JPH0912492A - Production of 1,4-butanediol and/or tetrahydrofurane - Google Patents
Production of 1,4-butanediol and/or tetrahydrofuraneInfo
- Publication number
- JPH0912492A JPH0912492A JP7157892A JP15789295A JPH0912492A JP H0912492 A JPH0912492 A JP H0912492A JP 7157892 A JP7157892 A JP 7157892A JP 15789295 A JP15789295 A JP 15789295A JP H0912492 A JPH0912492 A JP H0912492A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- butanediol
- tetrahydrofuran
- catalyst
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Furan Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、無水マレイン酸、マレ
イン酸、無水コハク酸、コハク酸、γ−ブチロラクトン
又はこれらの混合物を原料とし、接触水素化反応により
1,4−ブタンジオール及び/又はテトラヒドロフラン
を製造する方法に関する。1,4−ブタンジオールは、
主にポリブチレンテレフタレートやポリウレタン等のプ
ラスチック原料として使用されるほか、ピロリジン、ア
ジピン酸等の製造中間体等として使用されている。ま
た、テトラヒドロフランは、沸点が低く優れた溶解力を
もつため溶媒として使用されるほか、ポリテトラメチレ
ンエーテルグリコール、テトラヒドロチオフェン等の原
料として使用されている。FIELD OF THE INVENTION The present invention uses maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof as a raw material, and produces 1,4-butanediol and / or by a catalytic hydrogenation reaction. It relates to a method for producing tetrahydrofuran. 1,4-butanediol is
It is mainly used as a raw material for plastics such as polybutylene terephthalate and polyurethane, and is also used as a production intermediate for pyrrolidine and adipic acid. Tetrahydrofuran is used as a solvent because it has a low boiling point and an excellent dissolving power, and is also used as a raw material for polytetramethylene ether glycol, tetrahydrothiophene and the like.
【0002】[0002]
【従来の技術】従来、無水マレイン酸等の含酸素C4炭
化水素を水素化する方法は数多く報告されている。例え
ば、最も良く知られている方法として銅系の触媒を用い
る方法がある。しかしながら、この方法では、マレイン
酸等の有機カルボン酸を直接還元することができず、カ
ルボン酸を一旦エステルに転換後還元しなければなら
ず、製造工程が長くなる。また、この方法では、一般に
200気圧以上の水素圧下で反応を行うので、エネルギ
ー的にも設備的にも不経済な方法である。2. Description of the Related Art Heretofore, many methods have been reported for hydrogenating oxygen-containing C4 hydrocarbons such as maleic anhydride. For example, the best known method is to use a copper-based catalyst. However, in this method, an organic carboxylic acid such as maleic acid cannot be directly reduced, and the carboxylic acid must be once converted into an ester and then reduced, resulting in a long manufacturing process. Further, in this method, the reaction is generally carried out under a hydrogen pressure of 200 atm or higher, which is uneconomical in terms of energy and equipment.
【0003】一方、マレイン酸等のカルボン酸を直接還
元できる触媒もいくつか提案されている。例えば、特開
昭63−218636号公報及び米国特許4,659,
686号明細書には、活性炭に担持したパラジウム−レ
ニウム触媒を用いてマレイン酸水溶液からテトラヒドロ
フラン又はγ−ブチロラクトンを製造する方法が記載さ
れている。しかしながら、特開昭63−218636号
公報に記載の方法では反応基質濃度が低く、米国特許
4,659,686号明細書に記載の方法では、反応を
行う際に150気圧以上の水素圧力が必要であるという
欠点がある。On the other hand, some catalysts which can directly reduce carboxylic acids such as maleic acid have been proposed. For example, JP-A-63-218636 and US Pat.
No. 686 describes a method for producing tetrahydrofuran or γ-butyrolactone from an aqueous maleic acid solution using a palladium-rhenium catalyst supported on activated carbon. However, the method described in JP-A-63-218636 has a low reaction substrate concentration, and the method described in US Pat. No. 4,659,686 requires a hydrogen pressure of 150 atm or higher when carrying out the reaction. There is a drawback that
【0004】また、米国特許4,827,001号明細
書には、ルテニウム−鉄酸化物を触媒としてマレイン酸
を直接還元する方法が提案されているが、この方法にお
いては、1,4−ブタンジオール、テトラヒドロフラ
ン、γ−ブチロラクトンの選択率が十分でない。このよ
うに、従来、マレイン酸等の水素化反応においては、反
応性を高めるために比較的高い水素圧の条件下又は低基
質濃度の条件下で反応を行う必要があった。US Pat. No. 4,827,001 proposes a method for directly reducing maleic acid using ruthenium-iron oxide as a catalyst. In this method, 1,4-butane is used. The selectivity of diol, tetrahydrofuran and γ-butyrolactone is not sufficient. Thus, conventionally, in the hydrogenation reaction of maleic acid or the like, it has been necessary to carry out the reaction under relatively high hydrogen pressure conditions or low substrate concentration conditions in order to enhance the reactivity.
【0005】[0005]
【発明が解決しようとする課題】従って、本発明は反応
活性の高い触媒を用いて温和な条件の下、マレイン酸等
を特定の水素化触媒を用いて水素化して、1,4−ブタ
ンジオール及び/又はテトラヒドロフランを製造する方
法に関し、特に反応生成物を系外に除去しながら反応を
行うことにより、しかも目的生成物の分解が無く、收率
良く目的物が得られる、製造方法を提供することを目的
とする。Therefore, according to the present invention, 1,4-butanediol is hydrogenated by hydrogenating maleic acid or the like using a specific hydrogenation catalyst under mild conditions using a catalyst having high reaction activity. And / or a method for producing tetrahydrofuran, particularly by providing a production method by carrying out the reaction while removing the reaction product out of the system, and without decomposing the target product and obtaining the target product with high yield. The purpose is to
【0006】[0006]
【課題を解決するための手段】本発明は、無水マレイン
酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロ
ラクトン又はこれらの混合物を原料とし、ルテニウム
(Ru)と錫(Sn)を担体に担持してなる水素化触媒
の存在下、接触水素化反応により1,4−ブタンジオー
ル及び/又はテトラヒドロフランを製造するに際し、過
剰の水素を反応系に流通させ、同伴してくる生成物を系
外に除去しながら反応を行う事を特徴とする1,4−ブ
タンジオール及び/又はテトラヒドロフランの製造方法
である。In the present invention, maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof is used as a raw material, and ruthenium (Ru) and tin (Sn) are used as carriers. When 1,4-butanediol and / or tetrahydrofuran is produced by a catalytic hydrogenation reaction in the presence of a supported hydrogenation catalyst, excess hydrogen is passed through the reaction system to remove entrained products from the system. The method for producing 1,4-butanediol and / or tetrahydrofuran is characterized in that the reaction is carried out while removing it.
【0007】以下に本発明について詳細に説明する。本
発明方法では、無水マレイン酸、マレイン酸、無水コハ
ク酸、コハク酸、γ−ブチロラクトン又はこれらの混合
物を反応原料とする。本発明方法においては、推定され
る反応機構及び反応生成物の分析結果等からみて、(無
水)マレイン酸が水素添加されて、(無水)コハク酸と
なり、次いで、γ−ブチロラクトンとなり、更に最終生
成物として、1,4−ブタンジオール及び/又はテトラ
ヒドロフランを生成するものと推定される。従って、本
発明では、上記の化合物のいずれをも反応原料として用
いることができるし、それらの2種以上の混合物であっ
てもよい。Hereinafter, the present invention will be described in detail. In the method of the present invention, maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof is used as a reaction raw material. In the method of the present invention, the (anhydrous) maleic acid is hydrogenated to (anhydrous) succinic acid, then γ-butyrolactone, and finally the final product, in view of the estimated reaction mechanism and the analysis result of the reaction product. It is presumed that the product produces 1,4-butanediol and / or tetrahydrofuran. Therefore, in the present invention, any of the above compounds can be used as a reaction raw material, and a mixture of two or more thereof may be used.
【0008】本発明の方法において採用されるRu−S
n担持型水素化触媒としては、さらに白金(Pt)、ロ
ジウム(Rh)、又はPtとRhの両方(以下「貴金属
成分」という。)を加えたRu、貴金属成分及びSnを
担体に担持してなる触媒が好ましい。触媒の担体として
は、活性炭、けいそう土、シリカ、アルミナ、チタニ
ア、ジルコニア等の多孔質担体を単独又は2種以上を組
み合わせて用いることができる。Ru-S employed in the method of the present invention
As the n-supporting hydrogenation catalyst, platinum (Pt), rhodium (Rh), or Ru to which both Pt and Rh (hereinafter referred to as "precious metal component") are added, a precious metal component and Sn are further supported on a carrier. Is preferred. As a carrier for the catalyst, a porous carrier such as activated carbon, diatomaceous earth, silica, alumina, titania, zirconia or the like can be used alone or in combination of two or more kinds.
【0009】これらの担持型触媒の調製法は特に制限は
ないが、通常、浸漬法が採用される。浸漬法によるとき
は、例えば、触媒原料化合物を溶解可能な溶媒、例え
ば、水に溶解して溶液とし、この溶液に別途調製した多
孔質担体を浸漬して担体に触媒成分を担持させる。The method for preparing these supported catalysts is not particularly limited, but the dipping method is usually used. In the case of the dipping method, for example, a catalyst raw material compound is dissolved in a solvent, for example, water to form a solution, and a separately prepared porous carrier is immersed in the solution to support the catalyst component on the carrier.
【0010】担体に各触媒成分を担持する順序について
は特に制限はなく、全ての金属成分を一度に同時に担持
しても、各成分を個別に1つずつ担持しても、または成
分のいくつかを組み合わせて複数回にわたって担持して
も本発明の効果は達成される。しかし特に、まずRuと
Snを先に担体に担持し、次にPt及びRhから選ばれ
た少なくとも1種を追加して担体に担持すると本発明の
効果をいっそう高める事ができる。Pt及びRhから選
ばれた少なくとも1種をRuとSnの後から担持する事
による反応活性向上の原因は詳しくは解っていないが、
水素の活性化能もしくは水素化反応活性の高い、Ptも
しくはRhを後から担持する事でこれらの金属が触媒表
面に担持でき、この表面の金属が水素化反応において有
効に機能しているためと推定される。The order of loading each catalyst component on the carrier is not particularly limited, and all the metal components may be loaded simultaneously at the same time, each component may be loaded individually one by one, or some of the components may be loaded. The effect of the present invention can be achieved by combining the above and supporting the same a plurality of times. However, particularly, when Ru and Sn are first loaded on the carrier, and then at least one selected from Pt and Rh is additionally loaded on the carrier, the effect of the present invention can be further enhanced. The cause of improving the reaction activity by supporting at least one selected from Pt and Rh after Ru and Sn is not known in detail,
This is because these metals can be supported on the catalyst surface by supporting Pt or Rh, which has a high hydrogen activating ability or hydrogenation reaction activity, on the catalyst surface, and the metal on this surface effectively functions in the hydrogenation reaction. Presumed.
【0011】金属成分の溶液を浸漬担持した後には(複
数回に渡って浸漬担持する場合にはその都度)、乾燥を
行う。その後、必要に応じて焼成、還元処理を行う。焼
成処理を行う場合には、通常100〜600℃の温度範
囲で行われる。また、還元処理を行う場合には、公知の
液相還元法、気相還元法が採用され、気相還元法の場
合、通常100〜500℃の温度範囲、好ましくは20
0〜350℃の範囲で行われる。還元処理を行った後の
触媒の構造に関しては、その詳細は不明であるが、上の
ような還元条件では、貴金属成分は実質的に全てが金属
に還元されると推定され、Snは、一部分が2価又は4
価で残存すると推定される。After the solution of the metal component is dipped and carried (whenever it is dipped and carried out a plurality of times, each time), it is dried. After that, firing and reduction are performed as necessary. When performing a baking process, it is usually performed in a temperature range of 100 to 600 ° C. Further, when performing the reduction treatment, a known liquid-phase reduction method or vapor-phase reduction method is adopted, and in the case of the vapor-phase reduction method, it is usually in the temperature range of 100 to 500 ° C., preferably 20.
It is performed in the range of 0 to 350 ° C. The details of the structure of the catalyst after the reduction treatment are unknown, but it is estimated that under the above-mentioned reducing conditions, substantially all of the noble metal component is reduced to metal, and Sn is partially Is divalent or 4
It is estimated that the price will remain.
【0012】貴金属成分及びSnの担持量はそれぞれ、
担体に対して、通常0.5〜50重量%、好ましくは1
〜20重量%である。Pt及び/又はRhは、Ruに対
して0.01〜10重量倍量共存させるのが活性向上の
観点から好ましい。Snは、貴金属成分に対して、通常
0.1〜5重量倍量共存させるのが、生成物の選択性向
上の観点から好ましい。なお、貴金属成分と錫の原料化
合物としてはそれらの金属の硝酸、硫酸、塩酸等の鉱酸
塩が一般的に使用されるが、酢酸等の有機酸塩、水酸化
物、酸化物又は錯塩も使用することもできる。The loading amounts of the noble metal component and Sn are respectively
It is usually 0.5 to 50% by weight, preferably 1 based on the carrier.
-20% by weight. It is preferable that Pt and / or Rh coexist in an amount of 0.01 to 10 times by weight relative to Ru from the viewpoint of improving the activity. It is preferable that Sn is present in an amount of usually 0.1 to 5 times by weight with respect to the noble metal component from the viewpoint of improving the selectivity of the product. As the raw material compound of the noble metal component and tin, nitric acid, sulfuric acid, hydrochloric acid and like mineral salts of these metals are generally used, but organic acid salts such as acetic acid, hydroxides, oxides or complex salts are also used. It can also be used.
【0013】本発明方法においては、前述した水素化触
媒の存在下、通常、温度130〜350℃、好ましくは
160〜300℃、水素圧10〜300kg/cm2、
好ましくは50〜200kg/cm2の条件で、反応で
消費される量よりも過剰の水素を反応系に流通させて、
一部の生成物を水素と共に同伴させ、系外へ除去しなが
ら反応を行う。これは、特にテトラヒドロフランを反応
系外に除去する事を目的として行われる。In the method of the present invention, in the presence of the above-mentioned hydrogenation catalyst, the temperature is usually 130 to 350 ° C., preferably 160 to 300 ° C., the hydrogen pressure is 10 to 300 kg / cm 2 ,
Preferably, under conditions of 50 to 200 kg / cm 2, an excess of hydrogen over the amount consumed in the reaction is passed through the reaction system,
The reaction is carried out while entraining a part of the product together with hydrogen and removing it out of the system. This is carried out especially for the purpose of removing tetrahydrofuran outside the reaction system.
【0014】すなわち、生成したテトラヒドロフランが
反応系内に長時間存在した場合、テトラヒドロフランの
水素化分解反応が進行し収率の低下を招くこと、ならび
にテトラヒドロフランの分圧の上昇により系内の水素分
圧が低下し反応速度の低下をもたらすこと等の問題点が
あった。このうち、公知の触媒は低活性で、エ−テル類
の加水素化分解反応活性も低く、テトラヒドロフランの
分解の問題は顕著でなかったが、本発明で使用するRu
−Sn系触媒等は、従来に比べて著しく高い活性を示す
触媒であり、エーテル類の加水素化分解反応を起こしや
すいので、本発明の方法は、触媒の能力を十分に生かし
ながら、かつ有効に目的物を取得することができるので
効果的である。That is, when the produced tetrahydrofuran is present in the reaction system for a long period of time, the hydrogenolysis reaction of tetrahydrofuran proceeds to cause a decrease in the yield, and the increase in the partial pressure of tetrahydrofuran causes the partial pressure of hydrogen in the system to increase. However, there was a problem that the reaction rate was lowered and the reaction rate was lowered. Among them, the known catalysts have low activity and low activity of hydrogenolysis reaction of ethers, and the problem of decomposition of tetrahydrofuran was not remarkable, but Ru used in the present invention was used.
-Sn-based catalysts and the like are catalysts exhibiting remarkably high activity as compared with conventional catalysts, and are apt to cause a hydrocracking reaction of ethers. Therefore, the method of the present invention is effective while fully utilizing the ability of the catalyst. It is effective because it can obtain the target object.
【0015】水素の流通量は、反応器入口で反応で消費
する量より多い量、すなわち反応基質に対して5モル倍
より多ければ良いが、あまり多すぎるとエネルギーの損
失となる。具体的な水素の使用量は採用する反応器の形
式や、反応の条件(基質濃度、反応温度、反応混合物の
組成など)によっても同伴効率が変わるが、通常は反応
基質に対して7〜200モル倍、中でも10〜100モ
ル倍が使用される。反応に使用される触媒の量は、無水
マレイン酸等の反応原料100重量部に対し0.1〜5
00重量部、中でも1〜100重量部であることが望ま
しいが、反応温度又は反応圧力等の諸条件に応じ、実用
的な反応速度が得られる範囲内で任意に選ぶことができ
る。The flow amount of hydrogen may be larger than the amount consumed in the reaction at the reactor inlet, that is, more than 5 mol times with respect to the reaction substrate, but if it is too large, energy will be lost. The specific amount of hydrogen used depends on the type of reactor used and the reaction conditions (substrate concentration, reaction temperature, composition of reaction mixture, etc.), but the entrainment efficiency is usually 7 to 200 relative to the reaction substrate. Molar times, especially 10 to 100 molar times are used. The amount of the catalyst used in the reaction is 0.1-5 with respect to 100 parts by weight of the reaction raw material such as maleic anhydride.
The amount is preferably 100 parts by weight, and more preferably 1 to 100 parts by weight, but can be arbitrarily selected within the range where a practical reaction rate can be obtained according to various conditions such as reaction temperature or reaction pressure.
【0016】反応方式は、液相懸濁反応又は固定床反応
のいずれであってもよい。また反応は、無溶媒で行って
もよいし、必要に応じて、反応に悪影響を与えない種類
の溶媒を使用してもよい。この際使用できる溶媒として
は、特に制限されないが、具体的には、水;メタノー
ル、エタノール、オクタノール、ドデカノール等のアル
コール類;ジオキサン、テトラエチレングリコールジメ
チルエーテル等のエーテル類;その他、ヘキサン、シク
ロヘキサン、デカリン等の炭化水素類が挙げられる。The reaction system may be either a liquid phase suspension reaction or a fixed bed reaction. The reaction may be carried out without a solvent, or, if necessary, a type of solvent that does not adversely affect the reaction may be used. The solvent that can be used at this time is not particularly limited, but specifically, water; alcohols such as methanol, ethanol, octanol, and dodecanol; ethers such as dioxane and tetraethylene glycol dimethyl ether; other, hexane, cyclohexane, decalin And the like hydrocarbons.
【0017】なお、反応で生成した1,4−ブタンジオ
ール及び/又はテトラヒドロフランは、蒸留等の公知の
方法により分離精製される。また、この分離精製後に残
る未反応原料又は反応中間体としてのγ−ブチロラクト
ン等は、反応原料として再使用することができる。The 1,4-butanediol and / or tetrahydrofuran produced in the reaction is separated and purified by a known method such as distillation. Unreacted raw materials remaining after the separation and purification or γ-butyrolactone as a reaction intermediate can be reused as a reaction raw material.
【0018】[0018]
【実施例】以下に実施例及び比較例を挙げて本発明をよ
り詳細に説明するが、本発明はその要旨を超えない限
り、以下の実施例の記載に限定されるものではない、な
お、以下において「%」は「重量%」を示す。 実施例1 容量50mlのサンプル瓶に、RuCl3・3H2Oを1.
811g、SnCl2・2H2Oを0.950gそれぞれ
秤量して入れ、更に5N−HCl水溶液を3.6ml入れ
て溶解後、担体としてSiO2(富士デヴィソン社製
品、スペシャルグレード12 比表面積679m2/
g、細孔容量0.37ml/g)を8.80g加え、よく
振とうした。その後内容物を容量100mlナス型フラス
コに移し、回転減圧乾燥器で60℃、25mmHg下で溶媒
の水を除去した後、窒素雰囲気下150℃で2時間焼成
処理し、ついで水素雰囲気下、300℃で2時間還元処
理して、7%Ru−5%Sn/SiO2の触媒を調製し
た。The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. In the following, “%” indicates “% by weight”. Example 1 In a sample bottle having a volume of 50 ml, RuCl 3 .3H 2 O was added to 1.
811 g, 0.950 g of SnCl 2 .2H 2 O was weighed and put in each, and 3.6 ml of 5N-HCl aqueous solution was further put in to dissolve, and SiO 2 (Fuji Davison product, special grade 12 specific surface area 679 m 2 /
g, pore volume 0.37 ml / g) was added, and the mixture was shaken well. After that, the contents were transferred to a 100 ml eggplant-shaped flask, and the solvent water was removed at 60 ° C. and 25 mmHg in a rotary vacuum dryer, and the mixture was baked at 150 ° C. for 2 hours in a nitrogen atmosphere and then 300 ° C. in a hydrogen atmosphere. And reduced for 2 hours to prepare a catalyst of 7% Ru-5% Sn / SiO 2 .
【0019】容量200mlのオートクレーブに、水35
gに無水マレイン酸15gを溶解した溶液を仕込み、更
に上記方法で調製した触媒4gを仕込み、室温下攪拌し
つつ20kg/cm2の水素を圧入し、240℃まで昇
温した。オートクレーブ内温を240℃に維持しつつ、
水素を圧入して水素圧を70kg/cm2まで高め、水
素を反応器出口で30ノルマルリットル(Nl)/時間
で流通させ、この圧力で2時間反応を行った。この時の
全水素使用量は、反応基質に対して20.6倍モルであ
った。反応終了後、反応生成物につきガスクロマトグラ
フィーで分析を行った。その結果を表1に示した。In a 200 ml capacity autoclave, water 35
A solution prepared by dissolving 15 g of maleic anhydride in g was charged, and then 4 g of the catalyst prepared by the above method was charged, 20 kg / cm 2 of hydrogen was injected under stirring at room temperature, and the temperature was raised to 240 ° C. While maintaining the internal temperature of the autoclave at 240 ° C,
Hydrogen was injected under pressure to increase the hydrogen pressure to 70 kg / cm 2 , and hydrogen was passed through the reactor outlet at 30 normal liters (Nl) / hour, and the reaction was carried out at this pressure for 2 hours. At this time, the total amount of hydrogen used was 20.6 times the mol of the reaction substrate. After completion of the reaction, the reaction product was analyzed by gas chromatography. The results are shown in Table 1.
【0020】実施例2 RuCl3・3H2Oを1.578g、H2PtCl6・6
H2Oを0.451g、SnCl2・2H2Oを0.95
0g、5N−HCl水溶液を3.6ml、及び担体として
SiO2を8.72g用い、実施例1におけると同様の
手順で調製を行い、6.1%Ru−1.7%Pt−5%
Sn/SiO2の触媒を調製した。この触媒を用い、実
施例1に記載の例におけると同様の手順で無水マレイン
酸の水素添加反応を行った。反応生成物についての分析
結果を、表1に示した。Example 2 1.578 g of RuCl 3 .3H 2 O and H 2 PtCl 6 .6
H 2 O to 0.451 g, the SnCl 2 · 2H 2 O 0.95
0 g, 5N-HCl aqueous solution (3.6 ml) and SiO 2 (8.72 g) as a carrier were prepared in the same procedure as in Example 1 to give 6.1% Ru-1.7% Pt-5%.
A Sn / SiO 2 catalyst was prepared. Using this catalyst, hydrogenation reaction of maleic anhydride was carried out in the same procedure as in the example described in Example 1. Table 1 shows the analysis results of the reaction products.
【0021】比較例1 実施例1の触媒を用い、水素の流通をせず(消費される
水素は絶えず補って、系内の全圧は70kg/cm2に
保つ)、生成物の系外への除去を行わなかった以外は実
施例1に記載例と同様の手順で無水マレイン酸の水素添
加反応を行った。反応生成物についての分析結果を、表
1に示した。Comparative Example 1 Using the catalyst of Example 1, the hydrogen was not passed through (the hydrogen consumed was constantly supplemented and the total pressure in the system was kept at 70 kg / cm 2 ), and the product was discharged to the outside of the system. The hydrogenation reaction of maleic anhydride was carried out by the same procedure as in the example described in Example 1 except that the above was not removed. Table 1 shows the analysis results of the reaction products.
【0022】比較例2 実施例2の触媒を用い、水素の流通をせず(消費される
水素は絶えず補って、系内の全圧は70kg/cm2に
保つ)、生成物の系外への除去を行わなかった以外は実
施例1に記載例と同様の手順で無水マレイン酸の水素添
加反応を行った。反応生成物についての分析結果を、表
1に示した。Comparative Example 2 Using the catalyst of Example 2, the hydrogen was not passed through (the hydrogen consumed was constantly supplemented and the total pressure in the system was kept at 70 kg / cm 2 ), and the product was discharged to the outside of the system. The hydrogenation reaction of maleic anhydride was carried out by the same procedure as in the example described in Example 1 except that the above was not removed. Table 1 shows the analysis results of the reaction products.
【0023】[0023]
【表1】 [Table 1]
【0024】表1中、以下の略号を使用した。 CML:無水マレイン酸 THF:テトラヒドロフラン BDO:1,4−ブタンジオールIn Table 1, the following abbreviations are used. CML: maleic anhydride THF: tetrahydrofuran BDO: 1,4-butanediol
【0025】[0025]
【発明の効果】本発明の方法によれば、無水マレイン
酸、マレイン酸、無水コハク酸、コハク酸、γ−ブチロ
ラクトン又はこれらの混合物を原料とし、高活性の特定
の触媒を用いて接触水素化を比較的温和な反応条件下で
行うに当たり、目的物の1,4−ブタンジオール及び/
又はテトラヒドロフランを高収率にて製造することがで
き、その工業的利用価値は極めて大である。According to the method of the present invention, maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone or a mixture thereof is used as a raw material, and catalytic hydrogenation is performed using a highly active specific catalyst. In carrying out the reaction under relatively mild reaction conditions, the target 1,4-butanediol and / or
Alternatively, tetrahydrofuran can be produced in a high yield, and its industrial utility value is extremely high.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 27/04 C07C 27/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area C07C 27/04 C07C 27/04
Claims (3)
ク酸、コハク酸、γ−ブチロラクトン、又はこれらの混
合物を原料とし、ルテニウムと錫を担体に担持してなる
水素化触媒の存在下、接触水素化反応により1,4−ブ
タンジオール及び/又はテトラヒドロフランを製造する
に際し、過剰の水素を反応系に流通させ、同伴してくる
生成物を系外に除去しながら反応を行う事を特徴とする
1,4−ブタンジオール及び/又はテトラヒドロフラン
の製造方法。1. Catalytic hydrogen in the presence of a hydrogenation catalyst comprising maleic anhydride, maleic acid, succinic anhydride, succinic acid, γ-butyrolactone, or a mixture thereof as a raw material and ruthenium and tin supported on a carrier. When producing 1,4-butanediol and / or tetrahydrofuran by a chemical reaction, excess hydrogen is circulated in the reaction system, and the reaction is carried out while removing entrained products out of the system. For producing 1,4-butanediol and / or tetrahydrofuran.
/又はロジウム、並びに錫を担体に担持してなる触媒を
用いることを特徴とする請求項1に記載の1,4−ブタ
ンジオール及び/又はテトラヒドロフランの製造方法。2. A catalyst comprising ruthenium, platinum and / or rhodium and tin supported on a carrier is used as a hydrogenation catalyst, and 1,4-butanediol and / or tetrahydrofuran are used in claim 1. Manufacturing method.
成物が主としてテトラヒドロフランである事を特徴とす
る請求項1又は2のいずれかに記載の1,4−ブタンジ
オール及び/又はテトラヒドロフランの製造方法。3. The 1,4-butanediol and / or tetrahydrofuran as claimed in claim 1 or 2, wherein the product that is removed from the reaction system along with hydrogen is mainly tetrahydrofuran. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15789295A JP3744023B2 (en) | 1995-06-23 | 1995-06-23 | Process for producing 1,4-butanediol and / or tetrahydrofuran |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15789295A JP3744023B2 (en) | 1995-06-23 | 1995-06-23 | Process for producing 1,4-butanediol and / or tetrahydrofuran |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0912492A true JPH0912492A (en) | 1997-01-14 |
JP3744023B2 JP3744023B2 (en) | 2006-02-08 |
Family
ID=15659704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15789295A Expired - Fee Related JP3744023B2 (en) | 1995-06-23 | 1995-06-23 | Process for producing 1,4-butanediol and / or tetrahydrofuran |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3744023B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000047319A1 (en) * | 1999-02-09 | 2000-08-17 | E.I. Du Pont De Nemours And Company | High surface area sol-gel route prepared hydrogenation catalysts |
WO2001034543A1 (en) * | 1999-11-05 | 2001-05-17 | Asahi Kasei Kabushiki Kaisha | Process for the preparation of diol mixtures |
JP2013523735A (en) * | 2010-04-01 | 2013-06-17 | バイオアンバー インターナショナル ソシエテ ア レスポンサビリテ リミテ | Method for producing hydrogenated products |
JP2013527835A (en) * | 2010-04-07 | 2013-07-04 | ロディア オペレーションズ | Method for producing lactone |
WO2022270982A1 (en) * | 2021-06-25 | 2022-12-29 | 씨제이제일제당(주) | Method for producing tetrahydrofuran, gamma-butyrolactone, or 1,4-butanediol |
-
1995
- 1995-06-23 JP JP15789295A patent/JP3744023B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000047319A1 (en) * | 1999-02-09 | 2000-08-17 | E.I. Du Pont De Nemours And Company | High surface area sol-gel route prepared hydrogenation catalysts |
WO2001034543A1 (en) * | 1999-11-05 | 2001-05-17 | Asahi Kasei Kabushiki Kaisha | Process for the preparation of diol mixtures |
US6706932B1 (en) | 1999-11-05 | 2004-03-16 | Asahi Kasei Kabushiki Kaisha | Process for the preparation of diol mixtures |
JP4683807B2 (en) * | 1999-11-05 | 2011-05-18 | 旭化成ケミカルズ株式会社 | Method for producing diol mixture |
JP2013523735A (en) * | 2010-04-01 | 2013-06-17 | バイオアンバー インターナショナル ソシエテ ア レスポンサビリテ リミテ | Method for producing hydrogenated products |
JP2013527835A (en) * | 2010-04-07 | 2013-07-04 | ロディア オペレーションズ | Method for producing lactone |
WO2022270982A1 (en) * | 2021-06-25 | 2022-12-29 | 씨제이제일제당(주) | Method for producing tetrahydrofuran, gamma-butyrolactone, or 1,4-butanediol |
Also Published As
Publication number | Publication date |
---|---|
JP3744023B2 (en) | 2006-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0055512B1 (en) | Process for the manufacture of 1-4-butanediol and tetrahydrofuran | |
JPH10306047A (en) | Production of 1,6-hexanediol | |
JPH06116182A (en) | Hydrogenation of organic carboxylic acid and/or organic carboxylic acid ester | |
KR100417353B1 (en) | Method of Producing 1,4-Butanediol and Tetrahydrofuran from Furan | |
JP2001046874A (en) | Hydrogenating catalyst and production of alcohols from carboxylic acids using the same | |
US5969194A (en) | Process for preparing 1, 6-hexanediol | |
JP3704728B2 (en) | Process for producing 1,4-butanediol and / or tetrahydrofuran | |
JP2000007596A (en) | Production of 1,4-cyclohexanedimethanol | |
JP3744023B2 (en) | Process for producing 1,4-butanediol and / or tetrahydrofuran | |
JP3726504B2 (en) | Catalyst regeneration method and hydrogenation method using regenerated catalyst | |
JP4472108B2 (en) | Carboxylic acid hydrogenation catalyst | |
KR0131203B1 (en) | Process for the production of ñò-butyrolactone | |
JP2000080053A (en) | Production of cyloalkyldimethanol | |
JP3704758B2 (en) | Process for producing 1,4-butanediol and / or tetrahydrofuran | |
JPH05246915A (en) | Method for hydrogenating organic carboxylic acid and/or carboxylic acid ester | |
JPH07118187A (en) | Hydrogenation of organic carboxylic acid and/or carboxylic ester | |
JPH06239778A (en) | Production of 1,4-butanediol | |
CN114643066B (en) | Hydrogenation catalyst, preparation method and application thereof, and preparation method of cyclohexyl formic acid | |
JP3845904B2 (en) | Catalyst for hydrogenation reaction, method for producing the same, and method for hydrogenation reaction of carboxylic acids using the catalyst | |
JP2001011000A (en) | Method for producing 1,4-butanediol and/or tetrahydrofuran | |
JPH11222447A (en) | Production of cycloolefins by partial hydrogenation of aromatic compound | |
JP4014287B2 (en) | Method for producing 3-acyloxycyclohexene | |
JPH08790B2 (en) | Method for producing oxygen-containing compound and catalyst used therefor | |
JPH1160524A (en) | Production of 1,6-hexanediol | |
JP3132141B2 (en) | Method for producing γ-butyrolactone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050705 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050802 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051101 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091202 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |