JP4024388B2 - Method for producing aliphatic nitrile - Google Patents

Method for producing aliphatic nitrile Download PDF

Info

Publication number
JP4024388B2
JP4024388B2 JP17841498A JP17841498A JP4024388B2 JP 4024388 B2 JP4024388 B2 JP 4024388B2 JP 17841498 A JP17841498 A JP 17841498A JP 17841498 A JP17841498 A JP 17841498A JP 4024388 B2 JP4024388 B2 JP 4024388B2
Authority
JP
Japan
Prior art keywords
acid
reaction
catalyst
methyl
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17841498A
Other languages
Japanese (ja)
Other versions
JP2000007637A (en
Inventor
泰之 三村
道夫 寺坂
裕 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP17841498A priority Critical patent/JP4024388B2/en
Publication of JP2000007637A publication Critical patent/JP2000007637A/en
Application granted granted Critical
Publication of JP4024388B2 publication Critical patent/JP4024388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高収率でかつ高品質な脂肪族ニトリル類の製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
脂肪族ニトリルは、一般に脂肪族カルボン酸又はその誘導体とアンモニアとの反応によって工業的に作られている。その反応形態としては大別して気相法と液相法がある。気相法の反応では、Zr, Ta, Ga, In, Sc, Nb, Hf, Fe, Zn又はSnの酸化物(特開平4−208260)、酸化アルミニウム、シリカゲル、酸化トリウムなどの脱水作用を持つ触媒を使用して、予め気化させた脂肪族カルボン酸又はその誘導体をアンモニアと共に 250〜600 ℃の温度で接触させる方法が実施されている。しかし気相法では原料物質を気化させるために、液相法に比べて比較的エネルギーコストがかかるという欠点を有する。
【0003】
一方、液相法で反応させる場合には、触媒の存在下で脂肪族カルボン酸又はその誘導体を加熱溶解させ、この中にアンモニアガスを吹き込むことにより回分式もしくは連続式で広く行われている。この反応で使用される触媒としては、コバルトの脂肪族カルボン酸塩(米国特許第2,493,637 号)、鉄又は鉄化合物(特開昭58-39653)、酸化亜鉛などが知られている。そのような触媒は 300℃以下の反応温度で高い触媒活性を示すが、いずれも反応液に対して溶解し得るもので、反応生成物からの特別な分離、回収操作が必要となる。そのために蒸留収率の低下や廃棄物の増加を招くので好ましくない。
【0004】
本発明の課題は、脂肪族カルボン酸低級アルキルエステルとアンモニアとの反応において、反応温度が 300℃以下で高い活性を持ち、反応液に難溶の固体触媒を用いて、製品中への触媒の溶解がなく、高収率でかつ高品質な脂肪族ニトリルを安価に製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、酸で処理した酸化ニオブが触媒として高い活性を持ち、反応液に難溶な固体であることを見出し、本発明を完成するに至った。
即ち本発明は、脂肪族カルボン酸低級アルキルエステルとアンモニアとを、酸で処理した酸化ニオブの存在下に反応させる脂肪族ニトリルの製造方法である。
【0006】
【発明の実施の形態】
本発明で使用する脂肪族カルボン酸低級アルキルエステルは、直鎖又は分岐の炭素数6〜22の飽和又は不飽和脂肪族モノカルボン酸低級アルキルエステルもしくはジカルボン酸ジ低級アルキルエステルである。ここで低級アルキルとしては炭素数1〜5のアルキルであるが、具体的にはメチル、エチル、プロピル、イソプロピルが挙げられ、特にメチルが好ましい。これらの脂肪族カルボン酸低級アルキルエステルは、各々単独或いは2種以上混合して使用することができる。
【0007】
これらの脂肪族カルボン酸低級アルキルエステルの具体例としては、カプロン酸メチル、カプリル酸メチル、カプリン酸メチル、ラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、アラキン酸メチル、ベヘン酸メチル、ジメチルオクタン酸メチル、ブチルヘプチルノナン酸メチル、ヘキセン酸メチル、オクテン酸メチル、デセン酸メチル、ドデセン酸メチル、テトラデセン酸メチル、ヘキサデセン酸メチル、オクタデセン酸メチル、エイコセン酸メチル、ドコセン酸メチル、アジピン酸ジメチル、アゼライン酸ジメチル、セバシン酸ジメチル、デカメチレンジカルボン酸ジメチル、ヘキサデカメチレンジカルボン酸ジメチル、オクタデカメチレンジカルボン酸ジメチル等が挙げられる。
【0008】
本発明で使用する酸で処理した酸化ニオブとは、酸水溶液と酸化ニオブを接触処理したものをいう。接触させる酸としては、塩酸、ホウ酸、硝酸、硫酸、リン酸等の無機酸が好ましく、特に塩酸、ホウ酸が活性、選択性の面から好ましい。酸水溶液の濃度は特に限定されないが、0.1〜5mol/Lの範囲が触媒活性化効果の点で好ましく、特に0.5〜5mol/Lが好ましい。またこの時、酸と酸化ニオブとの割合は酸化ニオブ1モルに対し酸が 0.1〜50モルが好ましく、より好ましくは 0.5〜30モルである。
【0009】
本発明で使用する酸で処理した酸化ニオブには、酸が残存していても良いし、残存していなくても良い。酸が残存している場合には、その存在量は酸化ニオブ1モルに対して0.05モル以下が好ましく、特に0.03モル以下が好ましい。酸の残存が上記範囲であれば、反応液中に酸が溶出することがほとんどなく、得られた脂肪族ニトリルを水素還元して脂肪族アミンに誘導する際に、反応時間が遅延する等の悪影響を及ぼさないため好ましい。
【0010】
本発明で使用する酸化ニオブには、五酸化ニオブ、四酸化ニオブ、三酸化ニオブ、二酸化ニオブ、一酸化ニオブがあり、どの酸化ニオブを使用しても差し支えないが、反応性の観点から五酸化ニオブを使用するのが好ましい。酸化ニオブの形態は特に制限はなく、含水物を用いても、無水物を用いても良い。
【0011】
本発明で使用する酸で処理した酸化ニオブの調製方法は、特に限定されないが、例えば酸化ニオブを酸の水溶液に懸濁した後、蒸発乾固、焼成する方法が用いられる。酸水溶液中での酸化ニオブの懸濁時間は、特に制限はないが、24時間以上行う方が触媒活性化効果が大きい。水洗は行っても行わなくても良いが、酸が多量に残存する場合には、水洗したほうが良い。また焼成は行っても行わなくても良いが、焼成する場合、焼成温度には特に制限はないが、500 ℃以下の温度が好ましい。上記の範囲を越える温度で焼成すると触媒の結晶化が生じるため、表面積が小さくなり、触媒活性が低下する。
【0012】
本発明の方法においては、反応は懸濁床による回分、半回分、連続式でも、また固定床流通式でも実施できる。反応温度は、好ましくは180〜350℃、より好ましくは250〜300℃の範囲が選定される。反応時の圧力は、通常やや加圧された状態で行なうが、常圧でも良い。酸で処理した酸化ニオブ触媒の使用量は、懸濁床による回分、半回分、連続式で実施する場合には、カルボン酸低級アルキルエステルに対して 0.1〜10重量%、好ましくは 0.3〜3重量%である。また固定床流通式で実施する場合には、反応混合物の触媒層における平均滞留時間は、1秒〜10分が好ましい。
【0013】
【発明の効果】
本発明の方法は、酸化ニオブを酸で処理することによって得られる、高活性で、反応液に難溶の酸化ニオブを触媒に用いることにより、従来の方法と比較して、製品中への触媒の溶解がなく、優れた品質の脂肪族ニトリルを高収率で製造することができ、工業的に極めて有意義である。
【0014】
【実施例】
実施例1
フラスコに五酸化ニオブ水和物(CBMM社製、含水量13.4wt%)30.14gと0.5mol/Lのホウ酸水溶液 100mlを加えて、室温で48時間攪拌し酸処理した後、吸引濾過した。得られた触媒前駆体をイオン交換水1000ml中で30分間攪拌し、吸引濾過した。この水洗を3回繰り返した後、 100℃で乾燥し、 300℃で3時間焼成してホウ酸で処理した酸化ニオブ触媒を得た。
【0015】
次に、撹拌器、ガス導入管、温度計及び脱水装置を装備した四つ口フラスコに、上記触媒1.0gとステアリン酸メチル500gを混合し、これに260℃で1050ml/minのアンモニアガスを6時間に亘って導入して反応させた。触媒を分離して得られた反応生成物をガスクロマトグラフィー[ガスクロ装置:HEWLETT PACKARD Series 5890、カラム:J&W 製、DB-5(内径×長さ:0.53mm×15m)]で組成分析した結果を表1に示す。またICP発光分析によって元素分析した結果、反応生成物中のホウ素及びニオブは検出限界以下であった。
【0016】
実施例2
触媒調製において、ホウ酸の代わりに塩酸を用いた以外は実施例1と同様の操作を繰り返し、塩酸で処理した酸化ニオブ触媒を得た。その触媒を用いて実施例1と同一条件で反応を行った。反応生成物を実施例1と同様に分析した。結果を表1に示す。反応生成物中の塩素及びニオブは検出限界以下であった。
【0017】
比較例1
比較のために、酸で処理していない五酸化ニオブを触媒として用いて、実施例1と同様に反応を行った。反応生成物を実施例1と同様に分析した。結果を表1に示す。
【0018】
実施例3〜5
触媒調製でホウ酸濃度を表1に示した濃度に変更した以外は実施例1と同様の操作を繰り返し、ホウ酸で処理した酸化ニオブ触媒を得た。その触媒を用いて実施例1と同一条件で反応を行った。反応生成物を実施例1と同様に分析した。結果を表1に示す。いずれも反応生成物中にはホウ素及びニオブは検出されなかった。
【0019】
実施例6〜7
実施例1で調製した触媒を使用して、反応温度及び反応時間を表1に示した値に変更した以外は実施例1と同様に反応した。反応生成物を実施例1と同様に分析した。結果を表1に示す。いずれも反応生成物中にはホウ素及びニオブは検出されなかった。
【0020】
【表1】

Figure 0004024388
【0021】
実施例8
実施例1で調製した触媒を使用して、ステアリン酸メチルの代わりにラウリン酸メチルを用いた以外は実施例1と同様に反応した。反応生成物を実施例1と同様に分析した結果、ラウリロニトリルの生成量は87.3(GC%)であり、また反応生成物中にはホウ素及びニオブは検出されなかった。
【0022】
実施例9
実施例1と同様の操作を繰り返して調製した焼成前のホウ酸で処理した酸化ニオブ粉末を押し出し成形した後、 300℃で3時間焼成して成形触媒を得た。その触媒1.0gを内径10mm、長さ 500mmのステンレス製筒状反応管の中央部に充填した。アンモニアガスを88.3L/hr 、ステアリン酸メチルを1.5g/hr の速度で反応管の上部から供給し、 260℃、常圧下で反応させた。得られた反応生成物は気液分離処理し、次いで実施例1と同様にガスクロマトグラフィーでステアロニトリル生成量を測定した結果、99.2(GC %)であった。また反応生成物中のホウ素及びニオブは検出限界以下であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-quality and high-quality aliphatic nitriles.
[0002]
[Prior art and problems to be solved by the invention]
Aliphatic nitriles are generally made industrially by reaction of aliphatic carboxylic acids or their derivatives with ammonia. The reaction forms are roughly classified into a gas phase method and a liquid phase method. In the vapor phase reaction, Zr, Ta, Ga, In, Sc, Nb, Hf, Fe, Zn or Sn oxide (Japanese Patent Laid-Open No. 4-208260), aluminum oxide, silica gel, thorium oxide, etc. A method of contacting a previously vaporized aliphatic carboxylic acid or a derivative thereof with ammonia at a temperature of 250 to 600 ° C. using a catalyst has been practiced. However, the vapor phase method has a disadvantage that it costs relatively much energy compared to the liquid phase method because the raw material is vaporized.
[0003]
On the other hand, when the reaction is carried out by a liquid phase method, the aliphatic carboxylic acid or a derivative thereof is heated and dissolved in the presence of a catalyst, and ammonia gas is blown into the solution, so that the reaction is widely performed batchwise or continuously. As the catalyst used in this reaction, cobalt aliphatic carboxylate (US Pat. No. 2,493,637), iron or iron compound (Japanese Patent Laid-Open No. 58-39653), zinc oxide and the like are known. Such a catalyst exhibits high catalytic activity at a reaction temperature of 300 ° C. or lower, but all of them can be dissolved in the reaction solution, requiring special separation and recovery operations from the reaction product. This is not preferable because it causes a decrease in distillation yield and an increase in waste.
[0004]
The object of the present invention is to use a solid catalyst having a high activity at a reaction temperature of 300 ° C. or less and a reaction catalyst that is hardly soluble in the reaction of an aliphatic carboxylic acid lower alkyl ester with ammonia, It is an object of the present invention to provide a method for producing an aliphatic nitrile having a high quality and a low yield without dissolving.
[0005]
[Means for Solving the Problems]
The present inventors have found that niobium oxide treated with an acid is a solid having high activity as a catalyst and hardly soluble in the reaction solution, and the present invention has been completed.
That is, the present invention is a method for producing an aliphatic nitrile in which an aliphatic carboxylic acid lower alkyl ester and ammonia are reacted in the presence of an acid-treated niobium oxide.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The aliphatic carboxylic acid lower alkyl ester used in the present invention is a linear or branched C6-C22 saturated or unsaturated aliphatic monocarboxylic acid lower alkyl ester or dicarboxylic acid di-lower alkyl ester. Here, the lower alkyl is alkyl having 1 to 5 carbon atoms, and specific examples thereof include methyl, ethyl, propyl and isopropyl, and methyl is particularly preferable. These aliphatic carboxylic acid lower alkyl esters can be used alone or in admixture of two or more.
[0007]
Specific examples of these aliphatic carboxylic acid lower alkyl esters include methyl caproate, methyl caprylate, methyl caprate, methyl laurate, methyl myristate, methyl palmitate, methyl stearate, methyl aralate, and methyl behenate. , Methyl dimethyloctanoate, methyl butyl heptylnonanoate, methyl hexenoate, methyl octenoate, methyl decenoate, methyl dodecenoate, methyl tetradecenoate, methyl hexadecenoate, methyl octadecenoate, methyl eicosenoate, methyl docosenoate, adipic acid Examples thereof include dimethyl, dimethyl azelate, dimethyl sebacate, dimethyl decamethylene dicarboxylate, dimethyl hexadecamethylene dicarboxylate, and dimethyl octadecamethylene dicarboxylate.
[0008]
The niobium oxide treated with an acid used in the present invention refers to an acid aqueous solution and niobium oxide contacted. As the acid to be contacted, inorganic acids such as hydrochloric acid, boric acid, nitric acid, sulfuric acid and phosphoric acid are preferable, and hydrochloric acid and boric acid are particularly preferable in terms of activity and selectivity. The concentration of the acid aqueous solution is not particularly limited, but a range of 0.1 to 5 mol / L is preferable from the viewpoint of catalyst activation effect, and 0.5 to 5 mol / L is particularly preferable. At this time, the ratio of the acid to niobium oxide is preferably 0.1 to 50 mol, more preferably 0.5 to 30 mol, per mol of niobium oxide.
[0009]
In the niobium oxide treated with the acid used in the present invention, the acid may or may not remain. When the acid remains, its amount is preferably 0.05 mol or less, more preferably 0.03 mol or less, with respect to 1 mol of niobium oxide. If the remaining acid is in the above range, the acid hardly elutes in the reaction solution, and the reaction time is delayed when the resulting aliphatic nitrile is reduced to hydrogen to derive an aliphatic amine. It is preferable because it does not have an adverse effect.
[0010]
The niobium oxide used in the present invention includes niobium pentoxide, niobium tetroxide, niobium trioxide, niobium dioxide and niobium monoxide. Any niobium oxide can be used, but from the viewpoint of reactivity, pentoxide is used. Niobium is preferably used. The form of niobium oxide is not particularly limited, and a hydrated product or an anhydride may be used.
[0011]
The method for preparing niobium oxide treated with an acid used in the present invention is not particularly limited. For example, a method of suspending niobium oxide in an acid aqueous solution, followed by evaporation to dryness and baking is used. The suspension time of niobium oxide in the acid aqueous solution is not particularly limited, but the effect of activating the catalyst is greater when it is performed for 24 hours or more. Washing with water may or may not be performed, but if a large amount of acid remains, it is better to wash with water. Firing may or may not be performed, but when firing, the firing temperature is not particularly limited, but a temperature of 500 ° C. or lower is preferable. When calcination is performed at a temperature exceeding the above range, crystallization of the catalyst occurs, so that the surface area is reduced and the catalytic activity is lowered.
[0012]
In the method of the present invention, the reaction can be carried out in a batch, semi-batch, continuous, or fixed bed flow system using a suspension bed. The reaction temperature is preferably in the range of 180 to 350 ° C, more preferably 250 to 300 ° C. The reaction pressure is usually performed in a slightly pressurized state, but may be normal pressure. The amount of the niobium oxide catalyst treated with the acid is 0.1 to 10% by weight, preferably 0.3 to 3% by weight based on the lower alkyl ester of the carboxylic acid when carried out in a batch, semi-batch or continuous mode using a suspended bed. %. Moreover, when implementing by a fixed bed flow type, the average residence time in the catalyst layer of a reaction mixture has preferable 1 second-10 minutes.
[0013]
【The invention's effect】
The method of the present invention uses a highly active niobium oxide, which is obtained by treating niobium oxide with an acid and is hardly soluble in the reaction solution, as a catalyst. Therefore, an aliphatic nitrile of excellent quality can be produced in a high yield, which is extremely significant industrially.
[0014]
【Example】
Example 1
30.14 g of niobium pentoxide hydrate (manufactured by CBMM, water content 13.4 wt%) and 100 ml of 0.5 mol / L boric acid aqueous solution were added to the flask, and the mixture was stirred at room temperature for 48 hours, acid-treated, and then filtered with suction. The obtained catalyst precursor was stirred in 1000 ml of ion-exchanged water for 30 minutes and suction filtered. This washing with water was repeated three times, and then dried at 100 ° C., calcined at 300 ° C. for 3 hours, and a niobium oxide catalyst treated with boric acid was obtained.
[0015]
Next, 1.0 g of the catalyst and 500 g of methyl stearate were mixed in a four-necked flask equipped with a stirrer, a gas introduction tube, a thermometer, and a dehydrator, and 6 ml of ammonia gas of 1050 ml / min at 260 ° C. was mixed therewith. The reaction was introduced over time. The reaction product obtained by separating the catalyst was analyzed by gas chromatography [gas chromatograph: HEWLETT PACKARD Series 5890, column: J & W, DB-5 (inner diameter x length: 0.53 mm x 15 m)] Table 1 shows. As a result of elemental analysis by ICP emission analysis, boron and niobium in the reaction product were below the detection limit.
[0016]
Example 2
In preparing the catalyst, the same operation as in Example 1 was repeated except that hydrochloric acid was used instead of boric acid to obtain a niobium oxide catalyst treated with hydrochloric acid. The reaction was carried out under the same conditions as in Example 1 using the catalyst. The reaction product was analyzed as in Example 1. The results are shown in Table 1. Chlorine and niobium in the reaction product were below the detection limit.
[0017]
Comparative Example 1
For comparison, the reaction was carried out in the same manner as in Example 1 using niobium pentoxide that was not treated with acid as a catalyst. The reaction product was analyzed as in Example 1. The results are shown in Table 1.
[0018]
Examples 3-5
A niobium oxide catalyst treated with boric acid was obtained by repeating the same operation as in Example 1 except that the boric acid concentration was changed to the concentration shown in Table 1 in the catalyst preparation. The reaction was carried out under the same conditions as in Example 1 using the catalyst. The reaction product was analyzed as in Example 1. The results are shown in Table 1. In either case, boron and niobium were not detected in the reaction product.
[0019]
Examples 6-7
The reaction was performed in the same manner as in Example 1 except that the catalyst prepared in Example 1 was used and the reaction temperature and reaction time were changed to the values shown in Table 1. The reaction product was analyzed as in Example 1. The results are shown in Table 1. In either case, boron and niobium were not detected in the reaction product.
[0020]
[Table 1]
Figure 0004024388
[0021]
Example 8
Using the catalyst prepared in Example 1, the reaction was conducted in the same manner as in Example 1 except that methyl laurate was used instead of methyl stearate. As a result of analyzing the reaction product in the same manner as in Example 1, the production amount of lauronitrile was 87.3 (GC%), and boron and niobium were not detected in the reaction product.
[0022]
Example 9
The niobium oxide powder treated with boric acid before calcination prepared by repeating the same operation as in Example 1 was extruded and then calcined at 300 ° C. for 3 hours to obtain a molded catalyst. 1.0 g of the catalyst was packed in the center of a stainless steel cylindrical reaction tube having an inner diameter of 10 mm and a length of 500 mm. Ammonia gas was supplied from the upper part of the reaction tube at a rate of 88.3 L / hr and methyl stearate at a rate of 1.5 g / hr, and reacted at 260 ° C. under normal pressure. The obtained reaction product was subjected to gas-liquid separation treatment, and the amount of stearonitrile produced was measured by gas chromatography in the same manner as in Example 1. As a result, it was 99.2 (GC%). Further, boron and niobium in the reaction product were below the detection limit.

Claims (4)

脂肪族カルボン酸低級アルキルエステルとアンモニアとを、酸で処理した酸化ニオブの存在下に反応させる脂肪族ニトリルの製造方法。A method for producing an aliphatic nitrile, comprising reacting an aliphatic carboxylic acid lower alkyl ester with ammonia in the presence of an acid-treated niobium oxide. 0.1〜5mol/Lの濃度の酸水溶液で処理した酸化ニオブを用いる請求項1記載の脂肪族ニトリルの製造方法。 The method for producing an aliphatic nitrile according to claim 1, wherein niobium oxide treated with an acid aqueous solution having a concentration of 0.1 to 5 mol / L is used. 酸が、塩酸又はホウ酸である請求項1又は2記載の脂肪族ニトリルの製造方法。The method for producing an aliphatic nitrile according to claim 1 or 2, wherein the acid is hydrochloric acid or boric acid. 脂肪族カルボン酸低級アルキルエステルが、炭素数6〜22の脂肪族カルボン酸のメチルエステルである請求項1〜3のいずれか一項に記載の脂肪族ニトリルの製造方法。The method for producing an aliphatic nitrile according to any one of claims 1 to 3, wherein the aliphatic carboxylic acid lower alkyl ester is a methyl ester of an aliphatic carboxylic acid having 6 to 22 carbon atoms.
JP17841498A 1998-06-25 1998-06-25 Method for producing aliphatic nitrile Expired - Fee Related JP4024388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17841498A JP4024388B2 (en) 1998-06-25 1998-06-25 Method for producing aliphatic nitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17841498A JP4024388B2 (en) 1998-06-25 1998-06-25 Method for producing aliphatic nitrile

Publications (2)

Publication Number Publication Date
JP2000007637A JP2000007637A (en) 2000-01-11
JP4024388B2 true JP4024388B2 (en) 2007-12-19

Family

ID=16048087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17841498A Expired - Fee Related JP4024388B2 (en) 1998-06-25 1998-06-25 Method for producing aliphatic nitrile

Country Status (1)

Country Link
JP (1) JP4024388B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916445B1 (en) * 2007-05-24 2009-07-10 Arkema France PROCESS FOR CO-PRODUCTION OF CYCLIC CARBONATES AND NITRILES AND / OR FATTY AMINES
FR2978147B1 (en) 2011-07-19 2015-01-09 Arkema France PROCESS FOR SYNTHESIZING OMEGA-FUNCTIONALIZED ACIDS FROM HYDROXYLIC ACIDS OR FATTY ESTERS
FR2983477B1 (en) 2011-12-01 2013-12-27 Arkema France PROCESS FOR CUTTING UNSATURATED FAT CHANNELS
CN111233704B (en) * 2020-03-16 2023-01-06 湖北三宁碳磷基新材料产业技术研究院有限公司 Method for preparing 6-aminocapronitrile product

Also Published As

Publication number Publication date
JP2000007637A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US5306845A (en) Method for producing an aldehyde
US4729978A (en) Catalyst for dehydration of lactic acid to acrylic acid
SU417933A3 (en) METHOD OF OBTAINING UNSATURATED ESTERS OF CARBONIC ACIDS
JPH05293377A (en) Chromium-free catalyst for hydrogenation of organic compound
US5087737A (en) Process for producing methyl methacrylate
JP4024388B2 (en) Method for producing aliphatic nitrile
US4874888A (en) Process for the preparation of a diester of oxalic acid
GB2092138A (en) Process for preparing oxalic acid diesters
JP4219481B2 (en) Method for producing aliphatic nitrile
US4448897A (en) Method for producing a vanadium-titanium catalyst exhibiting improved intrinsic surface area
JP4219483B2 (en) Method for producing aliphatic nitrile
JPH0427968B2 (en)
JP4219484B2 (en) Method for producing aliphatic nitrile
US4448898A (en) Method for producing a vanadium-titanium-tin catalyst exhibiting improved intrinsic surface area
JPH01290651A (en) Production of carboxylic acid ester
EP0284816B1 (en) Method of producing aldehydes
EP0056994B1 (en) Process for preparation of oxalic acid diesters
JP3712008B2 (en) Method for producing silica-titania catalyst for carboxylic acid ester production
EP0562806B1 (en) Process for producing an alpha, beta-unsaturated carboxylic acid
JPH02196763A (en) Production of alpha-hydroxyisobutyric acid amide
JPH0625090A (en) Production of neopentyl glycol hydroxypivarate
JPH08231458A (en) Method of preparing aldehyde
JPH04283549A (en) Production of aliphatic nitrile having improved color tone
JPS5924984B2 (en) Production method of 4-butyrolactone
JPS59172436A (en) Carbonylation of dimethyl ether

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees