザの素子断面図を示す。はじめに(00
1)GaAs基板1上に例えばアンモニア雰囲気中で高温でア
ニールすることにより表面窒化層2を作製する。その
後、有機金属気相成長法によりn-Al0.2Ga0.8N第1クラ
ッド層3、GaN/Al0.2Ga0.8N多重量子井戸活性層4、p-Al
0.2Ga0.8N第2クラッド層5、p-GaNコンタクト層6を連続
的に形成する。続いてSiO2絶縁膜7を堆積して電流注入
のためのストライプ状の開口をエッチングにより形成
し、最後にアノード電極8、カソード電極9を形成してい
る。
(Embodiment 1) FIG. 1 is a sectional view of an element of a zinc blende type GaN / AlGaN quantum well semiconductor laser. Introduction (00
1) A surface nitride layer 2 is formed on a GaAs substrate 1 by annealing at a high temperature in an ammonia atmosphere, for example. After that, by n-Al0.2Ga0.8N first cladding layer 3, GaN / Al0.2Ga0.8N multiple quantum well active layer 4, p-Al by metalorganic vapor phase epitaxy.
A 0.2Ga0.8N second cladding layer 5 and a p-GaN contact layer 6 are continuously formed. Subsequently, a SiO 2 insulating film 7 is deposited, a stripe-shaped opening for current injection is formed by etching, and finally an anode electrode 8 and a cathode electrode 9 are formed.

【0013】ここでGaAs基板1上に成長したGaN系結晶
は閃亜鉛鉱型になる。すなわち、図1の半導体レーザも
GaAs基板1〜GaNコンタクト層6まではすべて閃
亜鉛鉱型結晶により構成されている。
Here, the GaN-based crystal grown on the GaAs substrate 1 becomes a zinc blende type. That is, also in the semiconductor laser of FIG. 1, the GaAs substrate 1 to the GaN contact layer 6 are all made of zinc blende type crystal.

【0014】図2にGaN/Al0.2Ga0.8N多重量子井戸4付近
のバンドダイヤグラムを示す。GaN/Al0.2Ga0.8N多重量
子井戸4はGaN量子井戸層13およびAl0.2Ga0.8Nバリア層1
4を交互に積層した構造を有している。外部から注入さ
れる電子およびホールはGaN量子井戸層13内に閉じ込め
られ、ここで再結合により光を放出する。発光効率はこ
の再結合の確率によって決定される。再結合の確率は電
子およびホールのエネルギー分布に強く依存し、端的に
は状態密度が小さいほど同じキャリア密度あたりの再結
合の確率が高くできる。一般に電子よりもホールの状態
密度の方が大きいのでホールの状態密度の大小が発光効
率を大きく左右すると考えることができる。
FIG. 2 shows a band diagram near the GaN / Al0.2Ga0.8N multiple quantum well 4. GaN / Al0.2Ga0.8N multiple quantum well 4 is composed of GaN quantum well layer 13 and Al0.2Ga0.8N barrier layer 1.
It has a structure in which four layers are alternately stacked. Electrons and holes injected from the outside are confined in the GaN quantum well layer 13, where light is emitted by recombination. Luminous efficiency is determined by the probability of this recombination. The recombination probability strongly depends on the energy distributions of electrons and holes, and the smaller the density of states, the higher the probability of recombination per carrier density. In general, the density of states of holes is larger than that of electrons, so that it can be considered that the size of the density of states of holes greatly affects the luminous efficiency.

【0015】図3に閃亜鉛鉱型およびウルツ鉱型結晶の
価電子帯のkzに対するのバンド構造を示す。kzは成長方
向に対する波数であり、閃亜鉛鉱型では(001)方向、ウ
ルツ鉱型では(0001)方向を仮定している。
FIG. 3 shows the band structures of kz in the valence band of zinc blende type and wurtzite type crystals. kz is the wave number with respect to the growth direction, and it is assumed that the sphalerite type is the (001) direction and the wurtzite type is the (0001) direction.

【0016】図3(a)の閃亜鉛鉱型の場合、kz=0ではヘビ
ーホール21とライトホール22とが縮退している。このよ
うにバンドが近接すると互いにミキシングを起こし、そ
の結果価電子帯の状態密度、すなわちバンドの曲率が大
きくなる。
In the case of the zinc blende type of FIG. 3 (a), the heavy hole 21 and the light hole 22 are degenerated at kz = 0. When the bands are close to each other in this manner, they are mixed with each other, and as a result, the density of states of the valence band, that is, the curvature of the band is increased.

【0017】ところがもし、z方向に垂直な量子井戸を
用いると、図3(c)に示すように量子効果によってヘビ
ーホール21とライトホール22をも分離することが可能と
なる。したがってバンド間のミキシングを低減でき、ホ
ールの状態密度を小さくすることが可能であり、低しき
い値で発光することになる。ところで図3(c)は量子井
戸構造を活性層に用いたものであり、横軸は量子井戸層
の面内での波数k〃を示している。(c)に示すように、
量子井戸構造を用いると縮帯がとけヘビーホールとライ
トホールとを分離できる上に、ヘビーホール41の曲率
が小さくなり、状態密度がかなり小さくできることがわ
かる。
However, if a quantum well perpendicular to the z direction is used, the heavy hole 21 and the light hole 22 can be separated by the quantum effect as shown in FIG. 3 (c). Therefore, mixing between bands can be reduced, the density of states of holes can be reduced, and light emission can be achieved at a low threshold value. By the way, FIG. 3 (c) shows the case where the quantum well structure is used for the active layer, and the horizontal axis shows the wave number k〃 in the plane of the quantum well layer. As shown in (c),
It can be seen that when the quantum well structure is used, the narrow band is melted and the heavy hole and the light hole can be separated, and in addition, the curvature of the heavy hole 41 becomes small and the density of states can be made considerably small.

【0018】(実施例2)また、別の実施例として、活
性層を閃亜鉛型構造とし、量子井戸構造を用いる代わり
に、面内に平行な2軸性歪を用いても、活性層に量子井
戸構造を用いたのと同様の効果が得られる。ここで2軸
性歪とは、面内の互いに直角をなす2方向の歪の量が等
しいことをいう。量子井戸構造では、量子井戸層のZ方
向(成長方向)に垂直な面内で、たとえば所定の方向
(x方向)と、その方向に直角方向(y方向)の2方向
の歪が等しいことである。現在実用化されているAlGaIn
P系のIII-V族化合物半導体を用いた半導体レーザではこ
の2軸性歪による手法により高性能化が図られてきてい
る。少なくとも量子井戸構造の内、量子井戸層での2軸
の歪の量が等しければ、状態密度が小さくなり、レーザ
の特性として最も大きい効果が得られる。
(Embodiment 2) As another embodiment, even if the active layer has a zinc-blende structure and a biaxial strain parallel to the plane is used instead of the quantum well structure, the active layer is The same effect as using the quantum well structure can be obtained. Here, the biaxial strain means that the amounts of strain in two directions that are perpendicular to each other in the plane are equal. In a quantum well structure, strain is equal in a plane perpendicular to the Z direction (growth direction) of the quantum well layer, for example, in a predetermined direction (x direction) and in a direction perpendicular to that direction (y direction). is there. AlGaIn currently in practical use
In a semiconductor laser using a P-based III-V group compound semiconductor, high performance has been achieved by the method based on this biaxial strain. If at least the amount of biaxial strain in the quantum well layer in the quantum well structure is equal, the density of states becomes small, and the greatest effect is obtained as the characteristics of the laser.

【0019】一方、GaN系発光デバイスで現状用いられ
ているウルツ鉱型の場合は図3(b)に示すようになってい
る。バンド端からの2つのバンド、第1のホール31およ
び第2のホール32はz方向の曲率がほとんど同じである
ことがわかる。量子効果によるエネルギーシフトはz方
向のバンドの曲率に比例するので量子効果によって第1
のホール31と第2のホール32とのエネルギー間隔を拡大
することはできない。したがって状態密度を小さくでき
ない。
On the other hand, in the case of the wurtzite type currently used in GaN-based light emitting devices, it is as shown in FIG. 3 (b). It can be seen that the two bands from the band edge, the first hole 31 and the second hole 32, have almost the same curvature in the z direction. Since the energy shift due to the quantum effect is proportional to the curvature of the z-direction band,
The energy interval between the hole 31 and the second hole 32 cannot be expanded. Therefore, the state density cannot be reduced.

【0020】また、活性層に2軸性歪を用いても、でも
この2つのバンドはほぼ同じエネルギーシフトをするの
で、やはりエネルギー間隔は変わらない。したがって、
第1のホール31と第2のホール32とは強くミキシングし
た状態を保持し、非常に大きい状態密度を持っている。
Even if biaxial strain is used for the active layer, since the two bands have almost the same energy shift, the energy interval is not changed. Therefore,
The first hole 31 and the second hole 32 maintain a strongly mixed state and have a very high density of states.

【0021】以上の説明から明らかなように、ウルツ鉱
型GaN系材料はホールの状態密度が大きく、構造を変化
させてもこの状態密度を低減させることが困難である。
このため半導体発光素子として用いると効率の低い素子
しか原理的に得られないことになる。ところが本実施例
のように、閃亜鉛鉱型GaN系材料を用いれば、量子効
果、2軸性歪等の制御により発光素子の高効率化が可能
となる。
As is clear from the above description, the wurtzite GaN-based material has a large hole state density, and it is difficult to reduce this state density even if the structure is changed.
Therefore, when used as a semiconductor light emitting element, only an element having low efficiency can be obtained in principle. However, if a zincblende-type GaN-based material is used as in this example, the efficiency of the light emitting device can be improved by controlling the quantum effect, biaxial strain, and the like.

【0022】なお、本実施例ではGaN量子井戸層を用い
たが、GaN結晶のほか、AlGaInN混晶系のいかなる組成の
材料でも同様の効果が得られる。また、活性層が量子井
戸構造ではなくバルク結晶であっても、2軸性歪等によ
り量子井戸構造を用いたのと同様の効果が得られる。
Although the GaN quantum well layer is used in this embodiment, the same effect can be obtained by using a material of any composition of AlGaInN mixed crystal system other than GaN crystal. Even if the active layer is not a quantum well structure but a bulk crystal, the same effect as that of using a quantum well structure can be obtained due to biaxial strain and the like.

【0023】[0023]

【発明の効果】本発明により、従来のウルツ鉱型結晶よ
りも格段に発光効率の大きくでき、青色から紫外光にか
けての高性能な半導体光素子が実現できる。
According to the present invention, the luminous efficiency can be remarkably increased as compared with the conventional wurtzite type crystal, and a high-performance semiconductor optical device for blue to ultraviolet light can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】閃亜鉛鉱型GaN/AlGaN量子井戸半導体レーザの
素子断面図
Fig. 1 Device cross section of zinc blende type GaN / AlGaN quantum well semiconductor laser

【図2】GaN/Al0.2Ga0.8N多重量子井戸4付近のバンドダ
イヤグラム
Fig. 2 Band diagram near GaN / Al0.2Ga0.8N multiple quantum well 4

【図3】閃亜鉛鉱型およびウルツ鉱型結晶の価電子帯の
バンド構造図
FIG. 3 Band structure diagram of valence band of sphalerite and wurtzite crystals

【符号の説明】[Explanation of symbols]

1 (001)GaAs基板 2 表面窒化層 3 n-Al0.2Ga0.8N第1クラッド層 4 GaN/Al0.2Ga0.8N多重量子井戸活性層 5 p-Al0.2Ga0.8N第2クラッド層 6 p-GaNコンタクト層 7 SiO2絶縁膜 8 アノード電極 9 カソード電極 11 伝導帯 12 価電子帯 13 GaN量子井戸層 14 Al0.2Ga0.8Nバリア層 21 ヘビーホール 22 ライトホール 23 スピン軌道分離ホール 31 第1のホール 32 第2のホール 33 第3のホール 1 (001) GaAs substrate 2 surface nitrided layer 3 n-Al0.2Ga0.8N first clad layer 4 GaN / Al0.2Ga0.8N multiple quantum well active layer 5 p-Al0.2Ga0.8N second clad layer 6 p- GaN contact layer 7 SiO2 insulating film 8 Anode electrode 9 Cathode electrode 11 Conduction band 12 Valence band 13 GaN quantum well layer 14 Al0.2Ga0.8N barrier layer 21 Heavy hole 22 Light hole 23 Spin-orbit separation hole 31 First hole 32 Second hole 33 Third hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】AlGaInN系化合物半導体から成る発光素子
において、少なくとも活性層が閃亜鉛鉱構造であること
を特徴とする半導体光素子。
1. A light emitting device made of an AlGaInN-based compound semiconductor, wherein at least the active layer has a zinc blende structure.
【請求項2】活性層が単結晶である請求項1に記載の半
導体光素子。
2. The semiconductor optical device according to claim 1, wherein the active layer is a single crystal.
【請求項3】GaAs単結晶を基板とし、前記基板上に化合
物半導体をエピタキシャル成長により形成した請求項1
に記載の半導体光素子。
3. A GaAs single crystal as a substrate, and a compound semiconductor is formed on the substrate by epitaxial growth.
3. The semiconductor optical device according to item 1.
【請求項4】立方晶SiC単結晶基板とし、前記基板上に
化合物半導体をエピタキシャル成長により形成した請求
項1に記載の半導体光素子。
4. The semiconductor optical device according to claim 1, wherein a cubic SiC single crystal substrate is used, and a compound semiconductor is formed on the substrate by epitaxial growth.
【請求項5】活性層が単一あるいは複数のInGaN量子井
戸層を有する請求項1に記載の半導体光素子。
5. The semiconductor optical device according to claim 1, wherein the active layer has a single or a plurality of InGaN quantum well layers.
【請求項6】活性層に2軸性歪が存在する請求項1に記
載の半導体光素子。
6. The semiconductor optical device according to claim 1, wherein the active layer has biaxial strain.
JP32024094A 1994-12-22 1994-12-22 Semiconductor optical element Pending JPH08181386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32024094A JPH08181386A (en) 1994-12-22 1994-12-22 Semiconductor optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32024094A JPH08181386A (en) 1994-12-22 1994-12-22 Semiconductor optical element

Publications (1)

Publication Number Publication Date
JPH08181386A true JPH08181386A (en) 1996-07-12

Family

ID=18119292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32024094A Pending JPH08181386A (en) 1994-12-22 1994-12-22 Semiconductor optical element

Country Status (1)

Country Link
JP (1) JPH08181386A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298043A (en) * 1998-04-14 1999-10-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element and manufacture of group iii nitride superlattice structure
JP2003115642A (en) * 2001-03-28 2003-04-18 Nichia Chem Ind Ltd Nitride semiconductor element
US7119378B2 (en) 2000-07-07 2006-10-10 Nichia Corporation Nitride semiconductor device
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
US8030682B2 (en) 2007-08-22 2011-10-04 Hitachi Cable, Ltd. Zinc-blende nitride semiconductor free-standing substrate, method for fabricating same, and light-emitting device employing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275682A (en) * 1989-01-13 1990-11-09 Toshiba Corp Compound semiconductor material and semiconductor element using same and manufacture thereof
JPH05275745A (en) * 1992-01-28 1993-10-22 Sharp Corp Laminated semiconductor
JPH0669589A (en) * 1992-08-18 1994-03-11 Hitachi Ltd Semiconductor laser element
JPH06204619A (en) * 1992-12-28 1994-07-22 Anritsu Corp Semiconductor light-emitting device
JPH06268257A (en) * 1993-03-12 1994-09-22 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element
JPH06326416A (en) * 1993-03-15 1994-11-25 Toshiba Corp Compound semiconductor element
JPH08125221A (en) * 1994-10-19 1996-05-17 Sharp Corp Semiconductor light-emitting element
JPH08172055A (en) * 1994-12-20 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for growing nitride semiconductor crystal
JPH08181077A (en) * 1994-12-22 1996-07-12 Nec Corp Growing method of nitride iii-v compound semiconductor crystal

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275682A (en) * 1989-01-13 1990-11-09 Toshiba Corp Compound semiconductor material and semiconductor element using same and manufacture thereof
JPH05275745A (en) * 1992-01-28 1993-10-22 Sharp Corp Laminated semiconductor
JPH0669589A (en) * 1992-08-18 1994-03-11 Hitachi Ltd Semiconductor laser element
JPH06204619A (en) * 1992-12-28 1994-07-22 Anritsu Corp Semiconductor light-emitting device
JPH06268257A (en) * 1993-03-12 1994-09-22 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting element
JPH06326416A (en) * 1993-03-15 1994-11-25 Toshiba Corp Compound semiconductor element
JPH08125221A (en) * 1994-10-19 1996-05-17 Sharp Corp Semiconductor light-emitting element
JPH08172055A (en) * 1994-12-20 1996-07-02 Nippon Telegr & Teleph Corp <Ntt> Method and equipment for growing nitride semiconductor crystal
JPH08181077A (en) * 1994-12-22 1996-07-12 Nec Corp Growing method of nitride iii-v compound semiconductor crystal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298043A (en) * 1998-04-14 1999-10-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor element and manufacture of group iii nitride superlattice structure
US7119378B2 (en) 2000-07-07 2006-10-10 Nichia Corporation Nitride semiconductor device
US7646009B2 (en) 2000-07-07 2010-01-12 Nichia Corporation Nitride semiconductor device
US7750337B2 (en) 2000-07-07 2010-07-06 Nichia Corporation Nitride semiconductor device
US8309948B2 (en) 2000-07-07 2012-11-13 Nichia Corporation Nitride semiconductor device
US8698126B2 (en) 2000-07-07 2014-04-15 Nichia Corporation Nitride semiconductor device
US9130121B2 (en) 2000-07-07 2015-09-08 Nichia Corporation Nitride semiconductor device
US9444011B2 (en) 2000-07-07 2016-09-13 Nichia Corporation Nitride semiconductor device
JP2003115642A (en) * 2001-03-28 2003-04-18 Nichia Chem Ind Ltd Nitride semiconductor element
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
US7667226B2 (en) 2001-11-05 2010-02-23 Nichia Corporation Semiconductor device
US8030682B2 (en) 2007-08-22 2011-10-04 Hitachi Cable, Ltd. Zinc-blende nitride semiconductor free-standing substrate, method for fabricating same, and light-emitting device employing same

Similar Documents

Publication Publication Date Title
US6121634A (en) Nitride semiconductor light emitting device and its manufacturing method
US5828684A (en) Dual polarization quantum well laser in the 200 to 600 nanometers range
JP3719613B2 (en) Semiconductor light emitting device
JP2002222989A (en) Semiconductor light-emitting device
EP0476689B1 (en) Semiconductor laser and manufacturing method of the same
WO1998039827A1 (en) Gallium nitride semiconductor light emitting element with active layer having multiplex quantum well structure and semiconductor laser light source device
JPH07297476A (en) Semiconductor laser device
JPH11150335A (en) Nitride-compound semiconductor light-emitting element
JP2001274521A (en) Nitride semiconductor light emitting element
JPH10242584A (en) Semiconductor light-emitting element
JPH10294532A (en) Nitride-based semiconductor light emitting element and its manufacture
JPH10261838A (en) Gallium nitride semiconductor light-emitting element and semiconductor laser beam source device
US5331656A (en) Very short wavelength semiconductor laser
JPH09116225A (en) Semiconductor light emitting device
JP4097232B2 (en) Semiconductor laser element
US6081001A (en) Nitride semiconductor light emitting device
JPH06237039A (en) Semiconductor laser
JP2003506877A (en) Semiconductor structure using group III nitride quaternary material system
JPH04266075A (en) Semiconductor device
JP3056062B2 (en) Semiconductor light emitting device
JPH08181386A (en) Semiconductor optical element
JPH1117219A (en) Semiconductor light-emitting device having dh structure
JP3192560B2 (en) Semiconductor light emitting device
JP2005056973A (en) Semiconductor light emitting device and epitaxial wafer therefor for manufacturing the same
JPH11224972A (en) Nitride semiconductor light-emitting element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051206