JPH05102127A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH05102127A
JPH05102127A JP26164091A JP26164091A JPH05102127A JP H05102127 A JPH05102127 A JP H05102127A JP 26164091 A JP26164091 A JP 26164091A JP 26164091 A JP26164091 A JP 26164091A JP H05102127 A JPH05102127 A JP H05102127A
Authority
JP
Japan
Prior art keywords
insulating film
film
water
semiconductor device
repellent coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26164091A
Other languages
Japanese (ja)
Other versions
JP3150378B2 (en
Inventor
Hidemitsu Egawa
秀光 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26164091A priority Critical patent/JP3150378B2/en
Publication of JPH05102127A publication Critical patent/JPH05102127A/en
Application granted granted Critical
Publication of JP3150378B2 publication Critical patent/JP3150378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent absorption.transmission of moisture, to suppress change in element characteristics such as charge holding characteristic, and corrosion reaction of electrode wirings by providing a semiconductor substrate, an insulating film formed on the substrate, and a water repelling film formed on the surface of the film. CONSTITUTION:The semiconductor device comprises a semiconductor substrate 1, an insulating film 7 on the substrate 1, and a water repelling film 11 formed on the film 7. For example, the film 11 is formed of organic silicon compound, and its organic silicon compound is at least one type of organosiloxane selected from a linear polyorganosiloxane and annular polyorganosiloxane. For example, the substrate 1 formed with an EPROM and deposited with the film 7 on the entire surface is dipped in a silicone oil tank, then heated to be dried, and a very thin water repelling film 11 made of silicon is formed on the film 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置のうち、特
に、半導体装置の保護被膜及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a protective film for a semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体装置の素子エレメントを保護する
ため、素子を形成した後に保護絶縁膜による被覆が行わ
れている。ここで、保護絶縁膜は通常の絶縁膜と同じよ
うに、CVD法、スパッタリング法、液相成長法等によ
り形成される。また、保護絶縁膜の他、絶縁膜には、所
望のマスクを形成した後にエッチングなどの処理を施
し、引き出し電極、配線のコンタクト孔を多々形成して
いる。
2. Description of the Related Art In order to protect an element element of a semiconductor device, a protective insulating film is coated after the element is formed. Here, the protective insulating film is formed by a CVD method, a sputtering method, a liquid phase epitaxy method, or the like, similarly to a normal insulating film. In addition to the protective insulating film, the insulating film is subjected to a treatment such as etching after forming a desired mask to form a large number of contact holes for lead electrodes and wirings.

【0003】[0003]

【発明が解決しようとする課題】上述のように堆積法に
よる保護絶縁膜では膜構造が粗であり、しばしば吸湿性
・透湿性を示す。このような保護絶縁膜では水分の浸透
を防げず、水分によって電極配線の酸化コロージョン反
応が進行し、配線をコロージョンが侵食したり、配線表
面に酸化物質が析出したりし、導通不良を引き起こす。
また、しばしば水分による半導体装置の電荷保持特性の
劣化を生じる。
As described above, the protective insulating film formed by the deposition method has a rough film structure and often exhibits hygroscopicity and moisture permeability. Such a protective insulating film cannot prevent the penetration of moisture, and the moisture causes the oxidation corrosion reaction of the electrode wiring to proceed, the corrosion of the wiring corrodes, and an oxide substance is deposited on the wiring surface, which causes poor conduction.
In addition, moisture often causes deterioration of the charge retention characteristics of the semiconductor device.

【0004】この他、電極を形成するために絶縁膜を開
口し、コンタクト孔を設けると、コンタクト孔側壁にや
はり吸湿性・透湿性を示す絶縁膜が露出し、水分の浸透
や電極形成後の酸化コロージョン反応等による不良を生
じる恐れがある。また、絶縁膜自体に吸湿性がない場合
にも、絶縁膜表面水分が吸着した場合には電極間の表面
リークの問題が生じる。
In addition to this, when an insulating film is opened to form an electrode and a contact hole is provided, the insulating film also showing hygroscopicity / moisture permeability is exposed on the side wall of the contact hole, so that the penetration of moisture and the formation of an electrode after the formation of the electrode can be prevented. There is a possibility that defects may occur due to oxidation corrosion reaction or the like. Further, even when the insulating film itself has no hygroscopic property, when water on the surface of the insulating film is adsorbed, a problem of surface leakage between the electrodes occurs.

【0005】これらの問題は、半導体装置の製造中に行
程の滞留などによる放置があった場合に、より顕著に現
れるため、厳しい工程管理が不可欠となる。そこで、絶
縁膜の表面を容易に耐湿処理・撥水性加工する方法が強
く望まれていた。
These problems become more prominent when the semiconductor device is left as it is due to staying in the process during manufacturing, so that strict process control is indispensable. Therefore, there has been a strong demand for a method of easily subjecting the surface of the insulating film to moisture-proof treatment and water-repellent treatment.

【0006】[0006]

【課題を解決するための手段】上述の問題点を解決する
ため本発明は、半導体基板と、前記半導体基板上に形成
された絶縁膜と、前記絶縁膜表面上に形成された撥水性
被膜とを有することを特徴とする半導体装置を提供す
る。同時に、半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜表面上に撥水性被膜を形成する工程とを有す
ることを特徴とする半導体装置の製造方法をも提供す
る。ここで、前記絶縁膜が最外層の保護絶縁膜である場
合、前記縁膜表面が開口された孔側壁部に露出した絶縁
膜表面である場合であってもよい。また、前記絶縁膜表
面上に有機硅素化合物を塗布した後に、加熱乾燥して前
記撥水性被膜を形成しても良い。更に、エッチング処理
液または洗浄用水よりも比重の軽い有機硅素化合物と前
記エッチング処理液または洗浄用水とを一槽に貯め、前
記絶縁膜をエッチング処理した後で、前記半導体基板を
前記エッチング処理液または洗浄用水から引き上げると
きに前記硅素化合物層を通過させることによって前記撥
水性被膜を形成しても良い。
In order to solve the above-mentioned problems, the present invention provides a semiconductor substrate, an insulating film formed on the semiconductor substrate, and a water-repellent coating formed on the surface of the insulating film. There is provided a semiconductor device having: At the same time, a step of forming an insulating film on the semiconductor substrate,
And a step of forming a water-repellent coating on the surface of the insulating film. Here, when the insulating film is the outermost protective insulating film, the insulating film surface may be the insulating film surface exposed on the side wall portion of the opening. Further, the water repellent coating may be formed by applying an organic silicon compound on the surface of the insulating film and then heating and drying. Further, an organic silicon compound having a specific gravity lower than that of the etching treatment liquid or cleaning water and the etching treatment liquid or cleaning water are stored in one tank, and after the insulating film is etched, the semiconductor substrate is treated with the etching treatment liquid or The water-repellent coating may be formed by passing through the silicon compound layer when the water-repellent coating is pulled up from the cleaning water.

【0007】前記撥水性被膜は有機硅素化合物であり、
更に、前記有機硅素化合物は直鎖状ポリオルガノシロキ
サン、または環状ポリオルガノシロキサンから選ばれた
少なくとも1種の低分子量ポリオルガノシロキサンであ
っても良い。
The water-repellent coating is an organic silicon compound,
Further, the organosilicon compound may be at least one low molecular weight polyorganosiloxane selected from linear polyorganosiloxane and cyclic polyorganosiloxane.

【0008】[0008]

【作用】絶縁膜表面上に撥水性の被膜を形成しておくこ
とにより、絶縁膜内への水分の浸透を強力に防止し、電
極配線のコロージョン反応を抑え、水分による電荷保持
特性の劣化を防ぎ、素子の耐湿性を向上させる。また、
金属等の汚染も防止することができる。
[Function] By forming a water-repellent coating on the surface of the insulating film, the penetration of water into the insulating film is strongly prevented, the corrosion reaction of the electrode wiring is suppressed, and the deterioration of the charge retention characteristics due to water is prevented. Prevents and improves the moisture resistance of the device. Also,
It is also possible to prevent contamination of metals and the like.

【0009】更に、吸湿・透湿のみならず、絶縁膜表面
の水分の吸着を防ぐとともに、有機硅素化合物が良好な
絶縁物質であることから、絶縁膜上での電極間の表面リ
ークをも抑える。
Furthermore, not only moisture absorption and moisture permeation but also the adsorption of moisture on the surface of the insulating film is prevented, and the surface leakage between the electrodes on the insulating film is suppressed because the organic silicon compound is a good insulating material. ..

【0010】また、絶縁膜に電極等のため、開口部を設
けた時にも、孔側壁部に露出した絶縁膜表面上に撥水性
被膜を形成しておくことにより、絶縁膜への吸湿・透湿
を防止することができ、素子の耐久性を向上できる。
Further, since the insulating film is an electrode or the like, even when an opening is provided, a water-repellent film is formed on the surface of the insulating film exposed on the side wall of the hole, so that the insulating film absorbs moisture and permeates the insulating film. Moisture can be prevented, and the durability of the device can be improved.

【0011】[0011]

【実施例】(実施例1)以下、本発明の第1の実施例を
詳細に説明する。本実施例は、本発明をEPROMに用
いるものである。
(Embodiment 1) A first embodiment of the present invention will be described in detail below. This embodiment uses the present invention for an EPROM.

【0012】本発明に用いる有機硅素化合物として、例
えば、ポリオルガノシロキサン(以下シリコーンと称す
る)の中のポリジオルガノシロキサンを図4、図5に示
す。シリコーンはその性状により、オイル・ゴム・レジ
ンの3基本形に分類できるが、その中で図4はシリコー
ンオイルの持つ鎖状分子構造を示したもので、lは0以
上の整数を示し、図5は環状分子構造を示したもので、
mは3以上の整数を示す。ここで、Rは同一または相異
なる置換または非置換の1価の炭化水素基で、主にメチ
ル基(CH3 )、フェニル基(C6 5 )、長鎖アルキ
ル基(Cn 2n+1)、トリフルオロプロピル基(CF3
CH2 CH2 )などである。
As the organic silicon compound used in the present invention, for example, polydiorganosiloxane in polyorganosiloxane (hereinafter referred to as silicone) is shown in FIGS. Silicone can be classified into three basic types of oil, rubber, and resin according to its properties. Among them, FIG. 4 shows a chain molecular structure of silicone oil, and l is an integer of 0 or more, and FIG. Is a cyclic molecular structure,
m represents an integer of 3 or more. Here, R is a substituted or unsubstituted monovalent hydrocarbon group which is the same or different and is mainly a methyl group (CH 3 ), a phenyl group (C 6 H 5 ), a long chain alkyl group (C n H 2n + 1 ), trifluoropropyl group (CF 3
CH 2 CH 2 ) and the like.

【0013】本発明をEPROM素子に用いる場合につ
いて図1から図3を参照しながら説明する。図1はEP
ROMの一部を示す平面図、図2は図1中のAA’に沿
う断面の一部を示す断面図、図3は図1中のBB’に沿
う断面を示す断面図である。
A case where the present invention is applied to an EPROM device will be described with reference to FIGS. Figure 1 EP
2 is a plan view showing a part of the ROM, FIG. 2 is a cross-sectional view showing a part of a cross section taken along AA ′ in FIG. 1, and FIG. 3 is a cross-sectional view showing a cross section taken along BB ′ in FIG.

【0014】EPROMは従来の方法を用いて形成す
る。即ち、まず、改良LOCOS等の方法で、半導体基
板1表面にメモリセルを分離するための素子分離領域9
を膜厚800nm 程度形成する。この後、例えば、塩酸を用
いて素子予定領域に30nm程度の第1ゲート絶縁膜3を形
成し、イオン打ち込み法等により、例えば、ボロンを濃
度1×1023cm-3程度導入し、チャネル領域8を形成す
る。次に、例えば、CVD法により、浮遊ゲート4を形
成する第1のポリシリコン層を第1ゲート絶縁膜3上の
全面に膜厚400nm 程度堆積させ、不純物を濃度1×1020
〜1021cm-3程度拡散させる。また、素子分離領域9上に
ドライエッチング法などを用いて第1のポリシリコン層
と第1ゲート絶縁膜3を除去し、浮遊ゲート7を分離す
るためのスリット領域10を形成しておく。この後、90
0℃以上の温度で酸化処理を施し、第1のポリシリコン
層上に第2ゲート絶縁膜5を膜厚40nm程度形成する。続
いて、CVD法等を用いて、第2ゲート絶縁膜5上に膜
厚400nm 程度の第2のポリシリコン層を堆積させ、第2
のポリシリコン層中に不純物を濃度1×1020〜1021cm-3
程度導入する。
The EPROM is formed using conventional methods. That is, first, an element isolation region 9 for isolating a memory cell is formed on the surface of the semiconductor substrate 1 by a method such as improved LOCOS.
To a thickness of about 800 nm. After that, for example, hydrochloric acid is used to form the first gate insulating film 3 having a thickness of about 30 nm in the device planned region, and, for example, boron is introduced at a concentration of about 1 × 10 23 cm −3 by an ion implantation method or the like to form a channel region. 8 is formed. Next, for example, by CVD, a first polysilicon layer for forming the floating gate 4 is deposited on the entire surface of the first gate insulating film 3 to a film thickness of about 400 nm, and the impurity concentration is set to 1 × 10 20.
Disperse about 10 21 cm -3 . Further, the first polysilicon layer and the first gate insulating film 3 are removed on the element isolation region 9 by using a dry etching method or the like to form a slit region 10 for separating the floating gate 7. After this, 90
Oxidation is performed at a temperature of 0 ° C. or higher to form the second gate insulating film 5 on the first polysilicon layer with a thickness of about 40 nm. Then, a second polysilicon layer having a thickness of about 400 nm is deposited on the second gate insulating film 5 by using the CVD method or the like,
Concentration of impurities in the polysilicon layer of 1 × 10 20 to 10 21 cm -3
Introduce a degree.

【0015】次に、まずドライエッチング法により第2
のポリシリコン層をエッチングし、チャネル領域8上に
延びるコントロールゲート6と、スリット領域10を形
成する。次に、セルフアライン技術を用いて、第2のゲ
ート絶縁膜5と第1のポリシリコン層をエッチングし、
コントロールゲート6の下に浮遊ゲート4を形成する。
また、以上の工程の途中に周辺の素子を形成する工程を
含ませても良い。
Next, first, a second dry etching method is performed.
The polysilicon layer is etched to form a control gate 6 extending above the channel region 8 and a slit region 10. Next, the second gate insulating film 5 and the first polysilicon layer are etched using the self-alignment technique,
The floating gate 4 is formed below the control gate 6.
In addition, a step of forming peripheral elements may be included in the middle of the above steps.

【0016】次に、コントロールゲート6、浮遊ゲート
4をマスクに1×1015cm-2程度のヒ素イオン等をセルフ
アラインで打ち込み、コントロールゲート6を挟む半導
体基板1上にソース領域2a、ドレイン領域2bを形成
する。最後に、CVD法等を用いて保護絶縁膜7を全面
に堆積させ、EPROMを形成する。
Next, using the control gate 6 and the floating gate 4 as a mask, arsenic ions of about 1 × 10 15 cm -2 are implanted by self-alignment to form a source region 2a and a drain region on the semiconductor substrate 1 with the control gate 6 interposed therebetween. 2b is formed. Finally, the protective insulating film 7 is deposited on the entire surface by using the CVD method or the like to form an EPROM.

【0017】保護絶縁膜7を形成後に、シリコーンオイ
ル槽に浸積し、加熱乾燥を行い、保護絶縁膜7上にシリ
コーン等による非常に薄い撥水性被膜11を形成する。
加熱乾燥を施すと、いち早く工程を終了することがで
き、作業を効率化できる。ここでは、シリコーンオイル
槽に浸積することによって保護絶縁膜7上にシリコーン
を塗布したが、この他、シリコーンオイルを噴霧塗布し
ても良い。また、塗布後加熱により乾燥させたが、この
他、風乾、自然乾燥によっても良く、更に、乾燥させず
に濡れたままの状態でも効果に変わりはない。
After forming the protective insulating film 7, the protective insulating film 7 is immersed in a silicone oil bath and dried by heating to form a very thin water-repellent coating 11 made of silicone or the like on the protective insulating film 7.
By heating and drying, the process can be completed quickly, and the work efficiency can be improved. Here, the silicone is applied onto the protective insulating film 7 by immersing it in a silicone oil tank, but in addition to this, the silicone oil may be applied by spraying. Further, although it is dried by heating after coating, it may be dried by air or by natural drying, and the effect is not changed even when it remains wet without being dried.

【0018】この他、シリコーン被覆の前に100℃以
上の熱処理を行い、一度放置などにより吸湿した絶縁膜
でも熱処理により水分焼き出し後に撥水性被膜11を形
成すると、含水率の少ない状態での保管が可能になる。
In addition, if the water-repellent coating 11 is formed after the moisture is baked out by heat treatment even on an insulating film that has absorbed moisture by leaving it for a while, it is stored in a state of low water content. Will be possible.

【0019】図6は、吸湿・透湿の程度を確認するため
に、EPROMの電荷保持率を計測した結果である。絶
縁膜に水分が含まれると、この水分が絶縁性を損なう原
因となって、電荷保持率を引き下げることになる。ここ
では、保護絶縁膜にPSG膜を使用し、湿度100%雰
囲気中の室温で24時間放置し、300℃の高温放置し
たときのもので、61は撥水性被膜を形成しない従来
例、62は本発明を用いた場合の結果である。従来例6
1では放置にともない電荷保持特性が急激に劣化してゆ
くのに対し、本発明を用いた場合72ではほぼ100%
の電荷保持率が保たれ、耐湿性に優れていることを確認
することができた。
FIG. 6 shows the result of measuring the charge holding ratio of the EPROM in order to confirm the degree of moisture absorption / moisture transmission. When the insulating film contains water, this water causes the deterioration of the insulating property and lowers the charge retention rate. Here, a PSG film is used as a protective insulating film, left for 24 hours at room temperature in an atmosphere of 100% humidity, and left at a high temperature of 300 ° C., 61 is a conventional example in which a water-repellent film is not formed, and 62 is It is a result when using this invention. Conventional example 6
In No. 1, the charge retention property deteriorates sharply with leaving, whereas in the case of using the present invention, it is almost 100% in 72.
It was confirmed that the charge retention rate was maintained and the moisture resistance was excellent.

【0020】また、図7は、テトラエチルオルトシリケ
ートを用いてプラズマCVD法により半導体基板上に成
膜したシリコン酸化膜を450℃で熱処理し、水分の焼
き出しを行った後、撥水性被膜を形成し、大気中に16
8時間放置したときの絶縁膜中の含水量の測定結果であ
る。横軸は真空加熱時の温度、縦軸は放出ガス中の水の
分圧を示し、71は撥水性被膜を持たない従来例で、7
2は本発明を用いた場合の結果である。図からも明らか
なように、従来例71では100℃〜200℃に水分放
出のピークを持ち、その他の温度でも水分放出量は極め
て多いが、本発明を用いた場合72はピークはなく、水
分放出がほとんど検出されず、撥水性被膜が酸化膜中へ
の吸湿・透湿を強力に阻止していることがわかる。ここ
では、CVD法により酸化膜を堆積したが、この他に、
スパッタリング法、液相成長法、塗布法等があるが、こ
れらの堆積法によって撥水性被膜を形成した絶縁膜でも
同様の結果がえられた。また、上述のようにして形成し
た撥水性被膜は電気絶縁性に優れており、絶縁膜上の電
極間の表面リークも抑制することができた。
Further, FIG. 7 shows that a silicon oxide film formed on a semiconductor substrate by a plasma CVD method using tetraethyl orthosilicate is heat-treated at 450 ° C. to bake out water, and then a water-repellent film is formed. 16 in the atmosphere
It is a measurement result of the water content in the insulating film when left for 8 hours. The horizontal axis represents the temperature during vacuum heating, the vertical axis represents the partial pressure of water in the released gas, and 71 represents the conventional example having no water-repellent coating.
2 is the result when the present invention is used. As is clear from the figure, the conventional example 71 has a water release peak at 100 ° C. to 200 ° C., and the amount of water release is extremely large at other temperatures. Almost no release was detected, indicating that the water-repellent coating strongly blocks moisture absorption and moisture permeation into the oxide film. Here, an oxide film is deposited by the CVD method, but in addition to this,
Although there are sputtering method, liquid phase growth method, coating method and the like, similar results were obtained with an insulating film having a water repellent film formed by these deposition methods. In addition, the water-repellent coating formed as described above was excellent in electrical insulation, and the surface leak between the electrodes on the insulating film could be suppressed.

【0021】特に、保護絶縁膜上に撥水性被膜を形成し
た場合は、この後のウエハー裏面研削工程、ウエハー切
断工程、検査工程、封止工程までの間の吸湿・透湿防止
に有効である。または、上記の工程の前工程として、本
発明の撥水性被膜形成工程を施すことにより、各工程間
での吸湿・透湿を防止することができ、耐久性を向上さ
せることができる。
In particular, when a water-repellent coating is formed on the protective insulating film, it is effective in preventing moisture absorption and moisture permeation during the subsequent wafer back surface grinding step, wafer cutting step, inspection step and sealing step. .. Alternatively, by performing the water-repellent coating forming step of the present invention as a step prior to the above-mentioned steps, it is possible to prevent moisture absorption / moisture transmission between the steps and improve durability.

【0022】以上では、EPROMについての例を説明
してきたが、その他、MOS型FETなど、さまざまな
半導体素子の絶縁膜上の被膜に用いることができる。ま
た、封止工程の前工程として本発明を用いることにより
半導体素子の耐久性の向上、特性変化の阻止が可能であ
る。 (実施例2)以下、本発明の第2の実施例を詳細に説明
する。本実施例は、本発明をコンタクト孔等の開口工程
に用いるものである。
Although the example of the EPROM has been described above, it can be used as a film on the insulating film of various semiconductor elements such as a MOS type FET. Further, by using the present invention as the pre-process of the sealing process, it is possible to improve the durability of the semiconductor element and prevent the characteristic change. (Embodiment 2) Hereinafter, a second embodiment of the present invention will be described in detail. The present embodiment uses the present invention in the step of opening contact holes and the like.

【0023】従来の方法により、図8のような、MOS
型FETを形成する。即ち、半導体基板51上に通常の
LOCOS工程により素子分離領域53を形成し、素子
予定領域にCVD法等を用いて膜厚30nm程度のゲート絶
縁膜54を形成する。次に、ポリシリコン等を400nm 程
度堆積し、所定のゲートパターンをマスクとしてエッチ
ングを行い、ゲート電極55を形成する。この後、ゲー
ト電極55をマスクとして、例えばヒ素を2×1015cm-2
程度イオン注入し、ソース領域52a、ドレイン領域5
2bを形成し、200nm 程度の絶縁膜56を堆積させる。
According to the conventional method, as shown in FIG.
Form a FET. That is, the element isolation region 53 is formed on the semiconductor substrate 51 by a normal LOCOS process, and the gate insulating film 54 having a film thickness of about 30 nm is formed in the element planned region by the CVD method or the like. Next, polysilicon or the like is deposited to a thickness of about 400 nm, and etching is performed using a predetermined gate pattern as a mask to form a gate electrode 55. Then, using the gate electrode 55 as a mask, for example, arsenic is added at 2 × 10 15 cm -2.
Source region 52a, drain region 5
2b is formed and an insulating film 56 of about 200 nm is deposited.

【0024】次に、ソース領域52a、ドレイン領域5
2b上のゲート絶縁膜54、絶縁膜56をエッチングし
てコンタクト孔57を形成する。ここで、絶縁膜56に
吸湿性・透湿性があるとコンタクト孔57側壁部が水分
の浸透や金属等の汚染を受け易く、後に素子特性の劣化
や電極材料にコロージョンが生じる恐れがある。
Next, the source region 52a and the drain region 5
A contact hole 57 is formed by etching the gate insulating film 54 and the insulating film 56 on 2b. Here, if the insulating film 56 has hygroscopicity / moisture permeability, the side wall of the contact hole 57 is likely to be permeated with water or contaminated with metal or the like, which may result in deterioration of element characteristics or corrosion of the electrode material.

【0025】そこで、エッチング溶液等の絶縁膜加工溶
液とシリコーンオイルを一つの槽に入れ、シリコーンオ
イルの比重が1よりも軽いことから、処理液とシリコー
ンオイルを2層とした処理槽にコンタクト孔57を除く
部分をマスクした半導体基板51を浸し、エッチング処
理を行い、コンタクト孔57を形成後、半導体基板51
引き上げの際にシリコーンオイル層を通過させて、熱処
理を施すことにより、コンタクト孔57側壁部に薄い撥
水性膜59を形成することができる。または、エッチン
グ処理後、水洗用の水槽を水とシリコーンの2層とし、
水洗後にシリコーン層を通し、シリコーンからなる撥水
性被膜59を形成しても良い。もちろん、エッチング処
理後、引き続きシリコーンオイルを噴霧塗布するなどの
方法によって撥水性膜を形成することもできる。また、
熱処理をしてシリコーンオイルを乾燥させたが、風乾、
自然乾燥でもよい。
Therefore, an insulating film processing solution such as an etching solution and silicone oil are put in one tank, and since the specific gravity of the silicone oil is less than 1, a contact hole is formed in the processing tank having two layers of the processing solution and the silicone oil. The semiconductor substrate 51 masked at a portion other than 57 is dipped and etched to form a contact hole 57, and then the semiconductor substrate 51 is formed.
A thin water-repellent film 59 can be formed on the side wall of the contact hole 57 by passing through the silicone oil layer and performing heat treatment during pulling up. Alternatively, after the etching treatment, the water tank for washing is made of two layers of water and silicone,
After washing with water, the silicone layer may be passed through to form the water-repellent coating 59 made of silicone. Of course, after the etching treatment, the water-repellent film can be formed by a method such as spray coating silicone oil. Also,
It was heat treated to dry the silicone oil, but it was air dried,
Natural drying is also acceptable.

【0026】次に、従来からのように、電極材との接面
となるソース領域52a、ドレイン領域b表面上の撥水
性被膜59をアルゴンスパッタリング法等で取り除きい
た後、電極となるAlなどの金属をスパッタリング法等
で堆積させ、電極58を形成し、MOS型FETを完成
する。撥水性被膜59は薄く、容易に取り除くことが可
能である。
Next, as in the prior art, after removing the water-repellent coating 59 on the surfaces of the source region 52a and the drain region b, which are the contact surfaces with the electrode material, by an argon sputtering method or the like, Al or the like which becomes the electrode is removed. A metal is deposited by a sputtering method or the like to form an electrode 58, and the MOS type FET is completed. The water-repellent coating 59 is thin and can be easily removed.

【0027】このようにしてコンタクト孔側壁部に薄い
撥水性膜59を形成しておくと、絶縁膜中に水分が浸透
することがなく、電荷保持特性等の素子特性の劣化を阻
止できる。また、電極材料にコロージョンのような侵食
や析出を防ぐことができる。また、撥水性被膜59によ
って金属等の汚染も防ぐことが可能である。
By forming the thin water-repellent film 59 on the side wall of the contact hole in this manner, moisture does not penetrate into the insulating film, and deterioration of device characteristics such as charge retention characteristics can be prevented. Further, it is possible to prevent erosion and precipitation such as corrosion on the electrode material. In addition, the water-repellent coating 59 can prevent contamination of metals and the like.

【0028】以上では、MOS型FETに本発明を用い
た場合について説明してきたが、この他、コンタクト孔
や電極パッドの開口工程を要する場合について広く応用
が可能である。
Although the case where the present invention is used for the MOS type FET has been described above, the present invention can be widely applied to cases where the step of opening contact holes and electrode pads is required.

【0029】[0029]

【発明の効果】以上の説明からも明らかなように、絶縁
膜表面に撥水性被膜を形成しておくことにより、撥水性
被膜が水分をはじき、吸湿・透湿を防止することができ
る。これにより、電荷保持特性等、素子特性の変化、電
極配線等のコロージョン反応を良好に抑えることができ
る。また、撥水性の被膜は金属等の汚染も有効に抑える
ことができる。
As is apparent from the above description, by forming a water-repellent coating on the surface of the insulating film, the water-repellent coating repels water and prevents moisture absorption and moisture permeation. This makes it possible to favorably suppress changes in device characteristics such as charge retention characteristics and corrosion reactions such as electrode wiring. Further, the water-repellent coating can effectively suppress the contamination of metals and the like.

【0030】さらに、吸湿性・透湿性のない絶縁膜にお
いても、絶縁膜表面の水分の吸着を防ぐと同時に、撥水
性被膜に絶縁性があることから電極間の表面リークを有
効に抑える。
Further, even in the case of an insulating film having no hygroscopicity or moisture permeability, the adsorption of water on the surface of the insulating film is prevented, and at the same time, the surface leakage between the electrodes is effectively suppressed because the water-repellent film has an insulating property.

【0031】この他、絶縁膜に電極等のための開口部を
設ける場合にも、孔側壁部に露出した絶縁膜表面上に撥
水性被膜を形成しておくことにより、工程途中での絶縁
膜への吸湿・透湿を防止することができ、素子特性の変
化を防ぎ、素子の耐性を向上させることができる。ま
た、工程間で遅滞が生じたとしても、絶縁膜表面上に撥
水被膜を形成してあるので吸湿・透湿等を防止すること
ができる。
In addition, when an opening for an electrode or the like is provided in the insulating film, a water-repellent coating is formed on the surface of the insulating film exposed on the side wall of the hole, so that the insulating film is formed during the process. It is possible to prevent moisture absorption and moisture permeation to the element, prevent changes in element characteristics, and improve element resistance. Further, even if there is a delay between the steps, since the water-repellent coating is formed on the surface of the insulating film, it is possible to prevent moisture absorption and moisture permeation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すEPROMの平面
図の一部である。
FIG. 1 is a part of a plan view of an EPROM showing a first embodiment of the present invention.

【図2】図1中のAA’に沿う断面の一部を示す断面図
である。
FIG. 2 is a cross-sectional view showing a part of a cross section taken along AA ′ in FIG.

【図3】図1中のBB’に沿う断面の一部を示す断面図
である。
FIG. 3 is a cross-sectional view showing a part of a cross section taken along BB ′ in FIG.

【図4】直鎖状ポリジオルガノシロキサンの一般式であ
る。ここに、Rは同一または相異なる置換または非置換
の1価の炭化水素基で、主にメチル基(CH3 )、フェ
ニル基(C6 5 )、長鎖アルキル基(Cn 2n+1)、
トリフルオロプロピル基(CF3 CH2 CH2 )等であ
る。また、lは0以上の整数を示す。
FIG. 4 is a general formula for linear polydiorganosiloxanes. Here, R is the same or different substituted or unsubstituted monovalent hydrocarbon group, and is mainly a methyl group (CH 3 ), a phenyl group (C 6 H 5 ), a long-chain alkyl group (C n H 2n + 1 ),
And a trifluoropropyl group (CF 3 CH 2 CH 2 ). In addition, l represents an integer of 0 or more.

【図5】環状ポリジオルガノシロキサンの一般式であ
る。ここに、Rは同一または相異なる置換または非置換
の1価の炭化水素基で、主にメチル基(CH3)、フェ
ニル基(C6 5 )、長鎖アルキル基(Cn 2n+1)、
トリフルオロプロピル基(CF3 CH2 CH2 )等であ
る。また、mは3以上の整数を示す。
FIG. 5 is a general formula for cyclic polydiorganosiloxanes. Here, R is the same or different substituted or unsubstituted monovalent hydrocarbon group, and is mainly a methyl group (CH 3 ), a phenyl group (C 6 H 5 ), a long-chain alkyl group (C n H 2n + 1 ),
And a trifluoropropyl group (CF 3 CH 2 CH 2 ). Further, m represents an integer of 3 or more.

【図6】本発明の第1の実施例による300℃の高温放
置時の電荷保持率を示す実験結果である。
FIG. 6 is an experimental result showing the charge retention rate when left at a high temperature of 300 ° C. according to the first embodiment of the present invention.

【図7】酸化膜形成後、大気中に168時間放置し、真
空加熱したときの放出ガス中の水の分圧を示す実験結果
である。
FIG. 7 is an experimental result showing the partial pressure of water in the released gas when the film is left in the air for 168 hours and vacuum-heated after the oxide film is formed.

【図8】本発明の第2の実施例を示す断面図である。FIG. 8 is a sectional view showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、51 半導体基板 2a、52a ソース領域 2b、52b ドレイン領域 3、53 第1ゲート絶縁膜 4 浮遊ゲート 5 第2のゲート絶縁膜 6 コントロールゲート 7 保護絶縁膜 8 チャネル領域 9 素子分離領域 10 スリット領域 11、59 撥水性被膜 54 ゲート絶縁膜 55 ゲート電極 56 絶縁膜 57 コンタクト孔 58 電極 61 絶縁膜中の含水量を従来例について計測した結果
である。 62 絶縁膜中の含水量を本発明を用いた場合について
計測した結果である。 71 従来のEPROMの電荷保持率を計測した結果で
ある。 72 本発明の第1の実施例のEPROMの電荷保持率
を計測した結果である。
1, 51 Semiconductor substrate 2a, 52a Source region 2b, 52b Drain region 3, 53 First gate insulating film 4 Floating gate 5 Second gate insulating film 6 Control gate 7 Protective insulating film 8 Channel region 9 Element isolation region 10 Slit region 11, 59 Water-repellent coating 54 Gate insulating film 55 Gate electrode 56 Insulating film 57 Contact hole 58 Electrode 61 Results of measuring the water content in the insulating film for a conventional example. 62 is the result of measuring the water content in the insulating film in the case of using the present invention. 71 This is the result of measuring the charge retention rate of the conventional EPROM. 72 is the result of measuring the charge retention rate of the EPROM of the first example of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】半導体基板と、 前記半導体基板上に形成された絶縁膜と、 前記絶縁膜表面上に形成された撥水性被膜とを有するこ
とを特徴とする半導体装置。
1. A semiconductor device comprising a semiconductor substrate, an insulating film formed on the semiconductor substrate, and a water-repellent coating formed on the surface of the insulating film.
【請求項2】半導体基板上に絶縁膜を形成する工程と、 前記絶縁膜表面上に撥水性被膜を形成する工程とを有す
ることを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device, comprising: a step of forming an insulating film on a semiconductor substrate; and a step of forming a water repellent coating film on the surface of the insulating film.
【請求項3】前記絶縁膜が最外層の保護絶縁膜であるこ
とを特徴とする特許請求の範囲請求項1乃至請求項2記
載の半導体装置またはその製造方法。
3. The semiconductor device according to claim 1, wherein the insulating film is an outermost protective insulating film, or a method for manufacturing the same.
【請求項4】前記絶縁膜表面が開口された孔側壁部に露
出した絶縁膜表面であることを特徴とする特許請求の範
囲請求項1乃至請求項2記載の半導体装置またはその製
造方法。
4. The semiconductor device according to claim 1 or 2, wherein the surface of the insulating film is the surface of the insulating film exposed at the side wall of the opened hole.
【請求項5】前記絶縁膜表面上に有機硅素化合物を塗布
した後に、加熱乾燥して前記撥水性被膜を形成すること
を特徴とする特許請求の範囲請求項2記載の半導体装置
の製造方法。
5. The method for manufacturing a semiconductor device according to claim 2, wherein the water repellent film is formed by applying an organic silicon compound on the surface of the insulating film and then heating and drying.
【請求項6】エッチング処理液または洗浄用水よりも比
重の軽い有機硅素化合物と前記エッチング処理液または
洗浄用水とを一槽に貯め、前記絶縁膜をエッチング処理
した後で、前記半導体基板を前記エッチング処理液また
は洗浄用水から引き上げるときに前記硅素化合物層を通
過させることによって前記撥水性被膜を形成することを
特徴とする特許請求の範囲請求項2記載の半導体装置の
製造方法。
6. An organic silicon compound having a specific gravity lower than that of an etching treatment liquid or cleaning water and the etching treatment liquid or cleaning water are stored in one tank, and after the insulating film is subjected to an etching treatment, the semiconductor substrate is subjected to the etching treatment. 3. The method for manufacturing a semiconductor device according to claim 2, wherein the water-repellent coating is formed by passing through the silicon compound layer when the water repellent film is pulled up from the treatment liquid or the cleaning water.
【請求項7】前記撥水性被膜は有機硅素化合物であるこ
とを特徴とする特許請求の範囲請求項1乃至請求項4記
載の半導体装置またはその製造方法。
7. A semiconductor device or a method for manufacturing the same according to claim 1, wherein the water-repellent coating is an organic silicon compound.
【請求項8】前記有機硅素化合物は直鎖状ポリオルガノ
シロキサン、または環状ポリオルガノシロキサンから選
ばれた少なくとも1種のポリオルガノシロキサンである
ことを特徴とする特許請求の範囲請求項7記載の半導体
装置またはその製造方法。
8. The semiconductor according to claim 7, wherein the organosilicon compound is at least one polyorganosiloxane selected from linear polyorganosiloxanes and cyclic polyorganosiloxanes. Device or manufacturing method thereof.
JP26164091A 1991-10-09 1991-10-09 Method for manufacturing semiconductor device Expired - Fee Related JP3150378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26164091A JP3150378B2 (en) 1991-10-09 1991-10-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26164091A JP3150378B2 (en) 1991-10-09 1991-10-09 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05102127A true JPH05102127A (en) 1993-04-23
JP3150378B2 JP3150378B2 (en) 2001-03-26

Family

ID=17364708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26164091A Expired - Fee Related JP3150378B2 (en) 1991-10-09 1991-10-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3150378B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176098B1 (en) 1997-06-23 2001-01-23 Mitsubishi Denki Kabushiki Kaisha Water vaporization type cooler for heat-generating element
US6959490B2 (en) 2002-08-12 2005-11-01 Seiko Epson Corporation Method of manufacturing silicon device, method of manufacturing liquid jet head and liquid jet head
JP2006111739A (en) * 2004-10-15 2006-04-27 Jsr Corp Composition for surface-hydrophobizing use, surface-hydrophobizing method, semiconductor device and method for producing the same
WO2007029971A1 (en) * 2005-09-07 2007-03-15 Iferro Co., Ltd. Method of forming organic layer on semiconductor substrate
WO2007032621A1 (en) * 2005-09-12 2007-03-22 Iferro Co., Ltd. Ferroelectric memory device and method of manufacturing the same
JP2012182256A (en) * 2011-02-28 2012-09-20 Nichia Chem Ind Ltd Light-emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176098B1 (en) 1997-06-23 2001-01-23 Mitsubishi Denki Kabushiki Kaisha Water vaporization type cooler for heat-generating element
US6959490B2 (en) 2002-08-12 2005-11-01 Seiko Epson Corporation Method of manufacturing silicon device, method of manufacturing liquid jet head and liquid jet head
JP2006111739A (en) * 2004-10-15 2006-04-27 Jsr Corp Composition for surface-hydrophobizing use, surface-hydrophobizing method, semiconductor device and method for producing the same
WO2007029971A1 (en) * 2005-09-07 2007-03-15 Iferro Co., Ltd. Method of forming organic layer on semiconductor substrate
WO2007032621A1 (en) * 2005-09-12 2007-03-22 Iferro Co., Ltd. Ferroelectric memory device and method of manufacturing the same
US8120082B2 (en) 2005-09-12 2012-02-21 University of Seoul, Foundation of Industry-Academic Cooperation Ferroelectric memory device and method for manufacturing the same
JP2012182256A (en) * 2011-02-28 2012-09-20 Nichia Chem Ind Ltd Light-emitting device

Also Published As

Publication number Publication date
JP3150378B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
JP4104676B2 (en) In situ cleaning of native oxide from silicon surface
KR100415523B1 (en) Method of forming a semiconductor device
US7816688B2 (en) Semiconductor device and production method therefor
CN1282993C (en) United method and apparatus to prevent lateral oxidation in a transistor utilizing an ultra thin oxygen-diffusion barrier
KR100266428B1 (en) Semiconductor device and method for manufacturing
US6117351A (en) Method for etching dielectric films
CN1825543A (en) Methods for in-situ cleaning of semiconductor substrates and methods of semiconductor device fabrication employing the same
US20070089761A1 (en) Non-plasma method of removing photoresist from a substrate
JP3150378B2 (en) Method for manufacturing semiconductor device
US3410736A (en) Method of forming a glass coating on semiconductors
US5683946A (en) Method for manufacturing fluorinated gate oxide layer
IE820559L (en) Production of semi-conductors
JPS62204575A (en) Thin film semiconductor device and manufacture thereof
JP2538830B2 (en) A method for partial oxidation of silicon using a ceramic barrier layer.
EP0980091B1 (en) A method for decreasing channel hot carrier degradation
JPH06350078A (en) Semiconductor device and manufacture thereof
CN116666236B (en) Surface passivation method of semiconductor material
JPH05102126A (en) Semiconductor device and manufacture thereof
CN111863593B (en) Stress film with gradient distribution of chemical components, semiconductor device and forming method thereof
JP2000252225A (en) Method for cleaning wafer surface
JPH0684865A (en) Dry cleaning of semiconductor device
KR0140808B1 (en) Thin film transistor
JPS6250974B2 (en)
KR100217905B1 (en) Method of manufacturing semiconductor device
KR100219071B1 (en) A cleaning method of semiconductor substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees