JP3744023B2 - Process for producing 1,4-butanediol and / or tetrahydrofuran - Google Patents

Process for producing 1,4-butanediol and / or tetrahydrofuran Download PDF

Info

Publication number
JP3744023B2
JP3744023B2 JP15789295A JP15789295A JP3744023B2 JP 3744023 B2 JP3744023 B2 JP 3744023B2 JP 15789295 A JP15789295 A JP 15789295A JP 15789295 A JP15789295 A JP 15789295A JP 3744023 B2 JP3744023 B2 JP 3744023B2
Authority
JP
Japan
Prior art keywords
reaction
tetrahydrofuran
butanediol
catalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15789295A
Other languages
Japanese (ja)
Other versions
JPH0912492A (en
Inventor
善則 原
浩悦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15789295A priority Critical patent/JP3744023B2/en
Publication of JPH0912492A publication Critical patent/JPH0912492A/en
Application granted granted Critical
Publication of JP3744023B2 publication Critical patent/JP3744023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロラクトン又はこれらの混合物を原料とし、接触水素化反応により1,4−ブタンジオール及び/又はテトラヒドロフランを製造する方法に関する。
1,4−ブタンジオールは、主にポリブチレンテレフタレートやポリウレタン等のプラスチック原料として使用されるほか、ピロリジン、アジピン酸等の製造中間体等として使用されている。また、テトラヒドロフランは、沸点が低く優れた溶解力をもつため溶媒として使用されるほか、ポリテトラメチレンエーテルグリコール、テトラヒドロチオフェン等の原料として使用されている。
【0002】
【従来の技術】
従来、無水マレイン酸等の含酸素C4炭化水素を水素化する方法は数多く報告されている。
例えば、最も良く知られている方法として銅系の触媒を用いる方法がある。しかしながら、この方法では、マレイン酸等の有機カルボン酸を直接還元することができず、カルボン酸を一旦エステルに転換後還元しなければならず、製造工程が長くなる。また、この方法では、一般に200気圧以上の水素圧下で反応を行うので、エネルギー的にも設備的にも不経済な方法である。
【0003】
一方、マレイン酸等のカルボン酸を直接還元できる触媒もいくつか提案されている。例えば、特開昭63−218636号公報及び米国特許4,659,686号明細書には、活性炭に担持したパラジウム−レニウム触媒を用いてマレイン酸水溶液からテトラヒドロフラン又はγ−ブチロラクトンを製造する方法が記載されている。しかしながら、特開昭63−218636号公報に記載の方法では反応基質濃度が低く、米国特許4,659,686号明細書に記載の方法では、反応を行う際に150気圧以上の水素圧力が必要であるという欠点がある。
【0004】
また、米国特許4,827,001号明細書には、ルテニウム−鉄酸化物を触媒としてマレイン酸を直接還元する方法が提案されているが、この方法においては、1,4−ブタンジオール、テトラヒドロフラン、γ−ブチロラクトンの選択率が十分でない。
このように、従来、マレイン酸等の水素化反応においては、反応性を高めるために比較的高い水素圧の条件下又は低基質濃度の条件下で反応を行う必要があった。
【0005】
【発明が解決しようとする課題】
従って、本発明は反応活性の高い触媒を用いて温和な条件の下、マレイン酸等を特定の水素化触媒を用いて水素化して、1,4−ブタンジオール及び/又はテトラヒドロフランを製造する方法に関し、特に反応生成物を系外に除去しながら反応を行うことにより、しかも目的生成物の分解が無く、收率良く目的物が得られる、製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロラクトン又はこれらの混合物を原料とし、ルテニウム(Ru)と錫(Sn)を担体に担持してなる水素化触媒の存在下、接触水素化反応により1,4−ブタンジオール及び/又はテトラヒドロフランを製造するに際し、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う事を特徴とする1,4−ブタンジオール及び/又はテトラヒドロフランの製造方法である。
【0007】
以下に本発明について詳細に説明する。
本発明方法では、無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロラクトン又はこれらの混合物を反応原料とする。本発明方法においては、推定される反応機構及び反応生成物の分析結果等からみて、(無水)マレイン酸が水素添加されて、(無水)コハク酸となり、次いで、γ−ブチロラクトンとなり、更に最終生成物として、1,4−ブタンジオール及び/又はテトラヒドロフランを生成するものと推定される。従って、本発明では、上記の化合物のいずれをも反応原料として用いることができるし、それらの2種以上の混合物であってもよい。
【0008】
【課題を解決するための手段】
本発明は、無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロラクトン又はこれらの混合物を原料とし、ルテニウム(Ru)、白金及び/又はロジウム、並びに錫(Sn)を担体に担持してなる水素化触媒の存在下、接触水素化反応により1,4−ブタンジオール及び/又はテトラヒドロフランを製造するに際し、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う事を特徴とする1,4−ブタンジオール及び/又はテトラヒドロフランの製造方法である。
【0009】
これらの担持型触媒の調製法は特に制限はないが、通常、浸漬法が採用される。浸漬法によるときは、例えば、触媒原料化合物を溶解可能な溶媒、例えば、水に溶解して溶液とし、この溶液に別途調製した多孔質担体を浸漬して担体に触媒成分を担持させる。
【0010】
担体に各触媒成分を担持する順序については特に制限はなく、全ての金属成分を一度に同時に担持しても、各成分を個別に1つずつ担持しても、または成分のいくつかを組み合わせて複数回にわたって担持しても本発明の効果は達成される。しかし特に、まずRuとSnを先に担体に担持し、次にPt及びRhから選ばれた少なくとも1種を追加して担体に担持すると本発明の効果をいっそう高める事ができる。Pt及びRhから選ばれた少なくとも1種をRuとSnの後から担持する事による反応活性向上の原因は詳しくは解っていないが、水素の活性化能もしくは水素化反応活性の高い、PtもしくはRhを後から担持する事でこれらの金属が触媒表面に担持でき、この表面の金属が水素化反応において有効に機能しているためと推定される。
【0011】
金属成分の溶液を浸漬担持した後には(複数回に渡って浸漬担持する場合にはその都度)、乾燥を行う。その後、必要に応じて焼成、還元処理を行う。焼成処理を行う場合には、通常100〜600℃の温度範囲で行われる。また、還元処理を行う場合には、公知の液相還元法、気相還元法が採用され、気相還元法の場合、通常100〜500℃の温度範囲、好ましくは200〜350℃の範囲で行われる。還元処理を行った後の触媒の構造に関しては、その詳細は不明であるが、上のような還元条件では、貴金属成分は実質的に全てが金属に還元されると推定され、Snは、一部分が2価又は4価で残存すると推定される。
【0012】
貴金属成分及びSnの担持量はそれぞれ、担体に対して、通常0.5〜50重量%、好ましくは1〜20重量%である。Pt及び/又はRhは、Ruに対して0.01〜10重量倍量共存させるのが活性向上の観点から好ましい。Snは、貴金属成分に対して、通常0.1〜5重量倍量共存させるのが、生成物の選択性向上の観点から好ましい。なお、貴金属成分と錫の原料化合物としてはそれらの金属の硝酸、硫酸、塩酸等の鉱酸塩が一般的に使用されるが、酢酸等の有機酸塩、水酸化物、酸化物又は錯塩も使用することもできる。
【0013】
本発明方法においては、前述した水素化触媒の存在下、通常、温度130〜350℃、好ましくは160〜300℃、水素圧10〜300kg/cm2、好ましくは50〜200kg/cm2の条件で、反応で消費される量よりも過剰の水素を反応系に流通させて、一部の生成物を水素と共に同伴させ、系外へ除去しながら反応を行う。これは、特にテトラヒドロフランを反応系外に除去する事を目的として行われる。
【0014】
すなわち、生成したテトラヒドロフランが反応系内に長時間存在した場合、テトラヒドロフランの水素化分解反応が進行し収率の低下を招くこと、ならびにテトラヒドロフランの分圧の上昇により系内の水素分圧が低下し反応速度の低下をもたらすこと等の問題点があった。
このうち、公知の触媒は低活性で、エ−テル類の加水素化分解反応活性も低く、テトラヒドロフランの分解の問題は顕著でなかったが、本発明で使用するRu−Sn系触媒等は、従来に比べて著しく高い活性を示す触媒であり、エーテル類の加水素化分解反応を起こしやすいので、本発明の方法は、触媒の能力を十分に生かしながら、かつ有効に目的物を取得することができるので効果的である。
【0015】
水素の流通量は、反応器入口で反応で消費する量より多い量、すなわち反応基質に対して5モル倍より多ければ良いが、あまり多すぎるとエネルギーの損失となる。具体的な水素の使用量は採用する反応器の形式や、反応の条件(基質濃度、反応温度、反応混合物の組成など)によっても同伴効率が変わるが、通常は反応基質に対して7〜200モル倍、中でも10〜100モル倍が使用される。
反応に使用される触媒の量は、無水マレイン酸等の反応原料100重量部に対し0.1〜500重量部、中でも1〜100重量部であることが望ましいが、反応温度又は反応圧力等の諸条件に応じ、実用的な反応速度が得られる範囲内で任意に選ぶことができる。
【0016】
反応方式は、液相懸濁反応又は固定床反応のいずれであってもよい。また反応は、無溶媒で行ってもよいし、必要に応じて、反応に悪影響を与えない種類の溶媒を使用してもよい。この際使用できる溶媒としては、特に制限されないが、具体的には、水;メタノール、エタノール、オクタノール、ドデカノール等のアルコール類;ジオキサン、テトラエチレングリコールジメチルエーテル等のエーテル類;その他、ヘキサン、シクロヘキサン、デカリン等の炭化水素類が挙げられる。
【0017】
なお、反応で生成した1,4−ブタンジオール及び/又はテトラヒドロフランは、蒸留等の公知の方法により分離精製される。また、この分離精製後に残る未反応原料又は反応中間体としてのγ−ブチロラクトン等は、反応原料として再使用することができる。
【0018】
【実施例】
以下に実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない、
なお、以下において「%」は「重量%」を示す。
実施例1
容量50mlのサンプル瓶に、RuCl3・3H2Oを1.811g、SnCl2・2H2Oを0.950gそれぞれ秤量して入れ、更に5N−HCl水溶液を3.6ml入れて溶解後、担体としてSiO2(富士デヴィソン社製品、スペシャルグレード12 比表面積679m2/g、細孔容量0.37ml/g)を8.80g加え、よく振とうした。その後内容物を容量100mlナス型フラスコに移し、回転減圧乾燥器で60℃、25mmHg下で溶媒の水を除去した後、窒素雰囲気下150℃で2時間焼成処理し、ついで水素雰囲気下、300℃で2時間還元処理して、7%Ru−5%Sn/SiO2の触媒を調製した。
【0019】
容量200mlのオートクレーブに、水35gに無水マレイン酸15gを溶解した溶液を仕込み、更に上記方法で調製した触媒4gを仕込み、室温下攪拌しつつ20kg/cm2の水素を圧入し、240℃まで昇温した。オートクレーブ内温を240℃に維持しつつ、水素を圧入して水素圧を70kg/cm2まで高め、水素を反応器出口で30ノルマルリットル(Nl)/時間で流通させ、この圧力で2時間反応を行った。この時の全水素使用量は、反応基質に対して20.6倍モルであった。反応終了後、反応生成物につきガスクロマトグラフィーで分析を行った。その結果を表1に示した。
【0020】
実施例2
RuCl3・3H2Oを1.578g、H2PtCl6・6H2Oを0.451g、SnCl2・2H2Oを0.950g、5N−HCl水溶液を3.6ml、及び担体としてSiO2を8.72g用い、実施例1におけると同様の手順で調製を行い、6.1%Ru−1.7%Pt−5%Sn/SiO2の触媒を調製した。
この触媒を用い、実施例1に記載の例におけると同様の手順で無水マレイン酸の水素添加反応を行った。反応生成物についての分析結果を、表1に示した。
【0021】
比較例1
実施例1の触媒を用い、水素の流通をせず(消費される水素は絶えず補って、系内の全圧は70kg/cm2に保つ)、生成物の系外への除去を行わなかった以外は実施例1に記載例と同様の手順で無水マレイン酸の水素添加反応を行った。反応生成物についての分析結果を、表1に示した。
【0022】
比較例2
実施例2の触媒を用い、水素の流通をせず(消費される水素は絶えず補って、系内の全圧は70kg/cm2に保つ)、生成物の系外への除去を行わなかった以外は実施例1に記載例と同様の手順で無水マレイン酸の水素添加反応を行った。反応生成物についての分析結果を、表1に示した。
【0023】
【表1】

Figure 0003744023
【0024】
表1中、以下の略号を使用した。
CML:無水マレイン酸
THF:テトラヒドロフラン
BDO:1,4−ブタンジオール
【0025】
【発明の効果】
本発明の方法によれば、無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロラクトン又はこれらの混合物を原料とし、高活性の特定の触媒を用いて接触水素化を比較的温和な反応条件下で行うに当たり、目的物の1,4−ブタンジオール及び/又はテトラヒドロフランを高収率にて製造することができ、その工業的利用価値は極めて大である。[0001]
[Industrial application fields]
The present invention relates to a process for producing 1,4-butanediol and / or tetrahydrofuran by catalytic hydrogenation using maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof as raw materials.
1,4-butanediol is mainly used as a raw material for plastics such as polybutylene terephthalate and polyurethane, and is also used as a production intermediate for pyrrolidine, adipic acid, and the like. Tetrahydrofuran is used as a solvent because it has a low boiling point and an excellent dissolving power, and is also used as a raw material for polytetramethylene ether glycol, tetrahydrothiophene and the like.
[0002]
[Prior art]
Conventionally, many methods for hydrogenating oxygen-containing C4 hydrocarbons such as maleic anhydride have been reported.
For example, the most well-known method is a method using a copper-based catalyst. However, in this method, an organic carboxylic acid such as maleic acid cannot be directly reduced, and the carboxylic acid must be reduced once after conversion to an ester, resulting in a long production process. Further, in this method, since the reaction is generally performed under a hydrogen pressure of 200 atm or more, the method is uneconomical in terms of energy and equipment.
[0003]
On the other hand, some catalysts capable of directly reducing carboxylic acids such as maleic acid have been proposed. For example, JP-A-63-218636 and US Pat. No. 4,659,686 describe a process for producing tetrahydrofuran or γ-butyrolactone from an aqueous maleic acid solution using a palladium-rhenium catalyst supported on activated carbon. Has been. However, in the method described in JP-A-63-218636, the concentration of the reaction substrate is low, and in the method described in US Pat. No. 4,659,686, a hydrogen pressure of 150 atm or higher is required for the reaction. There is a drawback of being.
[0004]
US Pat. No. 4,827,001 proposes a method of directly reducing maleic acid using ruthenium-iron oxide as a catalyst. In this method, 1,4-butanediol, tetrahydrofuran The selectivity of γ-butyrolactone is not sufficient.
Thus, conventionally, in the hydrogenation reaction of maleic acid or the like, it has been necessary to carry out the reaction under a relatively high hydrogen pressure condition or a low substrate concentration condition in order to increase the reactivity.
[0005]
[Problems to be solved by the invention]
Therefore, the present invention relates to a process for producing 1,4-butanediol and / or tetrahydrofuran by hydrogenating maleic acid or the like using a specific hydrogenation catalyst under mild conditions using a catalyst having high reaction activity. In particular, it is an object of the present invention to provide a production method in which the reaction product is removed while removing the reaction product from the system, and the desired product can be obtained with good yield without decomposition of the desired product.
[0006]
[Means for Solving the Problems]
The present invention provides a hydrogenation catalyst comprising maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone, or a mixture thereof as raw materials, and ruthenium (Ru) and tin (Sn) supported on a support. When producing 1,4-butanediol and / or tetrahydrofuran by catalytic hydrogenation, excess hydrogen is circulated through the reaction system, and the reaction is carried out while removing entrained products out of the system. This is a method for producing 1,4-butanediol and / or tetrahydrofuran.
[0007]
The present invention is described in detail below.
In the method of the present invention, maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof is used as a reaction raw material. In the method of the present invention, in view of the estimated reaction mechanism and the analysis result of the reaction product, (anhydrous) maleic acid is hydrogenated to (anhydrous) succinic acid, then γ-butyrolactone, and further the final product As a product, it is estimated that 1,4-butanediol and / or tetrahydrofuran is produced. Accordingly, in the present invention, any of the above compounds can be used as a reaction raw material, or a mixture of two or more thereof may be used.
[0008]
[Means for Solving the Problems]
The present invention uses maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof as a raw material, and supports ruthenium (Ru) , platinum and / or rhodium, and tin (Sn) on a carrier. When producing 1,4-butanediol and / or tetrahydrofuran by catalytic hydrogenation reaction in the presence of a hydrogenation catalyst, excess hydrogen is circulated through the reaction system to remove the accompanying products out of the system. The reaction is carried out while producing 1,4-butanediol and / or tetrahydrofuran.
[0009]
The method for preparing these supported catalysts is not particularly limited, but an immersion method is usually employed. When the immersion method is used, for example, a catalyst raw material compound is dissolved in a solvent capable of dissolving the catalyst raw material, for example, water to form a solution, and a separately prepared porous carrier is immersed in this solution to carry the catalyst component on the carrier.
[0010]
There are no particular restrictions on the order in which the catalyst components are supported on the support, and all the metal components may be supported simultaneously at the same time, each component may be supported individually, or some of the components may be combined. The effect of the present invention can be achieved even if it is supported multiple times. However, in particular, the effect of the present invention can be further enhanced if Ru and Sn are first supported on the carrier, and then at least one selected from Pt and Rh is added and supported on the carrier. Although the cause of the reaction activity improvement by carrying at least one selected from Pt and Rh after Ru and Sn is not understood in detail, Pt or Rh having high hydrogen activation ability or hydrogenation reaction activity It is presumed that these metals can be supported on the catalyst surface by supporting them later, and the metal on the surface functions effectively in the hydrogenation reaction.
[0011]
After the metal component solution is dipped and supported (in each case of dipping and supporting multiple times), drying is performed. Thereafter, firing and reduction are performed as necessary. When performing a baking process, it is normally performed in the temperature range of 100-600 degreeC. Moreover, when performing a reduction process, a well-known liquid phase reduction method and a gas phase reduction method are employ | adopted, and in the case of a gas phase reduction method, it is the temperature range of 100-500 degreeC normally, Preferably it is the range of 200-350 degreeC. Done. Although the details of the structure of the catalyst after the reduction treatment are not clear, it is presumed that substantially noble metal components are reduced to metal under the above-described reduction conditions, and Sn is a part of Is estimated to remain divalent or tetravalent.
[0012]
The amount of the noble metal component and Sn supported is usually 0.5 to 50% by weight, preferably 1 to 20% by weight, based on the carrier. Pt and / or Rh are preferably present in an amount of 0.01 to 10 times by weight relative to Ru from the viewpoint of improving the activity. It is preferable from the viewpoint of improving the selectivity of the product that Sn is usually present in an amount of 0.1 to 5 times by weight the precious metal component. In addition, as the noble metal component and the raw material compound of tin, mineral acid salts of these metals such as nitric acid, sulfuric acid and hydrochloric acid are generally used, but organic acid salts such as acetic acid, hydroxides, oxides or complex salts are also used. It can also be used.
[0013]
In the method of the present invention, in the presence of the hydrogenation catalyst described above, the temperature is usually 130 to 350 ° C., preferably 160 to 300 ° C., and the hydrogen pressure is 10 to 300 kg / cm 2 , preferably 50 to 200 kg / cm 2 . Then, hydrogen is allowed to flow in the reaction system in excess of the amount consumed in the reaction, a part of the product is entrained together with the hydrogen, and the reaction is carried out outside the system. This is performed especially for the purpose of removing tetrahydrofuran from the reaction system.
[0014]
That is, when the tetrahydrofuran produced in the reaction system is present in the reaction system for a long time, the hydrogenolysis reaction of tetrahydrofuran proceeds, resulting in a decrease in yield, and the hydrogen partial pressure in the system decreases due to the increase in the tetrahydrofuran partial pressure. There were problems such as a reduction in reaction rate.
Among these, the known catalysts have low activity, the hydrocracking reaction activity of ethers is low, and the problem of decomposition of tetrahydrofuran was not remarkable, but the Ru-Sn catalyst used in the present invention is The catalyst of the present invention has a significantly higher activity than conventional ones and easily undergoes hydrocracking reaction of ethers. Therefore, the method of the present invention can effectively obtain the target product while fully utilizing the ability of the catalyst. Is effective.
[0015]
The amount of hydrogen flow should be larger than the amount consumed in the reaction at the reactor inlet, that is, more than 5 moles with respect to the reaction substrate, but if it is too much, energy is lost. The specific amount of hydrogen used varies depending on the type of reactor used and the reaction conditions (substrate concentration, reaction temperature, composition of reaction mixture, etc.), but it is usually 7 to 200 with respect to the reaction substrate. Molar times, especially 10 to 100 molar times are used.
The amount of the catalyst used in the reaction is preferably 0.1 to 500 parts by weight, more preferably 1 to 100 parts by weight with respect to 100 parts by weight of the reaction raw material such as maleic anhydride. Depending on various conditions, it can be arbitrarily selected within a range where a practical reaction rate can be obtained.
[0016]
The reaction method may be either a liquid phase suspension reaction or a fixed bed reaction. In addition, the reaction may be carried out without a solvent, and if necessary, a kind of solvent that does not adversely influence the reaction may be used. The solvent that can be used in this case is not particularly limited, but specifically, water; alcohols such as methanol, ethanol, octanol, and dodecanol; ethers such as dioxane and tetraethylene glycol dimethyl ether; other, hexane, cyclohexane, and decalin And the like.
[0017]
The 1,4-butanediol and / or tetrahydrofuran produced by the reaction is separated and purified by a known method such as distillation. Further, the unreacted raw material remaining after the separation and purification or γ-butyrolactone as a reaction intermediate can be reused as the reaction raw material.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the description of the following examples unless it exceeds the gist.
In the following, “%” indicates “% by weight”.
Example 1
In a sample bottle with a capacity of 50 ml, 1.811 g of RuCl 3 .3H 2 O and 0.950 g of SnCl 2 .2H 2 O are weighed, and 3.6 ml of a 5N HCl aqueous solution is added and dissolved. 8.80 g of SiO 2 (product of Fuji Devison, special grade 12 specific surface area 679 m 2 / g, pore volume 0.37 ml / g) was added and shaken well. Thereafter, the contents were transferred to a 100 ml eggplant type flask, the solvent water was removed at 60 ° C. and 25 mmHg with a rotary vacuum drier, and then calcined at 150 ° C. for 2 hours in a nitrogen atmosphere, and then at 300 ° C. in a hydrogen atmosphere. Then, a catalyst of 7% Ru-5% Sn / SiO 2 was prepared by reduction treatment for 2 hours.
[0019]
A 200 ml autoclave was charged with a solution of 15 g of maleic anhydride dissolved in 35 g of water, and 4 g of the catalyst prepared by the above method was further charged. While stirring at room temperature, 20 kg / cm 2 of hydrogen was injected and the temperature was raised to 240 ° C. Warm up. While maintaining the internal temperature of the autoclave at 240 ° C., hydrogen was injected to increase the hydrogen pressure to 70 kg / cm 2 , and hydrogen was allowed to flow at 30 normal liters (Nl) / hour at the reactor outlet. Went. The total amount of hydrogen used at this time was 20.6 times mol of the reaction substrate. After completion of the reaction, the reaction product was analyzed by gas chromatography. The results are shown in Table 1.
[0020]
Example 2
RuCl 3 · 3H 2 O and 1.578g, H 2 PtCl 6 · 6H 2 O and 0.451g, SnCl 2 · 2H 2 O and 0.950 g, 3.6 ml of 5N-HCl aqueous solution, and SiO 2 as carrier Using 8.72 g, the same procedure as in Example 1 was performed to prepare a 6.1% Ru-1.7% Pt-5% Sn / SiO 2 catalyst.
Using this catalyst, maleic anhydride was hydrogenated in the same procedure as in the example described in Example 1. The analysis results for the reaction products are shown in Table 1.
[0021]
Comparative Example 1
Using the catalyst of Example 1, hydrogen was not circulated (consumed hydrogen was constantly supplemented and the total pressure in the system was maintained at 70 kg / cm 2 ), and the product was not removed out of the system. The maleic anhydride was hydrogenated in the same procedure as described in Example 1 except for the above. The analysis results for the reaction products are shown in Table 1.
[0022]
Comparative Example 2
Using the catalyst of Example 2, hydrogen was not circulated (consumed hydrogen was constantly compensated and the total pressure in the system was maintained at 70 kg / cm 2 ), and the product was not removed outside the system. The maleic anhydride was hydrogenated in the same procedure as described in Example 1 except for the above. The analysis results for the reaction products are shown in Table 1.
[0023]
[Table 1]
Figure 0003744023
[0024]
In Table 1, the following abbreviations were used.
CML: maleic anhydride THF: tetrahydrofuran BDO: 1,4-butanediol
【The invention's effect】
According to the method of the present invention, catalytic hydrogenation is relatively mild using a specific highly active catalyst using maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof as a raw material. In carrying out the reaction under the reaction conditions, the target 1,4-butanediol and / or tetrahydrofuran can be produced in a high yield, and its industrial utility value is extremely large.

Claims (2)

無水マレイン酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロラクトン、又はこれらの混合物を原料とし、ルテニウム、白金及び/又はロジウム、並びに錫を担体に担持してなる水素化触媒の存在下、接触水素化反応により1,4−ブタンジオール及び/又はテトラヒドロフランを製造するに際し、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う事を特徴とする1,4−ブタンジオール及び/又はテトラヒドロフランの製造方法。In the presence of a hydrogenation catalyst comprising maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone, or a mixture thereof as a raw material, and ruthenium , platinum and / or rhodium, and tin supported on the support, When producing 1,4-butanediol and / or tetrahydrofuran by catalytic hydrogenation reaction, it is characterized by carrying out the reaction while allowing excess hydrogen to flow through the reaction system and removing entrained products out of the system. To produce 1,4-butanediol and / or tetrahydrofuran. 水素に同伴して反応系外に除去される生成物が主としてテトラヒドロフランである事を特徴とする請求項1に記載の1,4−ブタンジオール及び/又はテトラヒドロフランの製造方法。The method for producing 1,4-butanediol and / or tetrahydrofuran according to claim 1, wherein the product removed from the reaction system accompanying hydrogen is mainly tetrahydrofuran.
JP15789295A 1995-06-23 1995-06-23 Process for producing 1,4-butanediol and / or tetrahydrofuran Expired - Fee Related JP3744023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15789295A JP3744023B2 (en) 1995-06-23 1995-06-23 Process for producing 1,4-butanediol and / or tetrahydrofuran

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15789295A JP3744023B2 (en) 1995-06-23 1995-06-23 Process for producing 1,4-butanediol and / or tetrahydrofuran

Publications (2)

Publication Number Publication Date
JPH0912492A JPH0912492A (en) 1997-01-14
JP3744023B2 true JP3744023B2 (en) 2006-02-08

Family

ID=15659704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15789295A Expired - Fee Related JP3744023B2 (en) 1995-06-23 1995-06-23 Process for producing 1,4-butanediol and / or tetrahydrofuran

Country Status (1)

Country Link
JP (1) JP3744023B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60021704T2 (en) * 1999-02-09 2006-04-20 E.I. Du Pont De Nemours And Co., Wilmington HIGH SPECIFIC SURFACE CIRCULATORS MANUFACTURED BY SOL-GEL PROCEDURE
KR100546986B1 (en) * 1999-11-05 2006-01-26 아사히 가세이 가부시키가이샤 Process for the preparation of diol mixtures
JP2013523735A (en) * 2010-04-01 2013-06-17 バイオアンバー インターナショナル ソシエテ ア レスポンサビリテ リミテ Method for producing hydrogenated products
FR2958642B1 (en) * 2010-04-07 2012-07-06 Rhodia Operations PROCESS FOR PREPARING A LACTONE
US20240287011A1 (en) * 2021-06-25 2024-08-29 Cj Cheiljedang Corporation Method for producing tetrahydrofuran, gamma-butyrolactone, or 1,4-butanediol

Also Published As

Publication number Publication date
JPH0912492A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
JPH06116182A (en) Hydrogenation of organic carboxylic acid and/or organic carboxylic acid ester
JPH10306047A (en) Production of 1,6-hexanediol
JP2001046874A (en) Hydrogenating catalyst and production of alcohols from carboxylic acids using the same
KR100417353B1 (en) Method of Producing 1,4-Butanediol and Tetrahydrofuran from Furan
JPH0788373A (en) Catalyst for direct reduction of carboxylic acid, production of that catalyst, and production of alcohol compound
JPS63255253A (en) Production of amines
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP2019526588A (en) Method for producing 1,3-cyclohexanedimethanol
JP3704728B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
US5969194A (en) Process for preparing 1, 6-hexanediol
JP3726504B2 (en) Catalyst regeneration method and hydrogenation method using regenerated catalyst
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
JP3887845B2 (en) Catalyst for hydrogenation reaction, production method thereof, and hydrogenation reaction method using the catalyst
JP3704758B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JPH05246915A (en) Method for hydrogenating organic carboxylic acid and/or carboxylic acid ester
JP4282831B2 (en) Production method of diols
JP3873389B2 (en) Method for producing 1,6-hexanediol
JP4282830B2 (en) Method for producing diols
JPH06239778A (en) Production of 1,4-butanediol
JP3921788B2 (en) Method for producing 1,6-hexanediol
JP3845904B2 (en) Catalyst for hydrogenation reaction, method for producing the same, and method for hydrogenation reaction of carboxylic acids using the catalyst
JP2001011000A (en) Method for producing 1,4-butanediol and/or tetrahydrofuran

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees