JPH0499753A - Production of omega-hydroxy fatty acid ester - Google Patents

Production of omega-hydroxy fatty acid ester

Info

Publication number
JPH0499753A
JPH0499753A JP2215930A JP21593090A JPH0499753A JP H0499753 A JPH0499753 A JP H0499753A JP 2215930 A JP2215930 A JP 2215930A JP 21593090 A JP21593090 A JP 21593090A JP H0499753 A JPH0499753 A JP H0499753A
Authority
JP
Japan
Prior art keywords
ruthenium
rhenium
reaction
tin
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2215930A
Other languages
Japanese (ja)
Other versions
JP2891430B2 (en
Inventor
Fujio Mizukami
富士夫 水上
Shuichi Niwa
修一 丹羽
Atsushi Makita
淳 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Eneos Corp
Original Assignee
Agency of Industrial Science and Technology
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2215930A priority Critical patent/JP2891430B2/en
Publication of JPH0499753A publication Critical patent/JPH0499753A/en
Application granted granted Critical
Publication of JP2891430B2 publication Critical patent/JP2891430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To use inexpensive raw materials and to efficiently produce the title compound by a relative simple process at low cost by reducing a long-chain diacid monoester with hydrogen in the presence of a ruthenium-based and/or a rhenium-based catalyst. CONSTITUTION:A long-chain diacid monoester (e.g. pentadecane diacid monomethyl ester) shown by formula I (R is alkyl; n is 8-16 integer) is brought into contact with hydrogen in the presence of a ruthenium-based catalyst (especially preferably one containing ruthenium and tin) and/ or a rhenium-based catalyst (especially preferably one containing rhenium and tin) to give an omega- hydroxy fatty acid ester (e.g. omega-hydroxypentadecanoic acid methyl ester) shown by formula II. Advantageously the compound shown by formula I is readily produced. The omega-hydroxy fatty acid ester is useful as a raw material for drugs, a synthetic raw material for macrocyclic lactones and a raw material for polymers, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は医薬品の原料あるいは香料等として用いられる
大環状ラクトンの合成原料として有用であり、更にはポ
リマー原料としての用途も広い、ω−ヒドロキシ脂肪酸
エステルを製造する方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is useful as a raw material for the synthesis of macrocyclic lactones used as raw materials for pharmaceuticals or fragrances, etc., and also has a wide range of applications as a raw material for polymers. The present invention relates to a method for producing fatty acid ester.

[従来の技術] ω−ヒドロキシ脂肪酸のa2造方法として、従来、ω−
ヒドロキシもしくは、ω−アシロキシ−アルキル−γ−
ブチロラクトンを、水添分解触媒の存在下、水素ガスの
共存下で接触反応せしめる方法(特公昭61−3776
号公報)、あるいは13−オキサ−ビシクロ[10,4
,0]−へキサデセン[1(12)]をラクトンに転化
し、当該ラクトンをウォルフーキシナー法又は、ファン
ーミノロン法によりラクトン環を開環する方法(特公明
131−21474号公報)等が提案されている。
[Prior art] Conventionally, as a method for producing a2 of ω-hydroxy fatty acids, ω-
Hydroxy or ω-acyloxy-alkyl-γ-
A method of catalytically reacting butyrolactone in the presence of a hydrogen cracking catalyst and in the coexistence of hydrogen gas (Japanese Patent Publication No. 61-3776
), or 13-oxa-bicyclo[10,4
,0]-Hexadecene[1(12)] is converted into a lactone, and the lactone ring is opened by the Wolffukisiner method or the van-minolone method (Japanese Patent Publication No. 131-21474), etc. have been proposed. ing.

上記方法はいずれも複雑な化合物を出発原料とするため
、高価な原料を用いることになり、延いては製造コスト
が高くなるという問題を有していた。
Since all of the above methods use complex compounds as starting materials, they have had the problem of using expensive raw materials, which in turn increases production costs.

又、このほかにジカルボン酸モノアルキルエステルを銅
−クロム酸化物触媒(特開昭63−88154号)ある
いはコバルト系触媒(特開昭63−301845号)の
存在下に水素と接触させる方法が提案されている。
In addition, a method has been proposed in which dicarboxylic acid monoalkyl ester is brought into contact with hydrogen in the presence of a copper-chromium oxide catalyst (Japanese Unexamined Patent Publication No. 63-88154) or a cobalt catalyst (Japanese Unexamined Patent Publication No. 63-301845). has been done.

しかしながら、これらの方法は水素圧150kg/cm
’以上の比較的高圧を要する反応であるので、その高圧
に耐えられる装置を必要とすることと、金属酸化物とし
て5〜10重量%もの大量の触媒を必要とする反応であ
ることから経済的に不利であった。
However, these methods require a hydrogen pressure of 150 kg/cm
Since the reaction requires relatively high pressure, it requires equipment that can withstand such high pressure, and it is economical because it requires a large amount of catalyst, 5 to 10% by weight as a metal oxide. was disadvantageous.

[発明が解決しようとする課題] 本発明は前記の方法の欠点を解決したもので、本発明の
目的は、医薬品の原料あるいは香料等として用いられる
大環状ラクトンの合成原料として有用であり、更にはポ
リマー原料としての用途も広い、ω−ヒドロキシ脂肪酸
エステルを有利に製造する方法を提供することにある。
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the above-mentioned methods, and an object of the present invention is to provide a method useful as a raw material for the synthesis of macrocyclic lactones used as raw materials for pharmaceuticals or fragrances, etc. The object of the present invention is to provide a method for advantageously producing ω-hydroxy fatty acid esters, which have a wide range of uses as polymer raw materials.

[課題を解決するための手段] 本発明者はかかる問題を解決すべく鋭意検討した結果、
特定の触媒の存在下温和な反応条件でω−とドロキシ脂
肪酸エステルを高選択率かつ高収率に製造できることを
見出した。
[Means for Solving the Problems] As a result of intensive studies to solve the problems, the present inventor has found that
We have discovered that ω- and droxy fatty acid esters can be produced with high selectivity and yield under mild reaction conditions in the presence of a specific catalyst.

すなわち、本発明は下記の一般式(1)%式%(1) (式中Rはアルキル基を示し、nは8〜16の整数を示
す)で表される長鎖二数モノエステルをルテニウム系及
び/又はレニウム系触媒の存在下に水素と接触させるこ
とを特徴とする次の一般式(IT) R−0−C−+CIIz  +o CH20H(II)
(式はRSnは式(1)のものと同じ)で表されるω−
ヒドロキシ脂肪酸エステルの製造方法である。
That is, the present invention uses a long chain dimonoester represented by the following general formula (1) % formula % (1) (wherein R represents an alkyl group and n represents an integer of 8 to 16) to ruthenium. The following general formula (IT) R-0-C-+CIIz +o CH20H(II) is characterized in that it is brought into contact with hydrogen in the presence of a rhenium-based catalyst and/or a rhenium-based catalyst.
(The formula is RSn is the same as that in formula (1)) ω-
This is a method for producing hydroxy fatty acid ester.

本発明に用いられる原料の長鎖二数モノエステルは、−
武威(1)で示される化合物であればいずれでもよい。
The raw material long-chain dimonoester used in the present invention is -
Any compound represented by Wuwei (1) may be used.

このモノエステルはアルカン二酸をアルコールでエステ
ル化し、これを例えば水酸化バリウムを用いて、バリウ
ムのモノ塩とし、次いで当該バリウムを酸で置換するこ
とにより容易に得ることができる。
This monoester can be easily obtained by esterifying an alkanedioic acid with an alcohol, converting it into a barium monosalt using, for example, barium hydroxide, and then replacing the barium with an acid.

上記エステル化のだめのアルコールは炭素数1〜4の低
級アルコールを用いることが、エステル化物の分離精製
を容易にできるために好ましい。
It is preferable to use a lower alcohol having 1 to 4 carbon atoms as the alcohol for the esterification because the esterified product can be easily separated and purified.

なお、アルカン二酸は、相当する炭素数のアルカンを微
生物の存在下に酸化することにより比較的安値に生産さ
れている。
Note that alkanedioic acids are produced at relatively low prices by oxidizing alkanes having the corresponding number of carbon atoms in the presence of microorganisms.

本発明に用いられるレニウム系触媒とは、レニウム金属
11体もしくはレニウム化合物あるいはこれと他の金属
触媒、例えば、すず、ルテニウム、・・・・・・等との
混合触媒をいうが、本発明に最も好ましく使用されるの
は、レニウム、すすを含有するレニウム系触媒である。
The rhenium-based catalyst used in the present invention refers to a rhenium metal 11 substance, a rhenium compound, or a mixed catalyst of this and other metal catalysts such as tin, ruthenium, etc. Most preferably used are rhenium-based catalysts containing rhenium and soot.

又、本発明に用いられるルテニウム系触媒とは、ルテニ
ウム金属単体もしくはその化合物あるいはこれと他の金
属触媒例えば、すす、レニウム等との混合触媒をいうが
、本発明に最も好ましく使用されるのはルテニウム、す
すを含Hするルテニウム系触媒である。
Further, the ruthenium-based catalyst used in the present invention refers to a ruthenium metal alone, a compound thereof, or a mixed catalyst of this and other metal catalysts such as soot, rhenium, etc. Most preferably used in the present invention is It is a ruthenium-based catalyst that contains ruthenium and soot.

上記のレニウム系及びルテニウム系触媒は含浸法や沈澱
法及びコロイドゾルを出発物質に用いる従来のゾル・ゲ
ル法等の従来法により調製しても良く、又、近年新たに
開発された化学混合法(又は改良ゾル−ゲル法)等によ
り調製してもよい。
The above rhenium-based and ruthenium-based catalysts may be prepared by conventional methods such as impregnation method, precipitation method, and conventional sol-gel method using colloidal sol as a starting material. or modified sol-gel method).

含浸法における触媒の調製では、ルテニウム、レニウム
及びすず化合物は水及び有機溶奴に溶解しやすいもので
あればいずれも使用可能である。ルテニウム化合物の例
としては、例えば三塩化ルテニウム水和物、トリスアセ
チルアセトナートルテニウム、四酸化ルテニウム、ルテ
ニラムカルボニル、塩化ルテニウムアンモニウム等を挙
げることができる。又、レニウム化合物の例としては、
例えば塩化レニウム、オキシ塩化レニウム、臭化レニウ
ム、オキシ臭化レニウム、七酸化ニレニウム、過レニウ
ム酸アンモニウム等を挙げることができる。
In preparing the catalyst using the impregnation method, any ruthenium, rhenium, or tin compound can be used as long as it is easily soluble in water and organic melt. Examples of the ruthenium compound include ruthenium trichloride hydrate, ruthenium trisacetylacetonate, ruthenium tetroxide, ruthenium carbonyl, and ruthenium ammonium chloride. In addition, examples of rhenium compounds include:
Examples include rhenium chloride, rhenium oxychloride, rhenium bromide, rhenium oxybromide, nyrhenium heptoxide, and ammonium perrhenate.

そしてすず化合物の例としては、例えば塩化第一すず、
塩化第二すず、臭化すず、酢酸すずを初めとする有機酸
すず、すずテトラエトキシドを初めとするすずアルコキ
シドなどを挙げることができるが、水及び有機溶媒に可
溶であればよく、これら例示した化合物に限定されるも
のではない。
Examples of tin compounds include stannous chloride,
Examples include tin chloride, tin bromide, organic acids such as tin acetate, and tin alkoxides such as tin tetraethoxide. It is not limited to the exemplified compounds.

又、担体としてはけいそう土、アルミナ、シリカゲル、
ジルコニア、チタニア等の公知のものがいずれも使用で
きる。
In addition, as a carrier, diatomaceous earth, alumina, silica gel,
Any known material such as zirconia or titania can be used.

化学混合法における触媒の調製では、ルテニウム化合物
、レニウム化合物及びすず化合物は有機溶媒に溶解し易
いものやアルミニウム化合物、ケイ素化合物、チタニウ
ム化合物、ジルコニウム化合物あるいはニオビウム化合
物などと反応して有機溶媒に可溶となるものであればい
ずれも使用可能である。ルテニウム化合物の例としては
、例えば三塩化ルテニウム水和物、トリスアセチルアセ
トナートルテニウム、四酸化ルテニウム、ルテニウムカ
ルボニルなどを、レニウム化合物の例としては、例えば
塩化レニウム、オキシ塩化レニウム、臭化レニウム、オ
キシ臭化レニウム、七酸化ニレニウム、過レニウム酸ア
ンモニウムなどを、そしてすず化合物の例としては塩化
すず、臭化すず、酢酸すずを初めとする有機酸すず、す
ずテトラエトキシドを初めとするすずアルコキシドなど
をそれぞれ挙げることができるが、有機溶媒に可溶であ
ればよく、これら例示した化合物に限定されるものでは
ない。
In the preparation of catalysts using the chemical mixing method, ruthenium compounds, rhenium compounds, and tin compounds are easily soluble in organic solvents, and react with aluminum compounds, silicon compounds, titanium compounds, zirconium compounds, or niobium compounds to dissolve them in organic solvents. Any of the following can be used. Examples of ruthenium compounds include ruthenium trichloride hydrate, ruthenium trisacetylacetonate, ruthenium tetroxide, and ruthenium carbonyl. Examples of rhenium compounds include rhenium chloride, rhenium oxychloride, rhenium bromide, and ruthenium oxychloride. Examples of tin compounds include tin chloride, tin bromide, organic acids such as tin acetate, and tin alkoxides such as tin tetraethoxide. However, the compound is not limited to these exemplified compounds as long as it is soluble in an organic solvent.

本発明に最も好ましく使用されるルテニウム又はレニウ
ム、及びすず含有固体触媒では触媒調製に用いるルテニ
ウム又はレニウム化合物、及びすず化合物の使用量は、
特に規定はしない。
In the case of the ruthenium- or rhenium- and tin-containing solid catalyst most preferably used in the present invention, the amounts of the ruthenium- or rhenium compound and the tin compound used for catalyst preparation are as follows:
There are no particular regulations.

しかし、使用量が余りにも少ないと最終的に得られる固
体触媒中のルテニウム又はレニウムやすずの含量が少な
くなり触媒の活性が落ちるし、又、多すぎると触媒は余
りにも高価となり実用的ではなくなるので、最終的に得
られる触媒においてルテニウム又はレニウム、及びすす
の含量がそれぞれを金属としてみたときに、ルテニウム
又はレニウムでは0.5νt9oから30νt%、すず
ては0.5vt%から70vt%の範囲になるように使
用量を設定するのが好ましい。又、ルテニウム又はレニ
ウムとすすの相対含量については、原子比ですず/ルテ
ニウム又はレニウムが0.旧から10、より詳しくは0
.03から 3の間になるようにするのが好ましい。
However, if the amount used is too small, the content of ruthenium, rhenium, or tin in the final solid catalyst will decrease, reducing the activity of the catalyst, and if it is too large, the catalyst will become too expensive to be practical. In the final catalyst, the content of ruthenium or rhenium and soot is in the range of 0.5vt% to 30vt% for ruthenium or rhenium, and 0.5vt% to 70vt% for tin, when each is considered as a metal. It is preferable to set the usage amount as follows. Regarding the relative content of ruthenium or rhenium and soot, the atomic ratio of tin/ruthenium or rhenium is 0. 10 from old, 0 for more details
.. It is preferable to set the value between 03 and 3.

触媒は必要に応じ適宜、焼成や還元などの操作を施し、
使用する。
The catalyst is subjected to operations such as calcination and reduction as necessary.
use.

本発明は懸濁床、流動床、固定床のいずれの方法でも適
宜採用し得るが、その場合の触媒形状は各反応方法に適
した型に成型し用いる。
In the present invention, any of the suspended bed, fluidized bed, and fixed bed methods can be adopted as appropriate, and the catalyst shape in that case is molded into a mold suitable for each reaction method.

ω−ヒドロキシ脂肪酸エステルへの水素化還元方法は、
次のような反応条件で行われる。反応温度は150〜3
50℃が好ましいが、特に好ましいのは200〜300
℃である。反応圧力は水素圧lO〜300kg/cm 
2が好ましいか、特に好ましいのは20〜150kg/
cm’である。還元反応は上記条件範囲内に限定される
ものではないが、水素圧を10kg78m2以下、温度
を150℃以下とすると、還元反応速度がおそくなり、
反応時間が長びくために実用上望ましくない。反応温度
及び水素圧は高い方が反応速度が上昇するのでよいが、
反応温度が350℃を越えると原料及び生成物の分解を
生じ収率が低下するので好ましくない。
The hydrogenation reduction method to ω-hydroxy fatty acid ester is
The reaction is carried out under the following reaction conditions. The reaction temperature is 150-3
The temperature is preferably 50°C, particularly preferably 200 to 300°C.
It is ℃. The reaction pressure is hydrogen pressure 1O~300kg/cm
2 is preferred, and particularly preferred is 20 to 150 kg/
cm'. Although the reduction reaction is not limited to the above condition range, if the hydrogen pressure is 10 kg 78 m2 or less and the temperature is 150 ° C or less, the reduction reaction rate will be slow.
This is practically undesirable because the reaction time is prolonged. It is better to have a higher reaction temperature and hydrogen pressure because the reaction rate will increase.
If the reaction temperature exceeds 350°C, the raw materials and products will decompose and the yield will decrease, which is not preferable.

又、水素圧を300kg/cw+ 2以上とした場合反
応速度の顕著な向上は期待できず、これ以上の水素圧は
経済性及び安全上の面から好ましくない。
Further, if the hydrogen pressure is set to 300 kg/cw+2 or more, no significant improvement in reaction rate can be expected, and a hydrogen pressure higher than this is not preferable from the economical and safety standpoints.

このような反応条件は原料である長鎖二数モノエステル
の種類、用いる触媒の活性、更には溶媒等により適宜選
定される。
Such reaction conditions are appropriately selected depending on the type of long-chain dimonoester used as a raw material, the activity of the catalyst used, the solvent, etc.

本発明方法は溶媒を用いずに実施することもできるが、
適当な溶媒を使用しても差しつかえない。反応に不活性
である限り使用する溶媒には、特に制限はなく、還元反
応で用いられる有機溶媒すなわちエーテル、脂肪族炭化
水素、脂環式炭化水素、又はそれらの混合物が使用でき
る。
Although the method of the present invention can also be carried out without using a solvent,
Any suitable solvent may be used. The solvent used is not particularly limited as long as it is inert to the reaction, and organic solvents used in reduction reactions, such as ethers, aliphatic hydrocarbons, alicyclic hydrocarbons, or mixtures thereof can be used.

原料の溶媒中における濃度は1〜80vL%であるが好
ましくは5〜50vt%である。
The concentration of the raw material in the solvent is 1 to 80 vL%, preferably 5 to 50 vt%.

反応時間は上記反応条件によって異なるが約10〜10
0時間程度で行うことができる。
The reaction time varies depending on the above reaction conditions, but is approximately 10 to 10
This can be done in about 0 hours.

[実施例] 以下実施例により本発明方法を具体的に説明する。なお
本反応での生成物の同定及び定量はガスクロマトグラフ
ィーによって行ったが、反応終了物中にはポリエステル
が副生じているのでこれを常法により加水分解し、テト
ラメチルシラン誘導体とした後に分析を行った。
[Example] The method of the present invention will be specifically explained below using Examples. Identification and quantification of the products in this reaction were performed by gas chromatography, but since polyester was produced as a by-product in the reaction product, it was hydrolyzed by a conventional method to form a tetramethylsilane derivative, and then analyzed. I did it.

実施例1 1.5gの三塩化ルテニウム水和物と8.95gの四塩
化すず水和物を301と501のエタノールにそれぞれ
溶解した後、それらを混合した。この溶液を、アルミニ
ウムイソプロポキシドをヘキシレングリコール中で加水
分解することによって合成し、150℃で減圧加熱排気
処理を施しておいた28.64gのアルミナに減圧下室
温で添加し、常温常圧で一夜撹拌した後、減圧下150
℃で乾燥した。
Example 1 1.5 g of ruthenium trichloride hydrate and 8.95 g of tin tetrachloride hydrate were dissolved in 301 and 501 ethanol, respectively, and then mixed. This solution was synthesized by hydrolyzing aluminum isopropoxide in hexylene glycol, and added to 28.64 g of alumina that had been heated and exhausted at 150°C under reduced pressure at room temperature. After stirring overnight at 150 °C under reduced pressure.
Dry at °C.

乾燥ゲル4gを石英管中に取り、横型環状炉を用いて4
00℃で2時間焼成し室温まで冷却して後、水素を流し
ながら400℃で4時間加熱することによって、活性化
した。次に、これを、50.0gのベタデカンに酸化モ
ノメチルエステル及び100.Ogのデカヒドロナフタ
リンとともに内容積5001のオートクレーブに仕込み
、容器内部を十分に水素ガスと置換した後加熱を開始し
、250℃となったところで容器内部圧を水素ガスで6
0kg/cm ’まで高め、反応を開始した。反応中、
撹拌は電磁誘導回転式を用い、1500回転、/分で行
った。反応開始後、27.0時間で水素ガスの供給を止
め冷却し、反応を停止した。収率39 、5 %でω−
ヒドロキシペンタデカン酸メチルエステルを得た。
4g of dry gel was placed in a quartz tube and heated using a horizontal ring furnace.
After firing at 00° C. for 2 hours and cooling to room temperature, activation was performed by heating at 400° C. for 4 hours while flowing hydrogen. Next, this was mixed with 50.0 g of betadecane, oxidized monomethyl ester and 100.0 g of betadecane. After charging Og of decahydronaphthalene into an autoclave with an internal volume of 5,001 kg, the inside of the container was sufficiently replaced with hydrogen gas, heating was started, and when the temperature reached 250°C, the internal pressure of the container was increased to 6 ℃ with hydrogen gas.
The reaction was started by increasing the pressure to 0 kg/cm'. During the reaction,
Stirring was performed using an electromagnetic induction rotary system at 1500 rpm. After 27.0 hours from the start of the reaction, the supply of hydrogen gas was stopped and the mixture was cooled to stop the reaction. Yield 39, 5% ω-
Hydroxypentadecanoic acid methyl ester was obtained.

分析値 転化率43.1% 選択率91.6% 収率 39.5% 実施例2 8、Ogのトリスアセチルアセトナトルテニウム錯体を
30m1のエタノール水溶液に懸濁させ、これに30g
の濃硝酸を加え80〜90℃で2時間撹拌した。次に更
に23gの濃硝酸を加えるとともに、器壁に付着した錯
体をできる限り少量の酢酸で溶液中に洗い落とし、90
〜100℃で3〜4時間暖めた。この間に酸化窒素ガス
が発生し、懸濁液は透明赤色溶液へと液化した。この溶
液を乾固した後、これに163.7gのへキシレングリ
コールと142gのアルミニウムイソプロポキシドを加
え、80〜90℃で4時間撹拌した。更にこの溶液に4
.5gのテトラエトキシすずを加え、同温度で1時間撹
拌した後、65gの水を加えた。生したゲルを同温度で
2時間暖め熟成し、減圧下160℃で乾燥した。
Analytical values Conversion rate 43.1% Selectivity 91.6% Yield 39.5% Example 2 8. Og of trisacetylacetonateruthenium complex was suspended in 30ml of ethanol aqueous solution, and 30g of it was suspended in 30ml of ethanol aqueous solution.
of concentrated nitric acid was added and stirred at 80 to 90°C for 2 hours. Next, add another 23 g of concentrated nitric acid, and wash the complex adhering to the vessel wall into the solution with as little acetic acid as possible.
Warmed to ~100°C for 3-4 hours. During this time, nitrogen oxide gas evolved and the suspension liquefied to a clear red solution. After drying this solution, 163.7 g of hexylene glycol and 142 g of aluminum isopropoxide were added thereto, and the mixture was stirred at 80 to 90° C. for 4 hours. Furthermore, add 4 to this solution.
.. After adding 5 g of tetraethoxytin and stirring at the same temperature for 1 hour, 65 g of water was added. The resulting gel was warmed and aged at the same temperature for 2 hours, and dried at 160° C. under reduced pressure.

上記乾燥ゲル4.0シを取り、以下実施例1と全く同様
な操作で、ベンタデカン二数モノメチルエステルの水素
化反応を開始した。反応開始後、26.0時間で、実施
例】と同様に反応を停止【7、内容物を分析した。
4.0 g of the dried gel was taken, and in the same manner as in Example 1, a hydrogenation reaction of bentadecane dimonomethyl ester was started. 26.0 hours after the start of the reaction, the reaction was stopped in the same manner as in Example 7. The contents were analyzed.

分析値 転化率 71,5% 選択率 88.4% 収率  63,2% 実施例3 2、Ogのトリスアセチルアセトナトルテニウム錯体を
151のエタノール水溶液に懸濁させ、これに27gの
濃硝酸を加え80〜90℃で1時間撹拌した。次に更に
15gの濃硝酸を加えるとともに、器壁に付着した錯体
をできる限り少量の酢酸で溶液中に洗い落とし、90〜
100℃で2時間暖めた。この間に酸化窒素ガスが発生
し、懸濁液は透明赤色溶液へと柔化した。この溶液を乾
固した後、これに74.17gのへキシレングリコール
と63.29gのアルミニウムイソプロポキシドを加え
、100℃で2時間撹拌した。更にこの溶液に1,50
gのテトラエトキシすずを加え、同温度で4時間撹拌し
た後、22.31gの水を加えた。生じたゲルを同温度
で2時間暖め熟成し、減圧した180℃で乾燥した。
Analytical values Conversion rate 71.5% Selectivity 88.4% Yield 63.2% Example 3 2. Og of trisacetylacetonate toruthenium complex was suspended in 151 of ethanol aqueous solution, and 27g of concentrated nitric acid was added to it. The mixture was added and stirred at 80 to 90°C for 1 hour. Next, add another 15 g of concentrated nitric acid, and wash the complex adhering to the vessel wall into the solution with as little acetic acid as possible.
It was heated at 100°C for 2 hours. During this time, nitrogen oxide gas evolved and the suspension softened to a clear red solution. After drying this solution, 74.17 g of hexylene glycol and 63.29 g of aluminum isopropoxide were added thereto, and the mixture was stirred at 100° C. for 2 hours. Furthermore, add 1,50 to this solution.
g of tetraethoxytin was added, and after stirring at the same temperature for 4 hours, 22.31 g of water was added. The resulting gel was warmed and aged at the same temperature for 2 hours, and dried at 180° C. under reduced pressure.

上記乾燥ゲル0.0gを取り、以下、実施例1と全く同
様な操作で、ペンタデカン二数モノメチルエステルの水
素化反応を開始した。反応開始後21.0時間で、実施
例1と同様に反応を停止し、内容物を分析した。
0.0 g of the dried gel was taken, and the hydrogenation reaction of pentadecane dimonomethyl ester was started in the same manner as in Example 1. 21.0 hours after the start of the reaction, the reaction was stopped in the same manner as in Example 1, and the contents were analyzed.

分析値 転化率 83.8% 選択率 75.8% 収率  63.5% 実施例4 4、Ogの三塩化ルテニウム水和物を溶解したエタノー
ル溶液とIO,54gの塩化第二すず水和物を溶解した
エタノール溶液とを117.30gのヘキシレングリコ
ールに加えた。この溶液に101.36gのアルミニウ
ムイソプロポキシドを加え、80〜90℃で3時間撹拌
し均一溶液を得た。次にこの溶液に48.51gの水を
加え、同温度で1.5時間暖めた後、得られたゲルを減
圧下130℃で乾燥した。
Analysis values Conversion rate 83.8% Selectivity 75.8% Yield 63.5% Example 4 Ethanol solution in which 4.0g of ruthenium trichloride hydrate was dissolved and IO, 54g of stannic chloride hydrate was added to 117.30 g of hexylene glycol. 101.36 g of aluminum isopropoxide was added to this solution and stirred at 80 to 90°C for 3 hours to obtain a homogeneous solution. Next, 48.51 g of water was added to this solution, and after warming at the same temperature for 1.5 hours, the resulting gel was dried at 130° C. under reduced pressure.

上記乾燥ゲル3.0gを取り、以下実施例1と全く同様
な操作でペンタデカン二数モノメチルエステルの水素化
反応を開始した。反応開始後、17.7時間で実施例1
と同様に反応を停止し内容物を分析した。
3.0 g of the dried gel was taken, and the hydrogenation reaction of pentadecane dimonomethyl ester was started in the same manner as in Example 1. Example 1 17.7 hours after the start of the reaction
The reaction was stopped and the contents were analyzed in the same manner as above.

分析値 転化率 50.1% 選択率 73.5% 収率  36 、8 % 比較例 ペンタデカン二数モノメチルエステル5.73g(20
gmol)、銅−クロム酸化物触媒(Cu044wt%
、Cr 20342vt%、B a 06.7vt%、
M u 03.8wt%、表面N4D 〜G[1m ’
 /g) 0.29g 。
Analysis values Conversion rate 50.1% Selectivity 73.5% Yield 36.8% Comparative example Pentadecane dimonomethyl ester 5.73g (20%
gmol), copper-chromium oxide catalyst (Cu044wt%
, Cr 20342vt%, B a 06.7vt%,
M u 03.8wt%, surface N4D ~ G[1m'
/g) 0.29g.

ジオキサン251を2001容のオートクレーブ装。Autoclave with 2001 volumes of dioxane 251.

社内に入れ、水素を封入して初期水素張込圧120kg
/cm ’とし、215℃の温度で加熱しながら、6時
間反応させ、内容物を分析した。
Place it in-house and fill it with hydrogen to an initial hydrogen filling pressure of 120 kg.
/cm', and was allowed to react for 6 hours while heating at a temperature of 215°C, and the contents were analyzed.

分析値 転化率 76.096 選択率 71,3% 収率  54 、296 実施例5 0.94gの三塩化レニウムと2.25gの塩化第二す
ず水和物を301と50−1のエタノールにそれぞれ溶
解した後、それらを混合した。この溶液を、アルミニウ
ムイソプロポキシドをヘキシレングリル中で加水分解す
ることによって合成し 150℃で減圧加熱排気処理を
施しておいた28.64gのアルミナに減圧上室温で添
加し、常温常圧で一夜撹拌した後、減圧下150℃で乾
燥した。乾燥ゲル4gを石英管中に取り、横型環状炉を
用いて水素を流しながら400℃で4時間加熱すること
によって活性化した。
Analytical values Conversion rate 76.096 Selectivity 71.3% Yield 54,296 Example 5 0.94 g of rhenium trichloride and 2.25 g of stannic chloride hydrate were added to 301 and 50-1 ethanol, respectively. After dissolving, they were mixed. This solution was synthesized by hydrolyzing aluminum isopropoxide in a hexylene grill, and added to 28.64 g of alumina that had been heated and exhausted at 150°C under reduced pressure at room temperature. After stirring overnight, it was dried at 150°C under reduced pressure. 4 g of the dry gel was placed in a quartz tube and activated by heating at 400° C. for 4 hours while flowing hydrogen using a horizontal ring furnace.

次にこれを50.0gのペンタデカン二数モノメチルエ
ステル及びloo、ogのデカヒドロナフタリンととも
に内容積5001のオートクレーブに仕込み、容器内部
を十分に水素ガスと置換した後加熱を開始し、250℃
となったところで容器内部圧を水素ガスで80kg/c
m 2まで高め、反応を開始した。反応中、撹拌は電磁
誘導回転式を用い、1500回転/回転性った。反応開
始後、24.0時間で水素ガスの供給を止め冷却し、反
応を停止した。収率44.6%でω−ヒドロキシペンタ
デカン酸メチルエステルを得た。
Next, this was charged into an autoclave with an internal volume of 5001 cm along with 50.0 g of pentadecane dimonomethyl ester and loo and og decahydronaphthalene, and after the inside of the container was sufficiently replaced with hydrogen gas, heating was started and heated to 250°C.
At that point, increase the internal pressure of the container to 80 kg/c with hydrogen gas.
m 2 and the reaction was started. During the reaction, an electromagnetic induction rotary type was used for stirring at 1500 revolutions/rotation. After 24.0 hours from the start of the reaction, the supply of hydrogen gas was stopped and the reaction was stopped. ω-hydroxypentadecanoic acid methyl ester was obtained with a yield of 44.6%.

分析値 転化率 51.5% 選択率 86.6% 収率  44.6% 実施例6 0.94gの三塩化レニウムを132.8gのヘキシレ
ングリコールを含む300m1のエタノール溶液に加熱
溶解した。この溶液に114.76gのアルミニウムイ
ソプロポキシドと、O,Ilgの塩化第二すず水和物を
溶かした301のエタノール溶液を添加して、80℃で
3時間撹拌した。次にこの溶液に46gの水を加え、ゲ
ル化させた。同温度でゲルを1時間熟成した後、減圧下
170℃で乾燥した。
Analytical values Conversion rate 51.5% Selectivity 86.6% Yield 44.6% Example 6 0.94 g of rhenium trichloride was heated and dissolved in 300 ml of ethanol solution containing 132.8 g of hexylene glycol. To this solution was added an ethanol solution of 301 in which 114.76 g of aluminum isopropoxide and O, Ilg stannic chloride hydrate were dissolved, and the mixture was stirred at 80° C. for 3 hours. Next, 46 g of water was added to this solution to form a gel. After aging the gel at the same temperature for 1 hour, it was dried at 170° C. under reduced pressure.

上記乾燥ゲル4.0gを取り、以下実施例5と全く同様
な操作で、ペンタデカンニ酸モノメチルエステルの水素
化反応を開始した。反応開始後23.0時間で実施例5
と同様に反応を停止し、内容物を分析した。
4.0 g of the above dried gel was taken, and in the same manner as in Example 5, a hydrogenation reaction of pentadecanoic acid monomethyl ester was started. Example 5 23.0 hours after the start of the reaction
The reaction was stopped in the same manner as above, and the contents were analyzed.

分析値 転化率 32.5% 選択率 89.5% 収率  29,1% 実施例7 2、Ogの過レニウム酸アンモニウムを120.41g
のヘキシレングリコールに加え80〜100℃でできる
だけ溶解させた。この溶液の上澄み成約80gに、1.
11gのテトラエトキシすずと104.05gのアルミ
ニウムイソプロポキシドと30.0gのヘキシレングリ
コールとを加え、80〜110℃に加熱し均一溶液を得
た。溶は残った過レニウム酸アンモニウムと約40gの
ヘキシレングリコールとの混合液に、5.Ogの水を加
え80℃で溶解させた均一溶液を上記反応液中に加え、
80℃で1時間撹拌した。次にこの溶液に31.7gの
水を加え、80℃で一夜暖めた後、得られたゲルを減圧
下140℃で乾燥した。
Analytical values Conversion rate 32.5% Selectivity 89.5% Yield 29.1% Example 7 120.41g of 2.Og ammonium perrhenate
hexylene glycol and dissolved as much as possible at 80 to 100°C. About 80 g of the supernatant of this solution was added 1.
11 g of tetraethoxytin, 104.05 g of aluminum isopropoxide, and 30.0 g of hexylene glycol were added and heated to 80 to 110° C. to obtain a homogeneous solution. Dissolve the remaining ammonium perrhenate and approximately 40 g of hexylene glycol in a mixture of 5. A homogeneous solution of Og added with water and dissolved at 80°C was added to the above reaction solution,
The mixture was stirred at 80°C for 1 hour. Next, 31.7 g of water was added to this solution, and after warming at 80°C overnight, the resulting gel was dried at 140°C under reduced pressure.

上記乾燥ゲル4.0gを取り、以下実施例1と全く同様
な操作で、ペンタデカン二酸モノメチルエステルの水素
化反応を開始した。反応開始後、36.0時間で実施例
5と同様に反応を停止し内容物を分析した。
4.0 g of the dried gel was taken, and the hydrogenation reaction of pentadecanedioic acid monomethyl ester was started in the same manner as in Example 1. After 36.0 hours from the start of the reaction, the reaction was stopped and the contents were analyzed in the same manner as in Example 5.

分析値 転化率 82.4% 選択率 73.190 収率  60.2% 実施例8 1 、00gのし酸化ニレニウムを67.69gのヘキ
シレングリコール中に入れ、80〜100℃で撹拌し溶
解した。この溶液に0.036gの塩化第二すす水和物
を溶かした201のエタノール溶液を添加し、80℃で
0.5時間撹拌した後に、史に58.49gのアルミニ
ウムイソプロポキシドを加え、同温で一夜撹拌した。次
にこの溶液に20.62gの水を加え、ゲル化させた。
Analytical values Conversion rate 82.4% Selectivity 73.190 Yield 60.2% Example 8 1.00g of nyrenium oxide was placed in 67.69g of hexylene glycol and dissolved by stirring at 80-100°C. . To this solution was added an ethanol solution of 201 containing 0.036 g of soot chloride hydrate, and after stirring at 80°C for 0.5 hour, 58.49 g of aluminum isopropoxide was added to the same solution. Stir overnight at warm temperature. Next, 20.62 g of water was added to this solution to form a gel.

ゲル中に81の抱水ヒドラジンを加えた後、80℃でゲ
ルを熟成した後、減圧下140℃で乾燥した。
After adding 81 hydrazine hydrate to the gel, the gel was aged at 80°C and then dried at 140°C under reduced pressure.

上記乾燥ゲル4.0gを取り、水素による活性化を20
0℃で行った以外は実施例1と全く同様の操作で、ペン
タデカン二酸モノメチルエステルの水素化反応を開始し
た。反応開始後、11.0時間で実施例5と同様に反応
を停止し、内容物を分析した。
Take 4.0g of the above dry gel and activate it with hydrogen for 20 minutes.
The hydrogenation reaction of pentadecanedioic acid monomethyl ester was started in exactly the same manner as in Example 1 except that it was carried out at 0°C. After 11.0 hours from the start of the reaction, the reaction was stopped in the same manner as in Example 5, and the contents were analyzed.

分析値 転化率 629% 選択率 71.99ci 収率  45 、296 実施例9 2%ルテニウム−アルミナ触媒(エヌ・イーケムキャッ
ト株式会社製) 4.0gを取り、以ト実施例5と全く
同様な操作で、ペンタデカン二酸モノメチルエステルの
水素化反応を開始した。
Analytical values Conversion rate 629% Selectivity 71.99ci Yield 45,296 Example 9 4.0 g of 2% ruthenium-alumina catalyst (manufactured by N.E. Chemcat Co., Ltd.) was taken and the following procedure was performed in exactly the same manner as in Example 5. Then, the hydrogenation reaction of pentadecanedioic acid monomethyl ester was started.

反応開始後31 、0 肋間で実施例5と同様に反応を
停+L L、内容物を分析した。
After the start of the reaction, the reaction was stopped at 31,0 intercostals in the same manner as in Example 5, and the contents were analyzed.

分析値 転化率 336% 選択率 82.4% 収率  27.79ci 比較例 ペンタデカン二酸モノメチルエステル5.73g(20
mnol)、銅−クロム酸化物触媒(Cu044V【%
、Cr 20342vt%、B a O6,7vt%、
M u O3,8wt%、表面積40〜60m ’ /
g) 0.29g。
Analytical values Conversion rate 336% Selectivity 82.4% Yield 27.79ci Comparative example Pentadecanedioic acid monomethyl ester 5.73g (20
mnol), copper-chromium oxide catalyst (Cu044V [%
, Cr 20342vt%, B a O6,7vt%,
M u O3, 8 wt%, surface area 40-60 m'/
g) 0.29g.

ジオキサン251を20On+ml容のオートクレーブ
装置内に入れ、水素を封入して初期水素張込圧120k
g/cm2とし、215℃の温度で加熱しながら、6時
間反応させ、内容物を分析した。
Put dioxane 251 into a 20On+ml autoclave device, fill it with hydrogen, and set the initial hydrogen charging pressure to 120k.
g/cm2, and was allowed to react for 6 hours while heating at a temperature of 215°C, and the contents were analyzed.

分析値 転化率 76.0% 選択率 71.396 収率  54.2°6 [発明の効果] 本発明は長鎖二数モノエステルをルテニウム系触媒及び
/又はレニウム系触媒のイj /j: ’Fに水素還元
することとしたので、女価なハλ事Iを使用することが
でき、比較的簡便な上程で、製造コストが安く、しかも
効率よく、ω−ヒドロキシ脂肪酸エステルを製造するこ
とができる。
Analytical values Conversion rate 76.0% Selectivity 71.396 Yield 54.2°6 [Effects of the invention] The present invention converts long chain dimonoesters into ruthenium-based catalysts and/or rhenium-based catalysts. Since we decided to reduce hydrogen to 'F, we can use the less expensive HA, and we can produce ω-hydroxy fatty acid esters in a relatively simple process, at low production costs, and more efficiently. I can do it.

Claims (3)

【特許請求の範囲】[Claims] (1)下記の一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中Rはアルキル基を示し、nは8〜16の整数を示
す)で表される長鎖二酸モノエステルをルテニウム系及
び/又はレニウム系触媒の存在下に水素と接触させるこ
とを特徴とする次の一般式(II) ▲数式、化学式、表等があります▼(II) (式はR、nは式( I )のものと同じ) で表されるω−ヒドロキシ脂肪酸エステルの製造法。
(1) The following general formula (I) ▲Mathematical formulas, chemical formulas, tables, etc. are available▼(I) (In the formula, R represents an alkyl group, and n represents an integer from 8 to 16.) The following general formula (II), which is characterized by contacting acid monoester with hydrogen in the presence of a ruthenium-based and/or rhenium-based catalyst ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (The formula is R, (n is the same as in formula (I)) A method for producing an ω-hydroxy fatty acid ester represented by:
(2)ルテニウム系触媒が、ルテニウム、すずを含有す
るものである請求項(1)記載のω−ヒドロキシ脂肪酸
エステルの製造法。
(2) The method for producing an ω-hydroxy fatty acid ester according to claim (1), wherein the ruthenium-based catalyst contains ruthenium and tin.
(3)レニウム系触媒がレニウム、すずを含有するもの
である請求項(1)記載のω−ヒドロキシ脂肪酸エステ
ルの製造法。
(3) The method for producing an ω-hydroxy fatty acid ester according to claim (1), wherein the rhenium-based catalyst contains rhenium and tin.
JP2215930A 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester Expired - Lifetime JP2891430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215930A JP2891430B2 (en) 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215930A JP2891430B2 (en) 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester

Publications (2)

Publication Number Publication Date
JPH0499753A true JPH0499753A (en) 1992-03-31
JP2891430B2 JP2891430B2 (en) 1999-05-17

Family

ID=16680617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215930A Expired - Lifetime JP2891430B2 (en) 1990-08-17 1990-08-17 Method for producing ω-hydroxy fatty acid ester

Country Status (1)

Country Link
JP (1) JP2891430B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024371A1 (en) * 1994-03-09 1995-09-14 Sagami Chemical Research Center Process for producing alcohol
WO2018164193A1 (en) 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
WO2023188636A1 (en) 2022-03-28 2023-10-05 株式会社日立建機ティエラ Work machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024371A1 (en) * 1994-03-09 1995-09-14 Sagami Chemical Research Center Process for producing alcohol
WO2018164193A1 (en) 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
US11014862B2 (en) 2017-03-08 2021-05-25 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
US11352309B2 (en) 2017-03-08 2022-06-07 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
WO2023188636A1 (en) 2022-03-28 2023-10-05 株式会社日立建機ティエラ Work machine
KR20240036679A (en) 2022-03-28 2024-03-20 가부시키가이샤 히다치 겡키 티에라 working machine

Also Published As

Publication number Publication date
JP2891430B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
JPS6156139A (en) Manufacture of alcohol from carboxylic acid ester by hydrogenolysis under presence of catalyst containing nickel and tin, germanium or lead
US5973210A (en) Intermetallic ruthenium tin-catalyst for use in aldehyde synthesis
JPS63255253A (en) Production of amines
JPH0499753A (en) Production of omega-hydroxy fatty acid ester
JP2651291B2 (en) Method for producing ω-hydroxy fatty acid
JP2868023B2 (en) Method for producing ω-hydroxy fatty acid ester
JP2685130B2 (en) Ethanol production method
JP2714433B2 (en) Method for producing gamma-butyrolactone
CN112479171A (en) Metal phosphate, preparation method thereof and application thereof in catalytic esterification reaction
JP3857360B2 (en) Method for producing diol
US3470214A (en) Isomerization of tetrahydrophthalic anhydride
JPH05246915A (en) Method for hydrogenating organic carboxylic acid and/or carboxylic acid ester
JP4282831B2 (en) Production method of diols
JPS62164647A (en) Synthesis of ester
JP3054678B2 (en) Method for producing aromatic alcohol
JPS5835495B2 (en) Polycarbonate Aryl Ester Polycarbonate
JP4219484B2 (en) Method for producing aliphatic nitrile
US4009185A (en) Conversion of diphenylethers to dibenzofurans using catalysts containing ceria
JPH11147846A (en) Production of aldehydes and/or alcohols
US6444843B1 (en) Producing method of (hydroxyalkyl) alicyclic carboxylic acids and intermediates for producing the same and producing method of such intermediates
JP3568243B2 (en) Method for producing dialkyltetralin
JP4635315B2 (en) Method for producing phenyl ester and catalyst
JPH07213901A (en) Catalyst having carboxylic ester reducing capacity, its production and production of saturated alcohol compound
JPH06247954A (en) Production of lactone

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term