JP4219484B2 - Method for producing aliphatic nitrile - Google Patents
Method for producing aliphatic nitrile Download PDFInfo
- Publication number
- JP4219484B2 JP4219484B2 JP14041599A JP14041599A JP4219484B2 JP 4219484 B2 JP4219484 B2 JP 4219484B2 JP 14041599 A JP14041599 A JP 14041599A JP 14041599 A JP14041599 A JP 14041599A JP 4219484 B2 JP4219484 B2 JP 4219484B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- catalyst
- methyl
- oxide
- aliphatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は高収率でかつ高品質な脂肪族ニトリル類の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
脂肪族ニトリルは、一般に脂肪族カルボン酸又はその誘導体とアンモニアとの反応によって工業的に作られている。その反応形態としては大別して気相法と液相法がある。気相法の反応では、Zr, Ta, Ga, In, Sc, Nb, Hf, Fe, Zn又はSnの酸化物(特開平4−208260)、酸化アルミニウム、シリカゲル、酸化トリウム、酸化チタンなどの脱水作用を持つ触媒を使用して、予め気化させた脂肪族カルボン酸又はその誘導体をアンモニアと共に 250〜600 ℃の温度で接触させる方法が実施されている。しかし気相法では原料物質を気化させるために、液相法に比べて比較的エネルギーコストがかかるという欠点を有する。
【0003】
一方、液相法で反応させる場合には、触媒の存在下で脂肪族カルボン酸又はその誘導体を加熱溶解させ、この中にアンモニアガスを吹き込むことにより回分式もしくは連続式で広く行われている。この反応で使用される触媒としては、コバルトの脂肪族カルボン酸塩(米国特許第2,493,637 号)、鉄又は鉄化合物(特開昭58-39653)、酸化亜鉛などが知られている。そのような触媒は 300℃以下の反応温度で高い触媒活性を示すが、いずれも反応液に対して溶解し得るもので、反応生成物からの特別な分離、回収操作が必要となる。そのために蒸留収率の低下や廃棄物の増加を招くので好ましくない。
【0004】
本発明の課題は、脂肪族カルボン酸低級アルキルエステルとアンモニアとの反応において、反応温度が 300℃以下で高い活性を持ち、反応液に難溶の固体触媒を用いて、製品中への触媒の溶解がなく、高収率でかつ高品質な脂肪族ニトリルを安価に製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、酸化チタンを主成分とする複合酸化物触媒が、300 ℃以下の反応温度でも高い触媒活性を持ち、かつ反応液に難溶な固体であることを見出し、本発明を完成するに至った。
即ち、本発明は、脂肪族カルボン酸低級アルキルエステルとアンモニアとを、酸化チタンを主成分とする複合酸化物触媒の存在下に反応させる脂肪族ニトリルの製造方法である。
【0006】
なお、本発明において「複合酸化物」とは、その内部又は表面において2種以上の金属が共存している酸化物である。
【0007】
【発明の実施の形態】
本発明で使用する脂肪族カルボン酸低級アルキルエステルは、直鎖又は分岐の炭素数6〜22の飽和又は不飽和脂肪族モノカルボン酸低級アルキルエステルもしくはジカルボン酸ジ低級アルキルエステルである。ここで低級アルキルとしては炭素数1〜5のアルキルであるが、具体的にはメチル、エチル、プロピル、イソプロピルが挙げられ、特にメチルが好ましい。これらの脂肪族カルボン酸低級アルキルエステルは、各々単独或いは2種以上混合して使用することができる。
【0008】
これらの脂肪族カルボン酸低級アルキルエステルの具体例としては、カプロン酸メチル、カプリル酸メチル、カプリン酸メチル、ラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、アラキン酸メチル、ベヘン酸メチル、ジメチルオクタン酸メチル、ブチルヘプチルノナン酸メチル、ヘキセン酸メチル、オクテン酸メチル、デセン酸メチル、ドデセン酸メチル、テトラデセン酸メチル、ヘキサデセン酸メチル、オクタデセン酸メチル、エイコセン酸メチル、ドコセン酸メチル、アジピン酸ジメチル、アゼライン酸ジメチル、セバシン酸ジメチル、デカメチレンジカルボン酸ジメチル、ヘキサデカメチレンジカルボン酸ジメチル、オクタデカメチレンジカルボン酸ジメチル等が挙げられる。
【0009】
本発明の方法において使用する触媒は、酸化チタンを主成分とする複合酸化物触媒であるが、酸化チタンに、珪素、ニオブ、ジルコニウム、タンタル、ガリウムおよびゲルマニウムからなる群から選ばれる1種以上の元素の酸化物を複合した複合酸化物触媒が好ましく、特に酸化チタンに、シリカ、酸化ニオブ又は酸化ジルコニウムを複合した複合酸化物触媒が好ましい。本発明の複合酸化物触媒中の酸化チタン以外の酸化物の含有量は、高い活性が得られる点で、1〜25重量%が好ましく、1〜15重量%がより好ましい。
【0010】
本発明の方法において使用する触媒の調製方法は、特に限定されないが、酸化チタンとその他の酸化物が複合体を形成するような方法、例えば沈着法、共沈法、アルコキシド法、含浸法などが用いられる。触媒の焼成温度は特に制限はないが、 500℃以下で行うことが好ましい。 500℃を越える温度で焼成すると触媒の表面積が小さくなり、活性が低下する。
【0011】
本発明の方法においては、反応は懸濁床による回分、半回分、連続式でも、また固定床流通式でも実施できる。反応温度は、好ましくは 180〜350 ℃、より好ましくは 250〜300 ℃の範囲が選定される。反応時の圧力は、通常やや加圧された状態で行うが、常圧でも良い。複合酸化物触媒の使用量としては、懸濁床による回分、半回分、連続式で実施する場合には、脂肪族カルボン酸低級アルキルエステルに対して好ましくは 0.1〜10重量%、より好ましくは 0.3〜3重量%である。また固定床流通式で実施する場合には、反応混合物の触媒層における平均滞留時間は、1秒〜10分が好ましい。
【0012】
【発明の効果】
本発明の方法は、高活性で反応液には難溶の複合酸化物触媒を用いることにより、従来の方法と比較して、製品中への触媒の溶解がなく、優れた品質の脂肪族ニトリルを高収率で製造することができ、工業的に極めて有意義である。
【0013】
【実施例】
実施例1〜4、比較例1〜3
酸化チタンとシリカが表1に示す重量比となるようにフラスコにチタンテトライソプロポキシド、オルト珪酸テトラエチル並びに溶媒としてイソプロパノールを仕込んだ。80℃まで昇温後、攪拌下で金属アルコキシドに対して6モル倍量のイオン交換水を滴下した。滴下終了後、その温度で5時間攪拌し続けた。濾過して取り出した触媒前駆体はイオン交換水で水洗濾過してから、 110℃で乾燥し、300 ℃で3時間焼成して本発明に使用する複合酸化物触媒を得た。
【0014】
次に、攪拌器、ガス導入管、温度計及び脱水装置を装備した四つ口フラスコに、上記複合酸化物触媒5.0gとステアリン酸メチル500gを混合し、 260℃で1100ml/minのアンモニアガスを6時間に亘って導入して反応させた。得られた反応生成物をガスクロマトグラフィー[ガスクロ装置:HEWLETT PACKARD Series 5890 、カラム:J&W 製DB-5(内径×長さ:0.53mm×15m)]で組成分析してニトリルの生成量を測定した。なお、比較のために、上述と同様の操作を繰り返して調製した酸化チタン、シリカそれぞれ単独の触媒、又はそれらを物理混合して得た酸化チタン:シリカの重量比95:5の触媒について、同一条件で反応を行った。その結果を表1に示す。本発明の触媒を用いた場合はいずれも反応の進行が速く、またICP発光分析による元素分析の結果、反応生成物中のチタン及び珪素は検出限界以下であった。
【0015】
実施例5〜9
触媒調製において、オルト珪酸テトラエチルの代わりにジルコニウムテトラプロポキシド、ニオビウムペンタエトキシド、タンタリウムペンタエトキシド、ガリウムトリイソプロポキシド、又はゲルマニウムテトラエトキシドを使用する以外は実施例2と同様の操作を繰り返して複合酸化物触媒を得た。その複合酸化物触媒を使用して、実施例1と同一条件で反応を行い、反応生成物を実施例1と同様に分析した。結果を表1に示す。反応生成物中の触媒由来の金属元素は検出限界以下であった。
【0016】
実施例10
実施例2で調製した酸化チタンとシリカの重量比が95:5の複合酸化物触媒を使用して、反応温度 300℃でアンモニアガスを3時間に亘って導入した以外は実施例1と同一条件で反応を行った。反応生成物を実施例1と同様に分析した。結果を表1に示す。反応生成物中のチタン及び珪素は検出限界以下であった。
【0017】
【表1】
【0018】
実施例11
実施例2で調製した酸化チタンとシリカの重量比が95:5の複合酸化物触媒を使用して、ステアリン酸メチルの代わりにラウリン酸メチルを使用した以外は実施例1と同一条件で反応を行なった。反応生成物を実施例1と同様に分析した結果、ラウリロニトリルの生成量は86.3(GC%)であり、また反応生成物中のチタン及び珪素は検出限界以下であった。
【0019】
実施例12
酸化チタンとシリカの重量比が95:5となるように、実施例2と同様の操作を繰り返して焼成前の粉末を調製した。その粉末を押し出し成形後、 300℃で3時間焼成して成形触媒を得た。その触媒1.0gを内径10mm、長さ 500mmのステンレス製筒状反応管の中央部に充填した。アンモニアガスを927 mL/hr 、ステアリン酸メチルを1.2g/hr の速度で反応管の上部から供給し、 250℃、常圧下で反応させた。得られた反応生成物は気液分離及び脱水処理し、次いで実施例1と同様にガスクロマトグラフィーでステアロニトリル生成量を測定した結果、98.9(GC%)であった。また反応生成物中のチタン及び珪素は検出限界以下であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-quality and high-quality aliphatic nitriles.
[0002]
[Prior art and problems to be solved by the invention]
Aliphatic nitriles are generally made industrially by reaction of aliphatic carboxylic acids or their derivatives with ammonia. The reaction forms are roughly classified into a gas phase method and a liquid phase method. In the gas phase reaction, dehydration of Zr, Ta, Ga, In, Sc, Nb, Hf, Fe, Zn or Sn oxide (Japanese Patent Laid-Open No. 4-208260), aluminum oxide, silica gel, thorium oxide, titanium oxide, etc. A method in which a previously vaporized aliphatic carboxylic acid or a derivative thereof is contacted with ammonia at a temperature of 250 to 600 ° C. is carried out using a catalyst having an action. However, the vapor phase method has a disadvantage that it costs relatively much energy compared to the liquid phase method because the raw material is vaporized.
[0003]
On the other hand, when the reaction is carried out by a liquid phase method, the aliphatic carboxylic acid or a derivative thereof is heated and dissolved in the presence of a catalyst, and ammonia gas is blown into the solution, so that the reaction is widely performed batchwise or continuously. As the catalyst used in this reaction, cobalt aliphatic carboxylate (US Pat. No. 2,493,637), iron or iron compound (Japanese Patent Laid-Open No. 58-39653), zinc oxide and the like are known. Such a catalyst exhibits high catalytic activity at a reaction temperature of 300 ° C. or lower, but all of them can be dissolved in the reaction solution, requiring special separation and recovery operations from the reaction product. This is not preferable because it causes a decrease in distillation yield and an increase in waste.
[0004]
The object of the present invention is to use a solid catalyst having a high activity at a reaction temperature of 300 ° C. or less and a reaction catalyst that is hardly soluble in the reaction of an aliphatic carboxylic acid lower alkyl ester with ammonia, It is an object of the present invention to provide a method for producing an aliphatic nitrile with high yield and high quality at low cost without dissolution.
[0005]
[Means for Solving the Problems]
The present inventors have found that the composite oxide catalyst mainly composed of titanium oxide has a high catalytic activity even at a reaction temperature of 300 ° C. or less and is a solid that is hardly soluble in the reaction solution, and has completed the present invention. It came to do.
That is, the present invention is a method for producing an aliphatic nitrile in which an aliphatic carboxylic acid lower alkyl ester and ammonia are reacted in the presence of a composite oxide catalyst mainly composed of titanium oxide.
[0006]
In the present invention, the “composite oxide” is an oxide in which two or more metals coexist inside or on the surface.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The aliphatic carboxylic acid lower alkyl ester used in the present invention is a linear or branched C6-C22 saturated or unsaturated aliphatic monocarboxylic acid lower alkyl ester or dicarboxylic acid di-lower alkyl ester. Here, the lower alkyl is alkyl having 1 to 5 carbon atoms, and specific examples thereof include methyl, ethyl, propyl and isopropyl, and methyl is particularly preferable. These aliphatic carboxylic acid lower alkyl esters can be used alone or in admixture of two or more.
[0008]
Specific examples of these aliphatic carboxylic acid lower alkyl esters include methyl caproate, methyl caprylate, methyl caprate, methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl aralate, and methyl behenate. , Methyl dimethyloctanoate, methyl butyl heptylnonanoate, methyl hexenoate, methyl octenoate, methyl decenoate, methyl dodecenoate, methyl tetradecenoate, methyl hexadecenoate, methyl octadecenoate, methyl eicosenoate, methyl docosenoate, adipic acid Examples thereof include dimethyl, dimethyl azelate, dimethyl sebacate, dimethyl decamethylene dicarboxylate, dimethyl hexadecamethylene dicarboxylate, and dimethyl octadecamethylene dicarboxylate.
[0009]
The catalyst used in the method of the present invention is a composite oxide catalyst containing titanium oxide as a main component, and the titanium oxide includes at least one selected from the group consisting of silicon, niobium, zirconium, tantalum, gallium and germanium. A composite oxide catalyst in which an oxide of an element is combined is preferable, and a composite oxide catalyst in which silica, niobium oxide or zirconium oxide is combined with titanium oxide is particularly preferable. The content of oxides other than titanium oxide in the composite oxide catalyst of the present invention is preferably 1 to 25% by weight, and more preferably 1 to 15% by weight in that high activity is obtained.
[0010]
The method for preparing the catalyst used in the method of the present invention is not particularly limited, but a method in which titanium oxide and another oxide form a composite, for example, a deposition method, a coprecipitation method, an alkoxide method, an impregnation method, etc. Used. There are no particular restrictions on the calcination temperature of the catalyst, but it is preferably carried out at 500 ° C. or lower. When calcined at a temperature exceeding 500 ° C., the surface area of the catalyst is reduced and the activity is lowered.
[0011]
In the method of the present invention, the reaction can be carried out in a batch, semi-batch, continuous, or fixed bed flow system using a suspension bed. The reaction temperature is preferably in the range of 180 to 350 ° C, more preferably 250 to 300 ° C. The pressure during the reaction is usually performed in a slightly pressurized state, but may be normal pressure. The amount of the composite oxide catalyst used is preferably 0.1 to 10% by weight, more preferably 0.3%, based on the aliphatic carboxylic acid lower alkyl ester when the batch, semi-batch, or continuous system is used. ~ 3 wt%. Moreover, when implementing by a fixed bed flow type, the average residence time in the catalyst layer of a reaction mixture has preferable 1 second-10 minutes.
[0012]
【The invention's effect】
The method of the present invention uses a complex oxide catalyst that is highly active and hardly soluble in the reaction solution, so that compared with the conventional method, there is no dissolution of the catalyst in the product, and an excellent quality aliphatic nitrile. Can be produced in a high yield and is extremely significant industrially.
[0013]
【Example】
Examples 1-4, Comparative Examples 1-3
The flask was charged with titanium tetraisopropoxide, tetraethyl orthosilicate and isopropanol as a solvent so that the weight ratio of titanium oxide and silica was as shown in Table 1. After raising the temperature to 80 ° C., 6 mol times of ion-exchanged water was added dropwise to the metal alkoxide with stirring. After completion of the dropwise addition, stirring was continued at that temperature for 5 hours. The catalyst precursor taken out by filtration was washed with ion-exchanged water, filtered, dried at 110 ° C., and calcined at 300 ° C. for 3 hours to obtain a composite oxide catalyst used in the present invention.
[0014]
Next, 5.0 g of the composite oxide catalyst and 500 g of methyl stearate were mixed in a four-necked flask equipped with a stirrer, a gas introduction tube, a thermometer, and a dehydrator, and 1100 ml / min of ammonia gas was added at 260 ° C. The reaction was introduced over 6 hours. The resulting reaction product was subjected to composition analysis by gas chromatography [gas chromatography device: HEWLETT PACKARD Series 5890, column: J & W DB-5 (inner diameter x length: 0.53 mm x 15 m)], and the amount of nitrile produced was measured. . For comparison, the same applies to titanium oxide and silica each prepared by repeating the same operation as described above, or a catalyst having a titanium oxide: silica weight ratio of 95: 5 obtained by physically mixing them. The reaction was conducted under conditions. The results are shown in Table 1. When the catalyst of the present invention was used, the progress of the reaction was fast, and as a result of elemental analysis by ICP emission analysis, titanium and silicon in the reaction product were below the detection limit.
[0015]
Examples 5-9
In the catalyst preparation, the same operation as in Example 2 was performed except that zirconium tetrapropoxide, niobium pentaethoxide, tantalum pentaethoxide, gallium triisopropoxide, or germanium tetraethoxide was used instead of tetraethyl orthosilicate. Repeatedly, a composite oxide catalyst was obtained. Using the composite oxide catalyst, the reaction was carried out under the same conditions as in Example 1, and the reaction products were analyzed in the same manner as in Example 1. The results are shown in Table 1. The metal element derived from the catalyst in the reaction product was below the detection limit.
[0016]
Example 10
The same conditions as in Example 1 except that ammonia gas was introduced over 3 hours at a reaction temperature of 300 ° C. using the composite oxide catalyst having a weight ratio of 95: 5 of titanium oxide and silica prepared in Example 2. The reaction was carried out. The reaction product was analyzed as in Example 1. The results are shown in Table 1. Titanium and silicon in the reaction product were below the detection limit.
[0017]
[Table 1]
[0018]
Example 11
The reaction was carried out under the same conditions as in Example 1 except that methyl laurate was used instead of methyl stearate using the composite oxide catalyst prepared in Example 2 with a weight ratio of titanium oxide to silica of 95: 5. I did it. As a result of analyzing the reaction product in the same manner as in Example 1, the production amount of lauronitrile was 86.3 (GC%), and titanium and silicon in the reaction product were below the detection limit.
[0019]
Example 12
The same operation as in Example 2 was repeated to prepare a powder before firing so that the weight ratio of titanium oxide to silica was 95: 5. The powder was extruded and calcined at 300 ° C. for 3 hours to obtain a molded catalyst. 1.0 g of the catalyst was packed in the center of a stainless steel cylindrical reaction tube having an inner diameter of 10 mm and a length of 500 mm. Ammonia gas was supplied from the upper part of the reaction tube at a rate of 927 mL / hr and methyl stearate at a rate of 1.2 g / hr, and reacted at 250 ° C. under normal pressure. The obtained reaction product was subjected to gas-liquid separation and dehydration treatment, and then the amount of stearonitrile produced was measured by gas chromatography in the same manner as in Example 1. As a result, it was 98.9 (GC%). Further, titanium and silicon in the reaction product were below the detection limit.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14041599A JP4219484B2 (en) | 1998-06-25 | 1999-05-20 | Method for producing aliphatic nitrile |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17841698 | 1998-06-25 | ||
JP10-178416 | 1998-06-25 | ||
JP14041599A JP4219484B2 (en) | 1998-06-25 | 1999-05-20 | Method for producing aliphatic nitrile |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000080070A JP2000080070A (en) | 2000-03-21 |
JP4219484B2 true JP4219484B2 (en) | 2009-02-04 |
Family
ID=26472930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14041599A Expired - Fee Related JP4219484B2 (en) | 1998-06-25 | 1999-05-20 | Method for producing aliphatic nitrile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4219484B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007102448A1 (en) | 2006-03-08 | 2007-09-13 | Kao Corporation | Process for producing aliphatic nitriles |
WO2017143124A1 (en) * | 2016-02-19 | 2017-08-24 | Alliance For Sustainable Energy, Llc | Systems and methods for producing nitriles |
-
1999
- 1999-05-20 JP JP14041599A patent/JP4219484B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000080070A (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080207953A1 (en) | Catalyst and Method for Hyrogenating Carbonyl Compounds | |
US5306845A (en) | Method for producing an aldehyde | |
US7091155B2 (en) | Catalyst for ester production and process for producing ester | |
KR101067539B1 (en) | Catalyst and Method for the Hydration of Carbonyl Compounds | |
JPH05293377A (en) | Chromium-free catalyst for hydrogenation of organic compound | |
US20080071120A1 (en) | Catalyst and Method for Hydrogenation of Carbonyl Compounds | |
CA2614520A1 (en) | Catalyst and method for hydrogenating carbonyl compounds | |
EP0210795A1 (en) | Hydrogenation of carboxylic acid esters to alcohols | |
JP3859231B2 (en) | Method for hydrogenating carboxylic acid ester and catalyst thereof | |
US6787677B2 (en) | Hydrogenation of carbonyl compounds | |
US5973210A (en) | Intermetallic ruthenium tin-catalyst for use in aldehyde synthesis | |
JP4219484B2 (en) | Method for producing aliphatic nitrile | |
DE60117525T2 (en) | PROCESS FOR THE PREPARATION OF LACTONS | |
JP4219483B2 (en) | Method for producing aliphatic nitrile | |
JP4024388B2 (en) | Method for producing aliphatic nitrile | |
KR0131203B1 (en) | Process for the production of ñò-butyrolactone | |
JP3921877B2 (en) | Method for producing 1,4-cyclohexanedimethanol | |
JP3091219B2 (en) | Method for producing acid-resistant catalyst for direct hydrogenation to produce alcohol from carboxylic acid | |
JP4219481B2 (en) | Method for producing aliphatic nitrile | |
JPH10195035A (en) | Production of aliphatic nitrile | |
JP2891430B2 (en) | Method for producing ω-hydroxy fatty acid ester | |
JP2651291B2 (en) | Method for producing ω-hydroxy fatty acid | |
JPH04271838A (en) | Acid resisting copper oxide-chromium oxide catalyst for hydrogenating fatty acid and fatty acid ester | |
JP3712008B2 (en) | Method for producing silica-titania catalyst for carboxylic acid ester production | |
JPH08231458A (en) | Method of preparing aldehyde |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050907 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081111 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081112 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |