JP4282831B2 - Production method of diols - Google Patents

Production method of diols Download PDF

Info

Publication number
JP4282831B2
JP4282831B2 JP17073699A JP17073699A JP4282831B2 JP 4282831 B2 JP4282831 B2 JP 4282831B2 JP 17073699 A JP17073699 A JP 17073699A JP 17073699 A JP17073699 A JP 17073699A JP 4282831 B2 JP4282831 B2 JP 4282831B2
Authority
JP
Japan
Prior art keywords
acid
mixture
producing
catalyst
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17073699A
Other languages
Japanese (ja)
Other versions
JP2001002604A (en
Inventor
満月男 小西
英三郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP17073699A priority Critical patent/JP4282831B2/en
Publication of JP2001002604A publication Critical patent/JP2001002604A/en
Application granted granted Critical
Publication of JP4282831B2 publication Critical patent/JP4282831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術的分野】
本発明はコハク酸、グルタル酸、アジピン酸を含むジカルボン酸混合物を原料としてエステル化工程を経ることなく直接水素化して1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを含むジオール混合物を製造する方法に関するものである。ジオール類はポリエステル樹脂、ウレタンフォームやウレタン塗料、接着剤の原料として有用な物質である。
【0002】
【従来の技術】
従来、コハク酸あるいはマレイン酸を水素化し、1,4−ブタンジオールを製造する方法は数多く報告されている。例えば、最も良く知られている方法として銅系の触媒を用いる方法がある。しかしながら、この方法では、コハク酸を直接還元することができず、カルボン酸を一旦エステルに転換後還元しなければならず、製造工程が長くなる。
【0003】
一方、コハク酸あるいはマレイン酸を直接還元して1,4−ブタンジオールを製造する方法もいくつか提案されている。その触媒系のみを列記するとルテニウム−鉄酸化物からなる触媒(米国特許4,827,001号)、ルテニウム−錫をBET表面積2000m2/g以上の多孔質炭素に担持した触媒(特開平5−246915号)、ルテニウム及び錫をチタン及び/又はアルミナで修飾したシリカに担持した触媒(特開平6−116182号)、ルテニウム及び錫、並びにアルカリ金属化合物またはアルカリ土類金属を担体に担持した触媒(特開平6−239778号)、ルテニウムと白金及びロジウムから選ばれた少なくとも1種と錫とを担体に担持した触媒(特開平7−165644号)、ルテニウムと錫を担体に担持してなる触媒を用い、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う方法(特開平9−12492号)、ルテニウム−錫−白金を担体に担持した触媒(特開平9−59190号)、炭素数5以下のカルボニル化合物が共存した担持成分を含有する溶液を活性炭に含浸して調整したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−15388号)、あらかじめ硝酸と接触した活性炭を使用することにより金属の担持状態を規定したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−71332号)が提案されているが、いずれの触媒を用いる方法においても、1.4−ブタンジオール、テトラヒドロフラン、γ−ブチロラクトンの選択率が十分でなく、1,4−ブタンジオールの収率は不満足なものであった。また特開平7−82190号にはパラジウムとレニウム化合物からなる触媒を用い、三級アルコールを溶媒として水素化を行う方法が提案されているが、反応速度が未だ不十分であった。
【0004】
一方、含酸素C4炭化水素原料としては、ブタンの空気酸化で得られる無水マレイン酸あるいはマレイン酸が工業的に製造されていることから好適ではあるが、シクロヘキサノン及び/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するジカルボン酸類に含まれるコハク酸もまた好適な原料である。すなわちこのジカルボン酸を原料として工業的に有用な化合物を得ることができれば、アジピン酸製造に際して発生する廃棄物を減らすことができること、またこの副生物には一般的にコハク酸以外にグルタル酸、アジピン酸が含まれていることから1,4−ブタンジオールのみならず、1,5−ペンタンジオール、1,6−ヘキサンジオールという工業的に有用なジオールを併産できることが期待されることからも直接水素化の原料として好適である。
【0005】
米国特許5,698,749にはパラジウム−銀−レニウムをあらかじめ硝酸酸化処理した活性炭上に担持した触媒を用いてマレイン酸から1,4−ブタンジオールが比較的高収率で得られることが述べられているが、グルタル酸あるいはアジピン酸の水素化還元反応の成績については何も記載されていない。また、特開平11−60523号にはあらかじめ酸処理した活性炭にルテニウム−錫−白金を担持した触媒を用いてアジピン酸から1,6−ヘキサンジオールが高収率で得られることが述べられているが、先に述べたように特開平10−71332号に述べられているこの触媒を用いたコハク酸の水素化の結果から、コハク酸から1,4−ブタンジオールを高収率で得ることは困難である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、シクロヘキサノン及び/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するコハク酸、グルタル酸、アジピン酸を含有するジカルボン酸の混合物から1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを含有するジオール類の混合物を高収率で得る製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決すべく本発明者らが鋭意検討した結果、驚くべきことにあらかじめ鉱酸で処理した炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持した触媒を用いることにより、コハク酸及びグルタル酸とアジピン酸を含有するジカルボン酸の混合物から1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを収率よく製造し得ることを見出し、本発明を完成したものである。
【0008】
すなわち本発明は、以下の[1]〜[7]のジオール類の製造方法である。
[1] コハク酸及び下記式(1)に示すジカルボン酸からなる混合物を触媒と水の存在下、水素と反応させて1,4−ブタンジオール及び下記式(2)のジオールからなる混合物を製造する方法において触媒としてあらかじめ鉱酸で処理した炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持して調整した触媒を用いることを特徴とするジオール類の製法。
HOOC−R−COOH (1)
(式中、Rは炭素数が3〜20である飽和の二価の炭化水素基を表す)
HO−CH−R−CHOH (2)
(式中、Rは、式(1)のRと同じである)
[2] コハク酸及び式(1)のジカルボン酸からなる混合物がコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする[1]に記載のジオール類の製法。
【0009】
[3] 炭素質担体が活性炭であることを特徴とする[1]または[2]に記載のジオール類の製法。
[4] 該鉱酸が硝酸であることを特徴とする[1]〜[3]のいずれかに記載のジオール類の製法。
[5] 炭素質担体に担持した金属がルテニウム−錫−レニウムであることを特徴とする[1]〜[4]のいずれかに記載のジオール類の製法。
[6] コハク酸及び式(1)のジカルボン酸からなる混合物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする[1]〜[5]のいずれかに記載のジオール類の製法。
[7] 温度100℃〜300℃、圧力1MPa〜25MPaの条件下でジカルボン酸の混合物を水素と反応させることを特徴とする[1]〜[6]のいずれかに記載のジオール類の製法。
【0010】
以下、本発明を詳細に説明する。
本発明において1,4−ブタンジオールを含むジオール類の製造に用いられる原料は、コハク酸及び式(1)のジカルボン酸からなる混合物であり、特にコハク酸、グルタル酸、アジピン酸を含有するジカルボン酸の混合物である。このような原料の1例は、シクロヘキサンノン及び/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際に副生するジカルボン酸の混合物であり、例えばアジピン酸を晶析分離した母液である。本発明ではその母液をそのまま用いても良いし、何らかの不純物により触媒の水素還元活性が減じる時には脱触媒、脱水、脱硝酸などの工程を経たものを用いることもできる。
【0011】
本発明で用いる水素還元触媒は、炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持させて調整したものである。炭素質担体としては活性炭が好ましいが、カーボンブラック、グラファイトなどを用いることもできる。炭素質担体の表面積に特に制限はないが、鉱酸で処理する前の窒素吸着−BET表面積が600〜2,000m/gの表面積を持つものが好ましい。本発明では炭素質担体はあらかじめ鉱酸で処理する前処理を経てから触媒の調整に用いる。
【0012】
鉱酸による前処理は、炭素質担体を鉱酸に投入して常温ないし加温下に数分間から数十時間程度保持すればよい。鉱酸としては硝酸、塩酸、硫酸、リン酸などを用いることができるが硝酸が特に好ましく用いられる。鉱酸の濃度は特に制限はないが1〜90重量%、特に5〜60重量%が好ましい。処理温度は、30〜100℃の温度が好ましく、さらに好ましくは80〜95℃である。処理時間は、鉱酸の濃度と処理温度にもよるが少なくとも数分から数十時間であり、さらに好ましくは1時間〜20時間である。鉱酸で前処理した炭素質担体は十分に水洗して付着している鉱酸を除去し、触媒調整に用いる。
【0013】
鉱酸で前処理した炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持する方法としては浸せき法、イオン交換法、含浸法など担持触媒の調整に一般的に用いられている任意の方法を用いることができる。浸せき法によるときは担持する金属成分の原料化合物を水などの溶媒に溶解して金属化合物の溶液を調整し、この溶液に上記方法で鉱酸で前処理した炭素質担体を浸せきして担体に担持させる。担体に各金属成分を担持させる順序については特に制限はなく、全ての金属を同時に担持しても、各成分を個別に担持してもよい。
【0014】
触媒調整に用いる金属成分の原料としては、触媒の調整法にもよるが通常は硝酸塩、硫酸塩、塩酸塩などの鉱酸塩、酢酸塩などの有機酸塩、水酸化物、酸化物、有機金属化合物などを用いることができる。
金属成分を担持した炭素質担体は乾燥し、次いで所望により焼成、還元して触媒とする。乾燥は通常200℃以下の温度で減圧下に保持するか、又は窒素、空気などの乾燥気体を流通させて行う。また焼成は通常100〜600℃の温度で窒素、空気などを流通させながら行う。還元は液相還元又は気相還元のいずれで行ってもよい。
【0015】
通常は水素を還元ガスとして、200〜500℃の温度で気相還元する。ルテニウムと錫の担持量は担体に対してそれぞれ金属として0.5〜50重量%、好ましくは1〜10重量%である。ルテニウム、錫の比率は金属として元素比でルテニウム:錫比が1:0.1〜1:2が好ましく、さらに好ましくは1:0.2〜1:1である。本発明ではルテニウムと錫に加えてレニウム、モリブデンから選ばれる少なくとも一つの金属を担持するが、この中でも特にレニウムが好ましい。レニウム、モリブデンの担持量は、金属として元素比でルテニウムに対して0.1〜5が好ましく、さらに好ましくは0.2〜2の範囲である。
【0016】
本発明では上記のルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を炭素質担体に担持した触媒と水の存在下にコハク酸、グルタル酸、アジピン酸からなるジカルボン酸混合物の水素化還元を行う。反応における水の量はジカルボン酸混合物に対して0.5〜100重量倍である。さらに好ましくは1〜20重量倍である。水素化還元温度においてジカルボン酸の全量が溶解する水量が好ましい。水素化還元の温度は、50〜400℃が好ましく、さらに好ましくは100〜300℃である。圧力は0.5〜40MPa、さらに好ましくは1MPa〜25MPaである。
【0017】
還元反応は連続、回分のいずれで行ってもよい、また反応型式としては液相懸濁反応、固定床流通反応のいずれも用いることができる。
本発明においてジオールとして1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの混合物が得られるが、これらのジオールは必要に応じて通常の精製方法、例えば蒸留分離によって精製することができる。
【0018】
【発明の実施の形態】
以下、本発明を実施例などを用いて更に詳細に説明する。なお、反応成績のうち、原料の転化率は液体クロマトグラフィーの分析値から算出し、ジオール類の収率はガスクロマトグラフィーの分析値から算出した。また、コハク酸、グルタル酸、アジピン酸の混合物はアジピン酸を晶析分離した母液から脱水、脱硝酸処理して得た。組成は液体クロマトグラフィーの分析によりコハク酸23重量%、グルタル酸60重量%、アジピン酸17重量%であった。
【0019】
【実施例1】
<活性炭の硝酸処理>
30%硝酸75gに粒状活性炭(粒径10〜20メッシュ、窒素吸着−BET表面積1400m2/g)30gを入れ、90℃で攪拌下3時間加熱処理した。冷却後、活性炭を濾過し、100mlのイオン交換水で濾液が中性になるまで洗浄した。得られた活性炭を120℃で5時間熱風乾燥した。
<Ru−Sn−Re触媒の調整>
100mlのナスフラスコにイオン交換水2.00g、塩化ルテニウム・3水和物0.39gを入れ溶解した。その溶液に塩化錫(II価)・2水和物0.20gを加え溶解した。更に七酸化二レニウム0.22gを加え溶解した。この溶液に上記の硝酸処理した活性炭3.00gを加え、室温で15時間振とうした。エバポレーターを用いて70℃、20torrで水を留去した後、窒素ガス雰囲気下150℃、2時間焼成処理し、ついで水素雰囲気下450℃で2時間還元処理した。再び窒素ガス雰囲気にし、室温まで冷却した後に0.1%酸素/窒素雰囲気で2時間静置した。
上記方法により5.0重量%ルテニウム−3.5重量%錫−5.6重量%レニウムを活性炭に担持した触媒を調整した。
【0020】
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
容量100mlのオートクレーブに、水10g、上記コハク酸、グルタル酸、アジピン酸の混合物1gと上記方法で調製した触媒0.3gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を20kg/cm2圧入し、180℃まで昇温した。180℃に達した時点で水素を圧入し150kg/cm2とした。この圧力で6時間水素化還元反応を行った。反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。デカンテーションにより分離した反応液と触媒洗浄液を合わせて各ジカルボン酸の転化率とジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ98%、97%、79%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ89%、95%、78%であった。
【0021】
【実施例2】
<Ru−Sn−Mo触媒の調整>
実施例1の七酸化二レニウム0.22gに代えて(NH4)6Mo7O24・4水和物0.08gを用いた以外は実施例1と同様にして触媒を調整した。
これにより5.0重量%ルテニウム−3.5重量%錫−1.5重量%モリブデンを活性炭に担持した触媒を調整した。
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
触媒として上記で調整したルテニウム−錫−モリブデン/活性炭触媒を用いた以外は実施例1と同様にして水素化反応を行った。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ90%、95%、83%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ85%、93%、78%であった。
【0022】
【比較例1】
硝酸処理を行っていない活性炭を用いて実施例1の触媒調整と同様にしてルテニウム−錫−レニウム/活性炭触媒を調整した。この触媒を用い、実施例1と同様の手順で上記ジカルボン酸混合物の水素化還元反応を行った。その結果コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ78%、75%、67%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率はそれぞれ23%、24%、21%であった。
【0023】
【発明の効果】
以上述べたように、本発明のルテニウムと錫及び、レニウム、モリブデンから選ばれる少なくとも一つの金属をあらかじめ硝酸処理した炭素質担体に担持した触媒を用いることによりコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物から1,4−ブタンジオール、1.5−ペンタンジオール、1,6−ヘキサンジオールを含むジオール混合物を高収率で製造することができるものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol by directly hydrogenating a dicarboxylic acid mixture containing succinic acid, glutaric acid, and adipic acid without going through an esterification step. Relates to a process for producing a diol mixture comprising Diols are useful substances as raw materials for polyester resins, urethane foam, urethane paints, and adhesives.
[0002]
[Prior art]
Conventionally, many methods for producing 1,4-butanediol by hydrogenating succinic acid or maleic acid have been reported. For example, as the most well-known method, there is a method using a copper-based catalyst. However, in this method, succinic acid cannot be directly reduced, and the carboxylic acid must be once converted to an ester and then reduced, resulting in a long production process.
[0003]
On the other hand, several methods for producing 1,4-butanediol by directly reducing succinic acid or maleic acid have been proposed. When only the catalyst system is listed, a catalyst made of ruthenium-iron oxide (US Pat. No. 4,827,001), a catalyst in which ruthenium-tin is supported on porous carbon having a BET surface area of 2000 m 2 / g or more (Japanese Patent Laid-Open No. Hei 5- 246915), a catalyst in which ruthenium and tin are supported on silica modified with titanium and / or alumina (Japanese Patent Laid-Open No. 6-116182), a catalyst in which ruthenium and tin, and an alkali metal compound or alkaline earth metal are supported on a support ( JP-A-6-239778), a catalyst in which at least one selected from ruthenium, platinum and rhodium and tin are supported on a carrier (JP-A-7-165644), and a catalyst in which ruthenium and tin are supported on a carrier. A method in which excess hydrogen is circulated in the reaction system and the reaction is carried out while removing entrained products out of the system (JP-A-9-12). 92), ruthenium-tin-platinum-supported catalyst (Japanese Patent Laid-Open No. 9-59190), and ruthenium prepared by impregnating activated carbon with a solution containing a supporting component in which a carbonyl compound having 5 or less carbon atoms coexists. A catalyst in which tin-platinum is supported on activated carbon (Japanese Patent Laid-Open No. 10-15388), and a catalyst in which ruthenium-tin-platinum in which the supported state of the metal is defined by using activated carbon previously contacted with nitric acid is supported on the activated carbon (Japanese Patent Laid-Open No. 10-71332) has been proposed, but in any of the methods using a catalyst, the selectivity of 1.4-butanediol, tetrahydrofuran and γ-butyrolactone is not sufficient, and the yield of 1,4-butanediol is Was unsatisfactory. Japanese Patent Laid-Open No. 7-82190 proposes a method of hydrogenation using a catalyst comprising palladium and a rhenium compound and a tertiary alcohol as a solvent, but the reaction rate is still insufficient.
[0004]
On the other hand, as an oxygen-containing C4 hydrocarbon raw material, maleic anhydride or maleic acid obtained by air oxidation of butane is suitable because it is industrially produced. However, cyclohexanone and / or cyclohexanol is oxidized to form adipine. Succinic acid contained in dicarboxylic acids by-produced when producing the acid is also a suitable raw material. That is, if an industrially useful compound can be obtained using this dicarboxylic acid as a raw material, waste generated in the production of adipic acid can be reduced, and this by-product generally includes glutaric acid and adipine in addition to succinic acid. Directly because it is expected that not only 1,4-butanediol but also industrially useful diols such as 1,5-pentanediol and 1,6-hexanediol can be co-produced because the acid is contained. Suitable as a raw material for hydrogenation.
[0005]
U.S. Pat. No. 5,698,749 states that 1,4-butanediol can be obtained from maleic acid in a relatively high yield using a catalyst supported on activated carbon that has been pretreated with nitric acid in palladium-silver-rhenium. However, nothing is described about the results of the hydroreduction reaction of glutaric acid or adipic acid. Japanese Patent Application Laid-Open No. 11-60523 describes that 1,6-hexanediol can be obtained in high yield from adipic acid using a catalyst in which ruthenium-tin-platinum is supported on activated carbon that has been previously acid-treated. However, as described above, as a result of hydrogenation of succinic acid using this catalyst described in JP-A-10-71332, it is possible to obtain 1,4-butanediol from succinic acid in a high yield. Have difficulty.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to obtain 1,4-butanediol from a mixture of dicarboxylic acids containing succinic acid, glutaric acid, and adipic acid, which are by-produced when cyclohexanone and / or cyclohexanol is oxidized to produce adipic acid. , 5-pentanediol, 1,6-hexanediol It is to provide a production method for obtaining a mixture of diols in high yield.
[0007]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors to solve the above-mentioned problems, surprisingly, a catalyst in which at least one metal selected from ruthenium, tin, rhenium, and molybdenum is supported on a carbonaceous support previously treated with a mineral acid is used. Thus, it has been found that 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol can be produced with good yield from a mixture of succinic acid and dicarboxylic acid containing glutaric acid and adipic acid, The present invention has been completed.
[0008]
That is, the present invention is a method for producing the following diols [1] to [7].
[1] A mixture comprising succinic acid and a dicarboxylic acid represented by the following formula (1) is reacted with hydrogen in the presence of a catalyst and water to produce a mixture comprising 1,4-butanediol and a diol represented by the following formula (2). A process for producing diols, characterized in that a catalyst prepared by supporting at least one metal selected from ruthenium, tin, rhenium and molybdenum on a carbonaceous support previously treated with a mineral acid is used as a catalyst.
HOOC-R-COOH (1)
(In the formula, R represents a saturated divalent hydrocarbon group having 3 to 20 carbon atoms)
HO—CH 2 —R—CH 2 OH (2)
(Wherein R is the same as R in formula (1))
[2] The process for producing a diol according to [1], wherein the mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid and adipic acid.
[0009]
[3] The process for producing a diol according to [1] or [2], wherein the carbonaceous carrier is activated carbon.
[4] The process for producing a diol according to any one of [1] to [3] , wherein the mineral acid is nitric acid.
[5] The process for producing a diol according to any one of [1] to [4] , wherein the metal supported on the carbonaceous carrier is ruthenium-tin-rhenium.
[6] The mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid, and adipic acid recovered from the cyclohexanone and / or cyclohexanol oxidation reaction solution. The process for producing a diol according to any one of [1] to [5].
[7] The process for producing a diol according to any one of [1] to [6] , wherein a mixture of dicarboxylic acids is reacted with hydrogen under conditions of a temperature of 100 ° C to 300 ° C and a pressure of 1 MPa to 25 MPa.
[0010]
Hereinafter, the present invention will be described in detail.
In the present invention, the raw material used for the production of diols containing 1,4-butanediol is a mixture comprising succinic acid and the dicarboxylic acid of the formula (1), and in particular, dicarboxylic acid containing succinic acid, glutaric acid and adipic acid. It is a mixture of acids. One example of such a raw material is a mixture of dicarboxylic acids by-produced when nitric acid is oxidized to cyclohexanenone and / or cyclohexanol to produce adipic acid. For example, it is a mother liquor obtained by crystallization separation of adipic acid. In the present invention, the mother liquor may be used as it is, or when the hydrogen reduction activity of the catalyst is reduced due to some impurities, it may be used after steps such as decatalysis, dehydration, and denitrification.
[0011]
The hydrogen reduction catalyst used in the present invention is prepared by supporting at least one metal selected from ruthenium, tin, rhenium and molybdenum on a carbonaceous support. As the carbonaceous support, activated carbon is preferable, but carbon black, graphite, and the like can also be used. Although there is no restriction | limiting in particular in the surface area of a carbonaceous support | carrier, What has a surface area of nitrogen adsorption-BET surface area before processing with a mineral acid of 600-2,000 m < 2 > / g is preferable. In the present invention, the carbonaceous support is used for the preparation of the catalyst after pretreatment with a mineral acid in advance.
[0012]
The pretreatment with a mineral acid may be performed by adding a carbonaceous support to the mineral acid and maintaining it at room temperature or under heating for several minutes to several tens of hours. As the mineral acid, nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid and the like can be used, and nitric acid is particularly preferably used. The concentration of the mineral acid is not particularly limited, but is preferably 1 to 90% by weight, particularly 5 to 60% by weight. The treatment temperature is preferably 30 to 100 ° C, more preferably 80 to 95 ° C. The treatment time depends on the mineral acid concentration and the treatment temperature, but is at least several minutes to several tens of hours, more preferably 1 to 20 hours. The carbonaceous carrier pretreated with the mineral acid is thoroughly washed with water to remove the deposited mineral acid and used for catalyst preparation.
[0013]
As a method of supporting at least one metal selected from ruthenium, tin, rhenium, and molybdenum on a carbonaceous support pretreated with a mineral acid, it is generally used to adjust the supported catalyst such as an immersion method, an ion exchange method, and an impregnation method. Any method can be used. When the immersion method is used, a metal compound solution is prepared by dissolving a metal compound material to be supported in a solvent such as water, and the carbonaceous carrier pretreated with a mineral acid by the above method is immersed in this solution to the carrier. Support. There is no particular limitation on the order in which each metal component is supported on the carrier, and all the metals may be supported simultaneously or each component may be individually supported.
[0014]
Depending on the catalyst preparation method, the metal component materials used for catalyst preparation are usually mineral salts such as nitrates, sulfates and hydrochlorides, organic acid salts such as acetates, hydroxides, oxides and organics. A metal compound or the like can be used.
The carbonaceous support carrying the metal component is dried and then calcined and reduced as desired to form a catalyst. Drying is usually performed at a temperature of 200 ° C. or lower under reduced pressure or by passing a dry gas such as nitrogen or air. Firing is usually performed at a temperature of 100 to 600 ° C. while circulating nitrogen, air, or the like. The reduction may be performed by either liquid phase reduction or gas phase reduction.
[0015]
Usually, gas phase reduction is performed at a temperature of 200 to 500 ° C. using hydrogen as a reducing gas. The supported amount of ruthenium and tin is 0.5 to 50% by weight, preferably 1 to 10% by weight, as a metal, respectively, with respect to the support. The ratio of ruthenium and tin is an element ratio as a metal, and the ruthenium: tin ratio is preferably 1: 0.1 to 1: 2, more preferably 1: 0.2 to 1: 1. In the present invention, at least one metal selected from rhenium and molybdenum is supported in addition to ruthenium and tin, among which rhenium is particularly preferable. The supported amount of rhenium and molybdenum is preferably 0.1 to 5 and more preferably 0.2 to 2 with respect to ruthenium as an element ratio as a metal.
[0016]
In the present invention, hydrogenation reduction of a dicarboxylic acid mixture comprising succinic acid, glutaric acid, and adipic acid in the presence of a catalyst in which at least one metal selected from ruthenium, tin, rhenium, and molybdenum is supported on a carbonaceous support and water. I do. The amount of water in the reaction is 0.5 to 100 times by weight with respect to the dicarboxylic acid mixture. More preferably, it is 1 to 20 times by weight. An amount of water in which the entire amount of the dicarboxylic acid dissolves at the hydroreduction temperature is preferred. The hydrogenation temperature is preferably 50 to 400 ° C, more preferably 100 to 300 ° C. The pressure is 0.5 to 40 MPa, more preferably 1 MPa to 25 MPa.
[0017]
The reduction reaction may be carried out either continuously or batchwise. As the reaction type, either a liquid phase suspension reaction or a fixed bed flow reaction can be used.
In the present invention, a mixture of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol is obtained as the diol. These diols can be purified by an ordinary purification method such as distillation separation as necessary. can do.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples and the like. Of the reaction results, the conversion rate of the raw material was calculated from the analytical value of liquid chromatography, and the yield of diols was calculated from the analytical value of gas chromatography. A mixture of succinic acid, glutaric acid, and adipic acid was obtained by dehydration and denitration treatment from a mother liquor obtained by crystallization separation of adipic acid. The composition was 23% by weight of succinic acid, 60% by weight of glutaric acid, and 17% by weight of adipic acid by liquid chromatography analysis.
[0019]
[Example 1]
<Nitric acid treatment of activated carbon>
30 g of nitric acid (particle size 10 to 20 mesh, nitrogen adsorption—BET surface area 1400 m 2 / g) was added to 75 g of 30% nitric acid, followed by heat treatment at 90 ° C. for 3 hours with stirring. After cooling, the activated carbon was filtered and washed with 100 ml of ion exchange water until the filtrate became neutral. The obtained activated carbon was dried with hot air at 120 ° C. for 5 hours.
<Preparation of Ru-Sn-Re catalyst>
In a 100 ml eggplant flask, 2.00 g of ion exchange water and 0.39 g of ruthenium chloride trihydrate were dissolved. To the solution, 0.20 g of tin chloride (II) dihydrate was added and dissolved. Further, 0.22 g of dirhenium heptoxide was added and dissolved. To this solution, 3.00 g of the activated carbon treated with nitric acid was added and shaken at room temperature for 15 hours. After distilling off water at 70 ° C. and 20 torr using an evaporator, it was baked at 150 ° C. for 2 hours in a nitrogen gas atmosphere, and then reduced at 450 ° C. for 2 hours in a hydrogen atmosphere. The atmosphere was again a nitrogen gas atmosphere, cooled to room temperature, and allowed to stand in a 0.1% oxygen / nitrogen atmosphere for 2 hours.
By the above method, a catalyst having 5.0 wt% ruthenium-3.5 wt% tin-5.6 wt% rhenium supported on activated carbon was prepared.
[0020]
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
An autoclave with a capacity of 100 ml was charged with 10 g of water, 1 g of a mixture of succinic acid, glutaric acid and adipic acid and 0.3 g of the catalyst prepared by the above method, and after replacing the atmosphere in the autoclave with nitrogen at room temperature, 20 kg of hydrogen / Cm 2 was injected and the temperature was raised to 180 ° C. When the temperature reached 180 ° C., hydrogen was injected to make 150 kg / cm 2 . The hydroreduction reaction was performed at this pressure for 6 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction liquid and catalyst washing liquid separated by decantation were combined, and the conversion rate of each dicarboxylic acid and the yield of diol were determined by analysis by liquid chromatography and gas chromatography. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 98%, 97% and 79%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. Were 89%, 95% and 78%, respectively.
[0021]
[Example 2]
<Preparation of Ru-Sn-Mo catalyst>
A catalyst was prepared in the same manner as in Example 1 except that 0.08 g of (NH 4) 6 Mo 7 O 24 · tetrahydrate was used instead of 0.22 g of dirhenium heptoxide in Example 1.
As a result, a catalyst in which 5.0 wt% ruthenium-3.5 wt% tin-1.5 wt% molybdenum was supported on activated carbon was prepared.
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
A hydrogenation reaction was carried out in the same manner as in Example 1 except that the ruthenium-tin-molybdenum / activated carbon catalyst prepared above was used as the catalyst. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 90%, 95% and 83%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. Were 85%, 93% and 78%, respectively.
[0022]
[Comparative Example 1]
A ruthenium-tin-rhenium / activated carbon catalyst was prepared in the same manner as in Example 1 using activated carbon that had not been treated with nitric acid. Using this catalyst, the hydrogenation-reduction reaction of the dicarboxylic acid mixture was performed in the same procedure as in Example 1. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 78%, 75% and 67%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. They were 23%, 24%, and 21%, respectively.
[0023]
【The invention's effect】
As described above, succinic acid, glutaric acid, and adipic acid are contained by using a catalyst in which at least one metal selected from ruthenium, tin, rhenium, and molybdenum of the present invention is supported on a carbonaceous support that has been previously treated with nitric acid. A diol mixture containing 1,4-butanediol, 1.5-pentanediol and 1,6-hexanediol can be produced in a high yield from a mixture of dicarboxylic acids.

Claims (7)

コハク酸及び下記式(1)に示すジカルボン酸からなる混合物を触媒と水の存在下、水素と反応させて1,4−ブタンジオール及び下記式(2)のジオールからなる混合物を製造する方法において触媒としてあらかじめ鉱酸で処理した炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持して調整した触媒を用いることを特徴とするジオール類の製法。
HOOC−R−COOH (1)
(式中、Rは炭素数が3〜20である飽和の二価の炭化水素基を表す)
HO−CH−R−CHOH (2)
(式中、Rは、式(1)のRと同じである)
In a method for producing a mixture comprising 1,4-butanediol and a diol represented by the following formula (2) by reacting a mixture comprising succinic acid and the dicarboxylic acid represented by the following formula (1) with hydrogen in the presence of a catalyst and water. A process for producing diols, characterized in that a catalyst prepared by supporting at least one metal selected from ruthenium, tin, rhenium and molybdenum on a carbonaceous support previously treated with a mineral acid is used as a catalyst.
HOOC-R-COOH (1)
(In the formula, R represents a saturated divalent hydrocarbon group having 3 to 20 carbon atoms)
HO—CH 2 —R—CH 2 OH (2)
(Wherein R is the same as R in formula (1))
コハク酸及び式(1)のジカルボン酸からなる混合物がコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする請求項1に記載のジオール類の製法。 The process for producing a diol according to claim 1, wherein the mixture comprising succinic acid and the dicarboxylic acid of formula (1) is a mixture of succinic acid, glutaric acid and dicarboxylic acid containing adipic acid. 炭素質担体が活性炭であることを特徴とする請求項1または2に記載のジオール類の製法。 The method for producing a diol according to claim 1 or 2, wherein the carbonaceous carrier is activated carbon. 該鉱酸が硝酸であることを特徴とする請求項1〜3のいずれか1項に記載のジオール類の製法。The method for producing a diol according to any one of claims 1 to 3 , wherein the mineral acid is nitric acid. 炭素質担体に担持した金属がルテニウム−錫−レニウムであることを特徴とする請求項1〜4のいずれか1項に記載のジオール類の製法。The method for producing a diol according to any one of claims 1 to 4 , wherein the metal supported on the carbonaceous carrier is ruthenium-tin-rhenium. コハク酸及び式(1)のジカルボン酸からなる混合物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする請求項1〜5のいずれか1項に記載のジオール類の製法。The mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid and adipic acid recovered from an oxidation reaction solution of cyclohexanone and / or cyclohexanol. Item 6. A process for producing a diol according to any one of Items 1 to 5. 温度100℃〜300℃、圧力1MPa〜25MPaの条件下でジカルボン酸の混合物を水素と反応させることを特徴とする請求項1〜6のいずれか1項に記載のジオール類の製法。The process for producing a diol according to any one of claims 1 to 6 , wherein a mixture of dicarboxylic acids is reacted with hydrogen under conditions of a temperature of 100 ° C to 300 ° C and a pressure of 1 MPa to 25 MPa.
JP17073699A 1999-06-17 1999-06-17 Production method of diols Expired - Fee Related JP4282831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17073699A JP4282831B2 (en) 1999-06-17 1999-06-17 Production method of diols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17073699A JP4282831B2 (en) 1999-06-17 1999-06-17 Production method of diols

Publications (2)

Publication Number Publication Date
JP2001002604A JP2001002604A (en) 2001-01-09
JP4282831B2 true JP4282831B2 (en) 2009-06-24

Family

ID=15910442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17073699A Expired - Fee Related JP4282831B2 (en) 1999-06-17 1999-06-17 Production method of diols

Country Status (1)

Country Link
JP (1) JP4282831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576527B (en) * 2014-12-31 2017-08-29 深圳市华星光电技术有限公司 A kind of preparation method of array base palte

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224597C (en) * 1999-11-05 2005-10-26 旭化成株式会社 Process for the preparation of diol mixtures
JP4640748B2 (en) * 2001-07-12 2011-03-02 旭化成ケミカルズ株式会社 Catalyst for direct hydrogenation of carboxylic acid
US7126034B2 (en) 2002-11-01 2006-10-24 Cargill, Incorporated Process for preparation of 1,3-propanediol
WO2020008617A1 (en) 2018-07-06 2020-01-09 Toyo Tire株式会社 Catalyst for hydrogenation and production method for diol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576527B (en) * 2014-12-31 2017-08-29 深圳市华星光电技术有限公司 A kind of preparation method of array base palte

Also Published As

Publication number Publication date
JP2001002604A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
KR100460371B1 (en) Catalysts for hydrogenation of carboxylic acid
US4550185A (en) Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst
JPH10306047A (en) Production of 1,6-hexanediol
KR100546986B1 (en) Process for the preparation of diol mixtures
US4609636A (en) Pd/Re hydrogenation catalyst for making tetrahydrofuran and 1,4-butanediol
KR19980703190A (en) Process for preparing 1,4-butanediol and tetrahydrofuran from furan
JP6718017B2 (en) Method for producing 1,3-cyclohexanedimethanol
JP4282832B2 (en) Process for producing diols
JP4282831B2 (en) Production method of diols
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
US5969194A (en) Process for preparing 1, 6-hexanediol
JP4282830B2 (en) Method for producing diols
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
JP4282153B2 (en) Method for producing diol mixture
JP2004538134A (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride.
JP4282154B2 (en) Method for producing diol mixture
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP3726504B2 (en) Catalyst regeneration method and hydrogenation method using regenerated catalyst
JP2639463B2 (en) Method for producing 1,4-butanediol and tetrahydrofuran
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP3873389B2 (en) Method for producing 1,6-hexanediol
JP3921788B2 (en) Method for producing 1,6-hexanediol
JP3132532B2 (en) Lactone production method
JP2002542213A (en) Method for producing and purifying aromatic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees