JPH05109064A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH05109064A
JPH05109064A JP26590591A JP26590591A JPH05109064A JP H05109064 A JPH05109064 A JP H05109064A JP 26590591 A JP26590591 A JP 26590591A JP 26590591 A JP26590591 A JP 26590591A JP H05109064 A JPH05109064 A JP H05109064A
Authority
JP
Japan
Prior art keywords
layer
electron
magnetic recording
injection
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26590591A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26590591A priority Critical patent/JPH05109064A/en
Publication of JPH05109064A publication Critical patent/JPH05109064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enable a thin magnetic recording medium to be manufactured at a high speed without any thermal damage by forming an injection electron layer at a film surface-layer part at a deposition surface side and then heating and depositing a high-speed electron beam. CONSTITUTION:An injection electron layer 10 is formed by injecting an electron beam onto a surface layer of a polymer film 1 which is 3-7mum thick at an acceleration voltage of 0.5-5kV. Then, a high-voltage electron beam is irradiated at an acceleration voltage of 30-75kV for heating a deposition material. At this time, a reflection electron 11 of acceleration voltage forms a reflection electron injection layer 12 by receiving a reduction operation by the injection electron layer 10. The injection layer 12 increases an electrostatic attraction with a cooling can 2, transmits a heat input at the time of deposition efficiently, and reduces thermal influence which the film 1 receives.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度磁気記録に適し
た強磁性金属薄膜を磁気記録層とした磁気記録媒体を製
造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium having a ferromagnetic metal thin film suitable for high density magnetic recording as a magnetic recording layer.

【0002】[0002]

【従来の技術】近年、磁気記録は狭トラック化は10μ
m、短波長化は0.5μm迄進み、30年で面積記録密度
は実に1,000倍と向上し、機器の小型化,高機能化
を画質,音質を低下させずに実現し、更に一層の進展へ
の期待が強く、強磁性金属薄膜を磁気記録層とする磁気
記録媒体の広い実用化が強く望まれるようになってきて
いる。
2. Description of the Related Art In recent years, narrowing of tracks for magnetic recording is 10 μm.
m, shorter wavelength has advanced to 0.5 μm, and the area recording density has improved to 1,000 times in 30 years, and downsizing and high functionality of the equipment have been realized without lowering image quality and sound quality. There is a strong expectation for the progress of the above, and wide practical application of magnetic recording media using a ferromagnetic metal thin film as a magnetic recording layer is strongly desired.

【0003】以下に従来の強磁性金属薄膜を磁気記録層
とする磁気記録媒体の製造方法について説明する。
A conventional method of manufacturing a magnetic recording medium using a ferromagnetic metal thin film as a magnetic recording layer will be described below.

【0004】図2は従来の磁気記録媒体の製造に用いら
れている蒸着装置の要部構成図である。図2において、
1はポリエチレンテレフタレート,ポリエチレン2,6
ナフタレート等の高分子フィルム、2はクーリングキャ
ン、3はフィルムの送り出し軸、4は巻取り軸、5は蒸
発源容器、6はCo,Co−Ni等の蒸着材料、7は電
子ビーム、8はマスク、9は酸素ガス導入ポートであ
る。
FIG. 2 is a schematic view of a main part of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium. In FIG.
1 is polyethylene terephthalate, polyethylene 2 and 6
Polymer film such as naphthalate, 2 cooling can, 3 film feeding axis, 4 winding axis, 5 evaporation source container, 6 vapor deposition material such as Co and Co-Ni, 7 electron beam, 8 A mask and 9 are oxygen gas introduction ports.

【0005】以上のように構成された蒸着装置につい
て、その動作について説明する。まず蒸着装置に高分子
フィルム1を蒸着した状態で、図示していない真空排気
系により真空槽内部を10-5〜10-6(Torr)に排気
し、電子ビーム7を蒸着材料に照射しCoやCo−Ni
等の蒸着材料6を溶融、更に高温に保持し蒸発させ、移
動する高分子フィルム1にクーリングキャン2で冷却し
ながら蒸着を行う。通常の斜め蒸着は、接線に近い高入
射角から蒸着を開始し、マスク8で最小入射角を限定し
て蒸着を終えるよう構成する。その際酸素ガス導入ポー
ト9から酸素ガスを導入し、部分酸化蒸着膜により磁気
記録層に求められる磁気特性,実用特性等を改善してい
る。蒸着膜は単層から3層までが実用になっている。多
層構成の磁気記録層は上記したプロセスをくり返すか、
連続して複数のクーリングキャン,蒸発源を配して実施
すれば良い。
The operation of the vapor deposition apparatus constructed as above will be described. First, in a state where the polymer film 1 is vapor-deposited on the vapor deposition apparatus, the inside of the vacuum chamber is evacuated to 10 -5 to 10 -6 (Torr) by a vacuum exhaust system (not shown), and the vapor deposition material is irradiated with the electron beam 7 to Co. And Co-Ni
The vapor deposition material 6 such as the above is melted, further held at a high temperature to evaporate, and vapor deposition is performed while cooling the moving polymer film 1 with the cooling can 2. Ordinary oblique vapor deposition is configured such that vapor deposition is started from a high incident angle close to a tangent line, and the mask 8 limits the minimum incident angle to finish vapor deposition. At that time, oxygen gas is introduced from the oxygen gas introduction port 9 to improve the magnetic characteristics and practical characteristics required for the magnetic recording layer by the partial oxidation vapor deposition film. The vapor deposition film is practically used from a single layer to three layers. For the magnetic recording layer having a multi-layered structure, the above process is repeated or
A plurality of cooling cans and evaporation sources may be arranged in succession.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、高分子フィルムを薄くして体積記録密度を
向上させる目的で磁気記録媒体を製造しようとすると、
高分子フィルムの温度上昇が増大し、部分的に熱による
ダメージが発生するといった問題があり、この問題は、
生産性を向上するため加速電圧の高い、電力密度をあげ
た高集束電子ビーム加熱により更にクリアになるもので
ある。
However, in the above-mentioned conventional structure, when an attempt is made to manufacture a magnetic recording medium for the purpose of thinning the polymer film to improve the volume recording density,
There is a problem that the temperature rise of the polymer film increases and damage due to heat partially occurs.
In order to improve the productivity, it can be further cleared by high focusing voltage electron beam heating with high acceleration voltage and high power density.

【0007】本発明は上記従来の問題点を解決するもの
で、高電圧加速電子ビームにより加熱蒸発させた強磁性
金属で磁気記録層を形成する際、薄手テープで起る熱ダ
メージを解決した方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and is a method for solving the thermal damage caused by a thin tape when a magnetic recording layer is formed of a ferromagnetic metal heated and evaporated by a high-voltage accelerating electron beam. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
本発明の磁気記録媒体の製造方法は、あらかじめ高分子
フィルムの表層部に注入電子層を配し、高電圧電子ビー
ム加熱蒸着する構成を有している。
In order to achieve this object, a method of manufacturing a magnetic recording medium according to the present invention has a structure in which an injection electron layer is previously arranged on a surface layer portion of a polymer film and high voltage electron beam heating vapor deposition is performed. Have

【0009】[0009]

【作用】この構成によって、高電圧電子ビームの反射電
子成分が、蒸着に供される薄い高分子フィルムを透過せ
ずに、フィルム内に溜るようになり、その注入電子が、
クーリングキャンとの間の静電引力を増大させるように
働き、蒸着時の入熱をキャンへ効果的に伝達できるよう
になり高分子フィルムの受ける熱影響を小さくすること
ができる。
With this structure, the reflected electron components of the high-voltage electron beam are accumulated in the film without passing through the thin polymer film used for vapor deposition, and the injected electrons are
It works to increase the electrostatic attraction between the cooling can and the heat input during vapor deposition, so that it can be effectively transferred to the can, and the thermal effect on the polymer film can be reduced.

【0010】[0010]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1において、10は高分子フィルム1の
表層部分の注入電子層で、表層部分についてはここで
は、高分子フィルム1表面の1μm以内更に好ましくは
0.5μm以内を指すものである。この表層に注入電子
層10を形成するのは、加速した電子線を注入すること
によってなされるが、加速電圧を低い側から高い側へ調
整しながら電子線を高分子フィルム1へ照射することで
得られ、電圧の範囲の目安は500V〜5KVのうちで設
定し最適化すればよい。11は反射電子を模式的に表わ
したもので、蒸着材料を加熱するために照射する高電圧
電子ビームから生じる反射成分のうちの一部からなり、
反射電子11の比率や方向は一定していないが蒸着材の
構成材料により反射し、その一部は蒸着時に移動する高
分子フィルム1に注入される。ここで対象とする電子ビ
ームは加速電圧30KV〜75KVである。磁気テープ製造
に用いる高分子フィルム1の厚みが7μm以下3μmの範
囲で、上記した加速電圧の反射電子11はエネルギーを
殆んど失っていないものはフィルム1を透過してしまう
が、表層の注入電子層10での減速作用を受けてフィル
ム内部に溜るようになる。それを模式的に示したのが、
12の反射電子注入層である。
In FIG. 1, reference numeral 10 denotes an injected electron layer in the surface layer portion of the polymer film 1, and the surface layer portion herein means within 1 μm of the surface of the polymer film 1, more preferably within 0.5 μm. The injection electron layer 10 is formed on this surface layer by injecting an accelerated electron beam, but by irradiating the polymer film 1 with the electron beam while adjusting the acceleration voltage from the low side to the high side. The standard of the obtained voltage range may be set and optimized within the range of 500V to 5KV. Reference numeral 11 is a schematic representation of backscattered electrons, which is composed of a part of the reflected components generated from the high-voltage electron beam irradiated to heat the vapor deposition material,
Although the ratio and direction of the reflected electrons 11 are not constant, they are reflected by the constituent material of the vapor deposition material, and a part of them is injected into the polymer film 1 that moves during vapor deposition. The electron beam of interest here has an acceleration voltage of 30 KV to 75 KV. When the thickness of the polymer film 1 used for magnetic tape production is 7 μm or less and 3 μm or less, the backscattered electrons 11 with the above-mentioned accelerating voltage have little energy lost, but penetrate the film 1, but the surface layer is injected. The electronic layer 10 receives the deceleration action and accumulates inside the film. A schematic representation of that is
12 backscattered electron injection layers.

【0012】以上のように構成された磁気記録媒体の製
造方法について、その動作を説明する。厚み4.5μm
のポリエチレンナフタレートからなる高分子フィルム1
(両面に微粒子塗布層を配したもので、平均粗さが蒸着
面側は4(nm)、反対面は11(nm)である)を直径1
mのクーリングキャン2に沿わせて移動させながら、最
小入射角42度で、導入酸素量1(I/min)の下でCo
−Ni(Ni:19Wt%)を電子ビーム蒸着した。加速
電子ビームを30KV,40KV,75KVに選んで実施し
た。あらかじめ、加速電圧が1KVから3.8KVまで直線
的に変化する[同期は2(msec)]電子線を平均値とし
て48(μA/cm2)照射し、表層0.4μmに注入電子
層10を形成した。なお従来例はこの処理を行わずに蒸
着したものを用いた。蒸着は設定条件を同一として50
00m(幅520mm)長を2回くり返して比較した。蒸
着膜厚は0.15μm一定とした。蒸着速度は、加速電
圧によって異なり、30KVの場合は、60(m/min)
40KV,75KVの場合は夫々110(m/min),15
0(m/min)とした。実施例の場合は、反射電子11
が表層部の注入電子層10でエネルギーを減じ、4.5
μmのポリエチレンナフタレートフィルムを透過せず高
分子フィルム1内に反射電子注入層12を形成するの
で、それによる静電引力でクーリングキャン2と高分子
フィルム1が密着し、入熱を逃がし、高分子フィルム1
の受ける熱影響を最小限にすることができるのである。
The operation of the method of manufacturing the magnetic recording medium having the above structure will be described. Thickness 4.5 μm
Polymer film made of polyethylene naphthalate 1
(A fine particle coating layer is placed on both sides, and the average roughness is 4 (nm) on the vapor deposition side and 11 (nm) on the opposite side) with a diameter of 1
While moving along the cooling can 2 of m, Co at a minimum incident angle of 42 degrees and an introduced oxygen amount of 1 (I / min).
-Ni (Ni: 19 Wt%) was electron beam evaporated. The accelerated electron beam was selected to be 30 KV, 40 KV, and 75 KV. The electron beam, whose accelerating voltage changes linearly from 1 KV to 3.8 KV [synchronization is 2 (msec)], is irradiated with 48 (μA / cm 2 ) as an average value to inject the electron layer 10 into the surface layer 0.4 μm. Formed. In addition, the conventional example used what was vapor-deposited without performing this process. For the vapor deposition, the setting conditions are the same 50
The length of 00 m (width 520 mm) was repeated twice for comparison. The vapor deposition film thickness was fixed at 0.15 μm. The deposition rate depends on the accelerating voltage, and at 30 KV, 60 (m / min)
In case of 40KV and 75KV, 110 (m / min) and 15 respectively
It was set to 0 (m / min). In the case of the embodiment, the reflected electrons 11
Reduces the energy in the injected electron layer 10 at the surface layer,
Since the reflection electron injection layer 12 is formed in the polymer film 1 without penetrating the μm polyethylene naphthalate film, the electrostatic attraction causes the cooling can 2 and the polymer film 1 to adhere to each other, releasing heat input, and Molecular film 1
It is possible to minimize the heat effect of the.

【0013】本実施例による磁気記録媒体の製造方法と
従来の製造方法によって製造した場合のテープの歩留り
を(表1)に示している。
Table 1 shows the yield of tapes manufactured by the method of manufacturing the magnetic recording medium according to the present embodiment and the conventional manufacturing method.

【0014】[0014]

【表1】 [Table 1]

【0015】この(表1)から明らかなように、本実施
例の磁気記録媒体の製造方法は、高速生産条件を達成す
るための1つの条件である高電圧電子ビーム蒸着で薄手
テープを熱ダメージによる歩留り低下のない状態で製造
できるといったすぐれた効果が得られる。
As is clear from (Table 1), the magnetic recording medium manufacturing method according to the present embodiment is heat-damaged to the thin tape by high-voltage electron beam evaporation, which is one condition for achieving high-speed production conditions. It is possible to obtain an excellent effect that it can be manufactured in a state where the yield does not decrease due to.

【0016】以上のように本実施例によれば、表層部に
注入電子層を形成した上で、高電圧電子ビーム蒸着する
ことで薄手磁気記録媒体を熱ダメージなしに製造でき
る。
As described above, according to this embodiment, a thin magnetic recording medium can be manufactured without thermal damage by forming an injection electron layer on the surface layer and then performing high voltage electron beam evaporation.

【0017】なお第1の実施例において高分子フィルム
1を厚み4.5μmのポリエチレンナフタレートとした
が、高分子フィルム1の材質によらず7μm以下3μm以
上であれば効果のあることを確認している。蒸着は斜め
蒸着について述べたが、Co−Cr,Co−Ta,Co
−Mo,Co−Pt−B等の垂直磁化膜形成のための蒸
着についても効果的であることは勿論である。
In the first embodiment, the polymer film 1 was polyethylene naphthalate having a thickness of 4.5 μm, but it was confirmed that it is effective if it is 7 μm or less and 3 μm or more regardless of the material of the polymer film 1. ing. The vapor deposition was described as oblique vapor deposition, but Co-Cr, Co-Ta, Co
Needless to say, it is also effective for vapor deposition for forming a perpendicular magnetization film such as —Mo, Co—Pt—B.

【0018】[0018]

【発明の効果】以上のように本発明は、高分子フィルム
の表層部に注入電子層を形成した後、高電圧電子ビーム
蒸着することで、薄手磁気記録媒体を熱ダメージなしに
高速で製造する方法を実現できるものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a thin magnetic recording medium is manufactured at high speed without thermal damage by forming an injection electron layer on the surface layer of a polymer film and then performing high voltage electron beam evaporation. The method can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における磁気記録媒体の製造
方法を説明するための模式図
FIG. 1 is a schematic diagram for explaining a method of manufacturing a magnetic recording medium according to an embodiment of the present invention.

【図2】従来の製法を説明するための蒸着要部構成図FIG. 2 is a schematic diagram of a vapor deposition main part for explaining a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

10 注入電子層 11 反射電子 12 反射電子注入層 10 injection electron layer 11 backscattered electron 12 backscattered electron injection layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】蒸着面側のフイルム表層部に注入電子層を
構成した後、高速電子ビーム加熱蒸発により得た蒸気流
にて蒸着することを特徴とする磁気記録媒体の製造方
法。
1. A method for manufacturing a magnetic recording medium, comprising forming an injection electron layer on a film surface layer portion on the vapor deposition surface side, and then performing vapor deposition with a vapor flow obtained by high-speed electron beam heating evaporation.
JP26590591A 1991-10-15 1991-10-15 Manufacture of magnetic recording medium Pending JPH05109064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26590591A JPH05109064A (en) 1991-10-15 1991-10-15 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26590591A JPH05109064A (en) 1991-10-15 1991-10-15 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05109064A true JPH05109064A (en) 1993-04-30

Family

ID=17423732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26590591A Pending JPH05109064A (en) 1991-10-15 1991-10-15 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05109064A (en)

Similar Documents

Publication Publication Date Title
JPH0318254B2 (en)
JPH05109064A (en) Manufacture of magnetic recording medium
JPH0489627A (en) Production of magnetic recording medium
JPH0318253B2 (en)
JP2987406B2 (en) Film forming method and film forming apparatus
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JPS62185246A (en) Production of magnetic recording medium
JPH01107319A (en) Production of magnetic recording medium
JPS6297133A (en) Production of magnetic recording medium
JP2548232B2 (en) Method of manufacturing magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH02240831A (en) Production of magnetic recording medium
JPH01320643A (en) Production of magnetic recording medium
JPS63127427A (en) Production of magnetic recording medium
JPH04147435A (en) Vaccum vapor-evaporating method
JPH06124439A (en) Manufacture of magnetic recording medium
JPH0411923B2 (en)
JPH0120495B2 (en)
JPH11296854A (en) Manufacturing device of magnetic recording medium
JPH07220272A (en) Production of magnetic recording medium and device therefor
JPS6087437A (en) Production of magnetic recording medium
JPH04147433A (en) Production of magnetic recording medium
JPS58139338A (en) Manufacture of magnetic recording medium
JPH02141927A (en) Production of magnetic recording medium
JPH0572014B2 (en)