JP4472109B2 - Carboxylic acid hydrogenation catalyst - Google Patents

Carboxylic acid hydrogenation catalyst Download PDF

Info

Publication number
JP4472109B2
JP4472109B2 JP2000130777A JP2000130777A JP4472109B2 JP 4472109 B2 JP4472109 B2 JP 4472109B2 JP 2000130777 A JP2000130777 A JP 2000130777A JP 2000130777 A JP2000130777 A JP 2000130777A JP 4472109 B2 JP4472109 B2 JP 4472109B2
Authority
JP
Japan
Prior art keywords
acid
carboxylic acid
catalyst
anhydride
carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000130777A
Other languages
Japanese (ja)
Other versions
JP2001157841A (en
Inventor
満月男 小西
英三郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2000130777A priority Critical patent/JP4472109B2/en
Publication of JP2001157841A publication Critical patent/JP2001157841A/en
Application granted granted Critical
Publication of JP4472109B2 publication Critical patent/JP4472109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術的分野】
本発明は、水存在下、水素によりカルボン酸類を原料としてエステル化工程を経ることなく直接水添してアルコール類を製造する際に使用する触媒および直接水添してアルコール類を製造する方法に関するものである。
【0002】
【従来の技術】
アルコール類は、種々の産業分野で広範に使用されている有用な物質である。特にジオール類はポリエステル樹脂、ウレタンフォームやウレタン塗料、接着剤の原料として有用である。このようなジオールの1種として例えば1,4−ブタンジオールの製造法については、コハク酸あるいはマレイン酸を水添して製造する方法が数多く報告されている。最も良く知られている方法として銅系の触媒を用いてコハク酸あるいはマレイン酸のエステルを高温、高圧で水添する方法がある。しかしながら、この方法では、カルボン酸を直接水添することができず、カルボン酸を一旦エステルに転換後水添しなければならず、製造工程が長くなるという問題があった。
【0003】
一方、コハク酸あるいはマレイン酸を直接水添して1,4−ブタンジオールを製造する方法もいくつか提案されている。その触媒系のみを列記するとルテニウム−鉄酸化物からなる触媒(米国特許第4,827,001号明細書)、ルテニウム−錫をBET表面積2000m2/g以上の多孔質炭素に担持した触媒(特開平5−246915号公報)、ルテニウム及び錫をチタン及び/又はアルミナで修飾したシリカに担持した触媒(特開平6−116182号公報)、ルテニウム及び錫、並びにアルカリ金属化合物またはアルカリ土類金属を担体に担持した触媒(特開平6−239778号公報)、ルテニウムと白金及びロジウムから選ばれた少なくとも1種と錫とを担体に担持した触媒(特開平7−165644号公報)、ルテニウムと錫を担体に担持してなる触媒を用い、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う方法(特開平9−12492号公報)、ルテニウム−錫−白金を担体に担持した触媒(特開平9−59190号公報)、炭素数5以下のカルボニル化合物が共存した担持成分を含有する溶液を活性炭に含浸して調製したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−15388号公報)、あらかじめ硝酸と接触した活性炭を使用することにより金属の担持状態を規定したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−71332号公報)が提案されているが、いずれの触媒を用いる方法においても、水添生成物である1.4−ブタンジオール、テトラヒドロフラン、γ−ブチロラクトンの選択率が十分でなく、1,4−ブタンジオールの収率は不満足なものであった。
【0004】
また特開平7−82190号公報にはパラジウムとレニウム化合物からなる触媒を用い、三級アルコールを溶媒として水素化を行う方法が提案されているが、反応速度が未だ不十分であった。
上述したように従来技術においては活性炭を担体とした触媒を用いる直接水添の例が開示されており、活性炭の比表面積や前処理方法についても幾つかの検討がなされている。
【0005】
一般的な活性炭の製造方法として賦活過程という原料炭素質の熱分解工程を経るが、その賦活方法として各種の酸化性ガス(水蒸気、二酸化炭素、空気など)を用いるガス賦活法と、脱水性の塩類及び酸(塩化カルシウム、塩化マグネシウム、塩化亜鉛、リン酸、硫酸、苛性ソーダ、苛性カリなどのアルカリ類など)を用いる薬品賦活法が知られている。現在、ガス賦活法が米国をはじめ世界的に広く、かつ最も多く採用されており、活性炭製造の主流を占めており、薬品賦活法は現在、特殊用途向けにのみ製造されている。
【0006】
このような賦活法の違いにより、活性炭の物性として細孔分布の異なる活性炭が得られる。例えば塩化亜鉛賦活粉末炭は、トランジショナル孔と呼ばれる細孔半径が10〜100Åの細孔が発達し、その細孔容積が特異的に大きい。このような活性炭をジカルボン酸の直接水添触媒の担体に用いることは上述の従来技術には何も記載されていない。
また、米国特許第5,698,749号明細書にはパラジウム−銀−レニウムをあらかじめ硝酸酸化処理した活性炭上に担持した触媒を用いてマレイン酸から1,4−ブタンジオールが比較的高収率で得られることは記載されているが、グルタル酸あるいはアジピン酸の水素化還元反応の成績については何も記載されていない。
【0007】
特開平11−60523号公報にはあらかじめ酸処理した活性炭にルテニウム−錫−白金を担持した触媒を用いてアジピン酸から1,6−ヘキサンジオールが高収率で得られることが記載されているが、前記特開平10−71332号公報において述べたように、この触媒を用いて、コハク酸あるいはマレイン酸から1,4−ブタンジオールを高収率で得ることは困難である。
【0008】
【発明が解決しようとする課題】
本発明は、カルボン酸の種類に関係なく、いずれのカルボン酸を原料に用いても直接水添によってアルコール類を高収率で得ることができる触媒、およびその触媒を用いたカルボン酸の直接水添によるアルコール類の製造方法を提供することを目的とする。特にコハク酸、グルタル酸、アジピン酸のいずれを原料に用いてもジオール類を高収率で得ることができる触媒、およびその触媒を用いた直接水添によるジオール類の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決すべく本発明者らが鋭意検討した結果、驚くべきことに活性炭の細孔としてトランジショナル孔と呼ばれる、細孔半径が10Å以上100Å以下の細孔容積が大きい活性炭を担体として用い、ルテニウム、錫および白金を担持してなる触媒がカルボン酸の種類に関係なく、いずれのカルボン酸を原料に用いてもアルコール類を高収率で得ることができる触媒であることを見出し、本発明を完成したものである。
【0010】
すなわち本発明は、
[1] ルテニウム、錫および白金を活性炭に担持した触媒であり、該活性炭が塩化亜鉛賦活炭であることを特徴とするカルボン酸水添用触媒、
[2] ルテニウム、錫および白金を活性炭に担持した触媒であって該活性炭の細孔半径が10Å未満の細孔容積が0.03cm3/g以上0.8cm3/g以下、細孔半径が10Å以上100Å以下の細孔容積が0.5cm3/g以上2.0cm3/g以下であり、全細孔容積が1.2cm3/g以上3.0cm3/g以下、比表面積が800m2/g以上2,000m2/g未満であることを特徴とするカルボン酸水添用触媒、
[3] カルボン酸および/又はカルボン酸無水物を触媒と水の存在下、水素と反応させて水添し、アルコールを製造する方法において、該触媒として[1]又は[2]記載のカルボン酸水添用触媒を用いることを特徴とするアルコールの製造方法、
[4] カルボン酸が一般式(1)で示されるジカルボン酸から選ばれる少なくとも1種のジカルボン酸であり、カルボン酸無水物が一般式(2)で示される少なくとも1種のジカルボン酸無水物であることを特徴とする[3]記載のアルコールの製造方法、
【0011】
【化2】

Figure 0004472109
【0012】
(式中、R1およびR2はそれぞれ独立に炭素数が2〜20である二価の炭化水素基を表す。)
[5] カルボン酸がコハク酸、グルタル酸、アジピン酸、シクロヘキサンジカルボン酸、マレイン酸、フマル酸およびテレフタル酸から選ばれる少なくとも1種を含むカルボン酸であり、カルボン酸無水物が無水コハク酸および無水マレイン酸から選ばれる少なくとも1種を含むカルボン酸無水物である[3]又は[4]記載のアルコールの製造方法、
[6] カルボン酸および/又はカルボン酸無水物がコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする[5]に記載のアルコールの製造方法、
[7] カルボン酸および/又はカルボン酸無水物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする[6]記載のアルコールの製造方法、
[8] 温度100℃〜300℃、水素圧1MPa〜25MPaの条件下でカルボン酸および/又はカルボン酸無水物を水素と反応させることを特徴とする[3]〜[7]のいずれかに記載のアルコールの製造方法、
である。
【0013】
以下、本発明を詳細に説明する。
本発明のカルボン酸水添用触媒は、特定の製造方法により製造された活性炭にルテニウムと錫および白金を担持させて調製したものである。
本発明において用いられる活性炭は、塩化亜鉛賦活炭である。塩化亜鉛賦活炭の製造方法は公知の方法を用いればよく、その詳細は例えば「活性炭読本第2版」(柳井弘編著、石崎信男著、日刊工業新聞社)等に記載されているように出発原料として、のこくず、低灰分の泥炭、麦わら、あし、堅果およびカラなどを使用し、塩化亜鉛の濃厚溶液を含浸させた後に焼成する工程を含む製造方法によって製造された活性炭である。また、この活性炭は、不純物を除去するためにルテニウム、錫および白金を担持する前に熱水等で処理してもよい。
【0014】
この塩化亜鉛賦活炭は、トラジショナル孔と呼ばれる、細孔半径が10Å以上100Å以下の細孔が発達し、その細孔容積が特異的に大きいという特徴をもつ。この塩化亜鉛賦活炭における細孔半径と細孔容積の関係は、窒素ガス吸着法によって細孔容積、BET比表面積を測定した場合に、細孔半径が10Å未満の細孔容積が0.03cm3/g以上0.8cm3/g以下であり、細孔半径が10Å以上100Å以下の細孔容積が0.5cm3/g以上2.0cm3/g以下であり、全細孔容積が1.2cm3/g以上3.0cm3/g以下であり、比表面積が800m2/g以上2000m2/g未満である。さらに好ましくは細孔半径10Å未満の細孔容積が0.04cm3/g以上0.7cm3/g以下であり、細孔半径10Å以上100Å以下の細孔容積が0.7cm3/g以上1.8cm3/g以下であり、全細孔容積が1.4cm3/g以上2.7cm3/g以下であり、比表面積が1000cm2/g以上1800m2/g以下である。
【0015】
一般的な水蒸気賦活炭の細孔容積は、トラジショナル孔と呼ばれる、細孔半径が10Å以上100Å以下の細孔容積が0.02cm3/g以上0.4cm3/g以下である。本発明の目的とする、カルボン酸の種類に関係なくアルコール類を高収率で得る触媒とするには、トラジショナル孔の細孔容積が大きい活性炭を担体に用いることが必要である。即ち、細孔半径が10Å以上100Å以下の細孔容積が0.5cm3/g以上2.0cm3/g以下の活性炭を用いることが必要である。
【0016】
一方、触媒の担体としてはその構造が維持される強度も必要であることから、担体として用いる活性炭は、上記細孔半径と細孔容積との関係を有することが必要である。即ち、細孔半径が10Å未満の細孔容積が細孔半径が10Å未満の細孔容積が0.03cm3/g以上0.8cm3/g以下であり、全細孔容積が1.2cm3/g以上3.0cm3/g以下であり、比表面積が800m2/g以上2000m2/g未満であることが必要である。
【0017】
本発明者らが検討した結果では、測定装置によって窒素吸着法による細孔容積、BET比表面積の測定結果に差が生じることがある。本発明者らは、島津マイクロメリテックス ASAP−2400((株)島津製作所製)を用いて測定した。細孔容積を計算するためのデータの処理は、BJH法を用いた。なお、本装置によるデータ処理結果として細孔半径5Åから1500Åのデータが得られるが、一般的に知られているように窒素吸着法によって測定される細孔半径は、約8Åから500Å程度であり、本発明で言う細孔半径10Å未満とは実質上約8Åから10Å未満の細孔半径を言うものであり、全細孔容積とは、実質上約8Åから500Å程度の細孔半径の細孔容積を言うものである。
【0018】
このような細孔構造を有する活性炭をジカルボン酸の直接水添の触媒担体に用いることにより特に有効な効果を発揮する原因については明らかではないが、水蒸気賦活炭等のガス賦活炭に比較してトランジショナル孔と呼ばれる細孔半径が10Å以上100Å以下の細孔容量が大きいために、触媒細孔中でのカルボン酸、水素の拡散がスムーズに進み、特にジカルボン酸を原料とする場合には、ジカルボン酸および中間体のヒドロキシカルボン酸の拡散がスムーズに進み、ジカルボン酸からヒドロキシカルボン酸、さらにジオールへの水添が効率よく進むのではないかと推測している。
【0019】
活性炭にルテニウムと錫および白金を担持する方法としては浸せき法、イオン交換法、含浸法など担持触媒の調製に一般的に用いられている任意の方法を用いることができる。浸せき法によるときは担持する金属成分の原料化合物を水などの溶媒に溶解して金属化合物の溶液を調製し、この溶液に活性炭を浸せきして担体に担持させる。担体に各金属成分を担持させる順序については特に制限はなく、全ての金属を同時に担持しても、各成分を個別に担持してもよい。
【0020】
触媒調製に用いる金属成分の原料化合物としては、触媒の調製法にもよるが通常は硝酸塩、硫酸塩、塩酸塩などの鉱酸塩、酢酸塩などの有機酸塩、水酸化物、酸化物、有機金属化合物などを用いることができる。その中でも水溶性の原料化合物が好ましい。具体的にはルテニウムの原料化合物としては、塩化ルテニウム、硝酸ルテニウム、ルテニウムアセチルアセトナート、ルテニウムカルボニル等であり、錫の原料としては塩化錫(II)、錫酸ナトリウム、酢酸錫(II)等であり、白金の原料としては、塩化白金酸、硝酸白金、白金アセチルアセトナート、塩化白金、臭化白金、シアン化白金等が好ましく用いられる。
【0021】
金属成分を担持した炭素質担体は乾燥し、次いで所望により焼成した後に還元して触媒とする。乾燥は通常100℃未満の温度で減圧下に保持するか、又は窒素、空気などの乾燥気体を流通させて行う。また焼成は通常100〜600℃の温度で1時間から24時間、窒素、空気などを流通させながら行う。還元は液相還元又は気相還元のいずれで行ってもよい。気相還元に用いる還元ガスとしては、水素、ヒドラジン蒸気、ホルマリン、一酸化炭素等を用いることができる。温度としては、150℃〜500℃の温度が好ましい。上記焼成した触媒を容器に仕込み、所望の温度に昇温した後に還元ガスを充填することにより還元を行うことができる。所望に応じてこの還元操作を繰り返してもよい。また、容器に還元ガスを流通させて還元操作を行ってもよい。液相還元に用いる還元剤としては、上記気相還元に用いる還元剤の他に水素化硼素ナトリウム、水素化リチウムアルミニウム、ジエチル亜鉛等の還元剤を用いることができる。
【0022】
上記、金属成分を担持した活性炭を水および/またはアルコールなどの溶媒中に懸濁させ、室温から250℃の温度で常圧から20MPaの圧力下、上記した還元剤を用いて還元することにより行うことができる。水素を還元ガスとして用い、150℃〜500℃の温度で30分から24時間気相還元する方法を好ましく用いることができる。
本発明の触媒において、ルテニウムと錫の担持量は担体に対してそれぞれ金属として0.5〜50重量%、好ましくは1〜10重量%である。ルテニウム、錫の比率は金属として元素比でルテニウム:錫比が1:0.1〜1:2が好ましく、さらに好ましくは1:0.2〜1:1.3である。白金の担持量は、金属として元素比でルテニウムに対して0.01〜5が好ましく、さらに好ましくは0.1〜2の範囲である。
【0023】
本発明においてアルコール類の製造に用いられる原料は、カルボン酸および/又はカルボン酸無水物である。具体的にはギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、ペラルゴン酸等の脂肪族飽和モノカルボン酸類、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、メチルコハク酸、2,2−ジメチルコハク酸、2,3−ジメチルコハク酸、メチルマロン酸、α−メチルグルタル酸、β−メチルグルタル酸、2,2−ジメチルグルタル酸、2,4−ジメチルグルタル酸、3.3−ジメチルグルタル酸、2−エチル−2−メチルコハク酸、2,2,5,5−テトラメチルヘキサン二酸、3−メチルアジピン酸、コハク酸無水物、アジピン酸無水物、ポリアジピン酸無水物等の脂肪族飽和ジカルボン酸類および脂肪族飽和ジカルボン酸無水物類、アクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、メタクリル酸等の脂肪族不飽和モノカルボン酸類、フマル酸、マレイン酸、無水マレイン酸、メチルマレイン酸、メチルフマル酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、ムスコン酸、2−メチルムスコン酸、アセチレンジカルボン酸、1−プロピン−1,3−ジカルボン酸類等の脂肪族不飽和ジカルボン酸類および脂肪族不飽和ジカルボン酸無水物、メチントリカルボン酸、エチレントリカルボン酸などの脂肪族ポリカルボン酸類、シクロヘキサンカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、3,3−テトラメチレングルタル酸、コラン酸、リトコール酸、コール酸等の脂肪族脂環式モノ及びジカルボン酸類、安息香酸、トルイル酸、ジメチル安息香酸、クミン酸、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸等の芳香族カルボン酸類および芳香族カルボン酸無水物である。
【0024】
この中でも下記一般式(1)で示されるジカルボン酸および下記一般式(2)で示されるジカルボン酸無水物が好ましく、具体的にはコハク酸、グルタル酸、アジピン酸、シクロヘキサンジカルボン酸、マレイン酸、フマル酸、テレフタル酸、無水コハク酸、無水マレイン酸が挙げられる。分子内に窒素、硫黄、リン元素を持たないカルボン酸および/又はカルボン酸無水物が好ましい。
【0025】
【化3】
Figure 0004472109
【0026】
(式中、R1、R2はそれぞれ独立に炭素数が2〜20である二価の炭化水素基を表す。)
なお、不飽和カルボン酸および不飽和カルボン酸無水物を原料に用いた場合には本発明の触媒を用いた水添反応によって飽和のアルコール類が得られ、また芳香族カルボン酸および芳香族カルボン酸無水物を原料に用いた場合には、脂環式アルコール類が得られる。
【0027】
さらに、原料のカルボン酸は、複数のカルボン酸の混合物であっても、複数のカルボン酸無水物の混合物であっても、カルボン酸とカルボン酸無水物の混合物であっても何ら問題ない。好ましいジカルボン酸の混合物としては、コハク酸、グルタル酸、アジピン酸を含有する混合物である。
また、シクロヘキサノンおよび/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するジカルボン酸類にはコハク酸、グルタル酸、アジピン酸が含まれており、本発明の特に好適な原料である。このジカルボン酸を原料として有用な化合物を得ることができれば、アジピン酸製造に際して発生する廃棄物の量を減らすことができること、またこの副生物はコハク酸、グルタル酸、アジピン酸が含まれていることから1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールという工業的に有用なジオール類をも併産することができ、本発明の触媒のカルボン酸原料の種類を問わず、高収率でアルコール類を得ることができるという特徴を発揮するに最適の原料であることから特に好ましい。
【0028】
本発明において特に好ましく用いられる、シクロヘキサノンおよび/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際に副生するジカルボン酸混合物とは、アジピン酸を晶析分離したろ液である。本発明ではそのろ液をそのまま用いても良いが、触媒の水添活性が減じる時には硝酸酸化触媒の脱触媒、脱水、脱硝酸などの工程を経たものを用いることが好ましい。
本発明では上記のルテニウム、錫および白金を前述の活性炭に担持した触媒を用い、水の存在下にカルボン酸および/又はカルボン酸無水物の水添反応を行う。反応における水の量はカルボン酸および/又はカルボン酸無水物に対して0.5〜100重量倍である。さらに好ましくは1〜20重量倍である。水添温度においてカルボン酸又はカルボン酸無水物の全量が溶解する水量が好ましい。水添反応の温度は、100〜300℃が好ましく、さらに好ましくは130〜250℃である。水素圧は1〜25MPa、さらに好ましくは5MPa〜20MPaである。
【0029】
水添反応は連続、回分のいずれで行ってもよい、また反応型式としては液相懸濁反応、固定床流通反応のいずれも用いることができる。
本発明において原料にシクロヘキサノンおよび/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際に副生するコハク酸、グルタル酸、アジピン酸のジカルボン酸混合物を用いた場合には水添生成物として1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの混合物が得られるが、これらのジオールは必要に応じて通常の精製方法、例えば蒸留分離によって精製することができる。
【0030】
【発明の実施の形態】
以下、本発明を実施例などを用いて更に詳細に説明する。なお、反応成績のうち、原料の転化率は液体クロマトグラフィーの分析値から算出し、ジオール類の収率はガスクロマトグラフィーの分析値から算出した。また、コハク酸、グルタル酸、アジピン酸の混合物はアジピン酸を晶析分離したろ液から脱水、脱硝酸処理して得た。組成は液体クロマトグラフィーの分析によりコハク酸23重量%、グルタル酸60重量%、アジピン酸17重量%であった。
【0031】
【実施例1】
触媒の担体に、二村化学工業(株)製、グレード名「太閤SGP」の活性炭を用いた。この活性炭の細孔容積、全比表面積を、窒素ガス吸着法によりカルロエルバ社製ソープトマチックを用いて二村化学工業(株)で測定した結果は、細孔半径10Å未満の細孔容積は0.05cm3/g、細孔半径10Å以上100Å以下の細孔容量は0.75cm3/g、全細孔容量は1.08cm3/g、比表面積は、1050m2/gであった。さらに島津マイクロメリテックス ASAP−2400を用いて窒素ガス吸着法により同活性炭を測定したところ、細孔半径10Å未満の細孔容積は0.52cm3/g、細孔半径10Å以上100Å以下の細孔容量は1.02cm3/g、全細孔容量は2.02cm3/g、比表面積は、1786m2/gであった。
【0032】
<Ru−Sn−Pt触媒の調製>
100mlのナスフラスコに塩化白金酸6水和物0.48gを入れ、5N−塩酸3.36mlを加えて溶解した。この溶液に塩化錫(II価)2水和物0.51gを入れて溶解し、3塩化ルテニウム3水和物0.84gを入れて溶解させた。この溶液に上記活性炭3.00gを加え、室温で15時間静置した。エバポレーターを用いて70℃、2.7kPaで水を留去した後、窒素ガス雰囲気下150℃、2時間焼成処理し、ついで水素雰囲気下450℃で2時間還元処理した。再び窒素ガス雰囲気にし、室温まで冷却した後に0.1%酸素/窒素雰囲気で2時間静置した。上記方法により6.1重量%ルテニウム−5.0重量%錫−3.4重量%白金を活性炭に担持した触媒(担持量は活性炭に対する値である。)を調製した。
【0033】
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
容量30mlのオートクレーブに、水5g、上記コハク酸、グルタル酸、アジピン酸の混合物2.1gと上記方法で調製した触媒0.15gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPaに圧入し、180℃まで昇温した。180℃に達した時点で水素を圧入し15MPaとした。この圧力で10時間水素化還元反応を行った。反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。デカンテーションにより分離した反応液と触媒洗浄液を合わせて各ジカルボン酸の転化率とジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ94%、94%、97%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ50%、76%、61%であった。
【0034】
【比較例1】
三菱化学製石炭系活性炭CX−2の細孔容積、比表面積を実施例1と同様に島津マイクロメリテックス ASAP−2400を用いて窒素ガス吸着法により測定したところ、細孔半径10Å以下の細孔容積が0.57cm3/g、細孔半径10Å以上100Å以下の細孔容量が0.44cm3/g、全細孔容量が1.07cm3/g、比表面積は、1615m2/gであった。
【0035】
特開平10−71332号公報の実施例に従って、CX−2に30%硝酸を加え、95℃で3時間処理した。この活性炭を濾過、水洗、乾燥後、上記と同様の方法により細孔容積、比表面積を測定した。その結果、細孔半径10Å以下の細孔容積が0.45cm3/g、細孔半径10Å以上100Å以下の細孔容量が0.38cm3/g、全細孔容量が0.89cm3/g、比表面積は、1332m2/gであり、細孔半径10〜100Åの細孔容量が本発明の塩化亜鉛賦活炭とは異なることを確認した。
【0036】
【比較例2】
比較例1と同様の方法、装置を用いて測定した細孔容積、比表面積が、細孔半径10Å未満の細孔容積が0.35cm3/g、細孔半径10Å以上100Å未満の細孔容積が0.23cm3/g、全細孔容量が0.61cm3/g、比表面積が937m2/gである活性炭を用いて、実施例1の触媒調製と同様にしてルテニウム−錫−白金/活性炭触媒を調製した。この触媒を用い、実施例1と同様の手順で上記ジカルボン酸混合物の水素化還元反応を行った。その結果コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ91%、90%、92%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率はそれぞれ40%、68%、55%であった。
【0037】
【実施例2】
容量50mlのオートクレーブに、水5g、コハク酸2.10gと実施例1で調製した触媒0.30gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPa圧入し、180℃まで昇温した。180℃に達した時点で水素を圧入し15MPaとした。この圧力で6時間水添反応を行った。反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。デカンテーションにより分離した反応液と触媒洗浄液を合わせてコハク酸の転化率と1,4−ブタンジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。その結果、コハク酸の転化率は98%であり、1,4−ブタンジオールの収率は、88%であった。
【0038】
【実施例3】
容量50mlのオートクレーブに、水5g、グルタル酸2.10gと実施例1で調製した触媒0.30gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPa圧入し、240℃まで昇温した。240℃に達した時点で水素を圧入し9.8MPaとした。この圧力で3.5時間水添反応を行った。反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。デカンテーションにより分離した反応液と触媒洗浄液を合わせてグルタル酸の転化率と1,5−ペンタンジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。その結果、グルタル酸の転化率は100%であり、1,5−ペンタンジオールの収率は、92%であった。
【0039】
【実施例4】
容量50mlのオートクレーブに、水5g、アジピン酸2.10gと実施例1で調製した触媒0.30gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPa圧入し、240℃まで昇温した。240℃に達した時点で水素を圧入し9.8MPaとした。この圧力で3.5時間水添反応を行った。反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。デカンテーションにより分離した反応液と触媒洗浄液を合わせてアジピン酸の転化率と1,6−ヘキサンジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。その結果、アジピン酸の転化率は100%であり、1,6−ヘキサンジオールの収率は、90%であった。
【0040】
【発明の効果】
本発明は、カルボン酸の種類に関わらず、直接水添により高い収率でアルコール類を製造することができるものである。特にシクロヘキサンノンおよび/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際の副生物であるコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物から、1,4−ブタンジオール、1.5−ペンタンジオール、1,6−ヘキサンジオールの混合物を高収率で製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst used for producing alcohols by directly hydrogenating carboxylic acids with hydrogen as a raw material without going through an esterification step in the presence of water, and a method for producing alcohols by direct hydrogenation. Is.
[0002]
[Prior art]
Alcohols are useful substances that are widely used in various industrial fields. In particular, diols are useful as raw materials for polyester resins, urethane foam, urethane paints, and adhesives. As a method for producing, for example, 1,4-butanediol as one kind of such diols, many methods for producing hydrogenated succinic acid or maleic acid have been reported. As the most well-known method, there is a method in which an ester of succinic acid or maleic acid is hydrogenated at a high temperature and a high pressure using a copper catalyst. However, this method has a problem that the carboxylic acid cannot be directly hydrogenated, and the carboxylic acid must be once converted to an ester and then hydrogenated, resulting in a long production process.
[0003]
On the other hand, several methods for producing 1,4-butanediol by directly hydrogenating succinic acid or maleic acid have been proposed. When only the catalyst system is listed, a catalyst composed of ruthenium-iron oxide (US Pat. No. 4,827,001), ruthenium-tin with a BET surface area of 2000 m 2 Catalyst supported on porous carbon of at least / g (JP-A-5-246915), catalyst supported on silica modified with ruthenium and tin with titanium and / or alumina (JP-A-6-116182), ruthenium and A catalyst in which tin and an alkali metal compound or an alkaline earth metal are supported on a carrier (Japanese Patent Laid-Open No. 6-239778), a catalyst in which at least one selected from ruthenium, platinum and rhodium and tin are supported on a carrier (special feature) (Kaihei 7-165644), a method in which a catalyst in which ruthenium and tin are supported on a carrier is used, excess hydrogen is allowed to flow through the reaction system, and the reaction is carried out while removing entrained products out of the system ( JP-A-9-12492), catalyst having ruthenium-tin-platinum supported on a carrier (JP-A-9-59190), carbonyl compound having 5 or less carbon atoms A catalyst containing ruthenium-tin-platinum prepared by impregnating activated carbon with a solution containing a supporting component coexisting with activated carbon (Japanese Patent Laid-Open No. 10-15388); A catalyst (Japanese Patent Laid-Open No. 10-71332) on which activated carbon is supported by ruthenium-tin-platinum in which the loading state is defined has been proposed, but in any method using any catalyst, it is a hydrogenated product. The selectivity of 4-butanediol, tetrahydrofuran, and γ-butyrolactone was insufficient, and the yield of 1,4-butanediol was unsatisfactory.
[0004]
Japanese Patent Application Laid-Open No. 7-82190 proposes a method of hydrogenation using a catalyst composed of palladium and a rhenium compound and a tertiary alcohol as a solvent, but the reaction rate is still insufficient.
As described above, examples of direct hydrogenation using a catalyst using activated carbon as a carrier have been disclosed in the prior art, and some studies have been made on the specific surface area and pretreatment method of activated carbon.
[0005]
As a general method for producing activated carbon, it undergoes a raw carbonaceous pyrolysis process called an activation process. As an activation method, a gas activation method using various oxidizing gases (water vapor, carbon dioxide, air, etc.) Chemical activation methods using salts and acids (calcium chloride, magnesium chloride, zinc chloride, phosphoric acid, sulfuric acid, caustic soda, caustic potassium and other alkalis) are known. Currently, the gas activation method is widely and most widely adopted worldwide including the United States, and occupies the mainstream of activated carbon production. The chemical activation method is currently produced only for special applications.
[0006]
Due to such a difference in activation method, activated carbon having different pore distributions as physical properties of the activated carbon can be obtained. For example, zinc chloride activated powder charcoal develops pores having a pore radius of 10 to 100 mm called transitional pores, and the pore volume is specifically large. The use of such activated carbon as a carrier for a direct hydrogenation catalyst of dicarboxylic acid is not described in the above-mentioned prior art.
In addition, US Pat. No. 5,698,749 discloses a relatively high yield of 1,4-butanediol from maleic acid using a catalyst supported on activated carbon in which palladium-silver-rhenium is previously oxidized with nitric acid. However, nothing is described about the results of the hydroreduction reaction of glutaric acid or adipic acid.
[0007]
JP-A-11-60523 describes that 1,6-hexanediol can be obtained in high yield from adipic acid using a catalyst in which ruthenium-tin-platinum is supported on activated carbon that has been acid-treated in advance. As described in JP-A-10-71332, it is difficult to obtain 1,4-butanediol in high yield from succinic acid or maleic acid using this catalyst.
[0008]
[Problems to be solved by the invention]
The present invention relates to a catalyst that can obtain alcohols in high yield by direct hydrogenation regardless of the type of carboxylic acid, and direct water of carboxylic acid using the catalyst. An object of the present invention is to provide a method for producing alcohol by addition. In particular, the present invention provides a catalyst capable of obtaining diols in a high yield even when any of succinic acid, glutaric acid, and adipic acid is used as a raw material, and a method for producing diols by direct hydrogenation using the catalyst. Objective.
[0009]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors to solve the above-mentioned problems, surprisingly, activated carbon is used as a carrier, which is called a transitional pore, and activated carbon having a pore radius of 10 to 100 mm and a large pore volume. The catalyst comprising ruthenium, tin and platinum was found to be a catalyst capable of obtaining alcohols in a high yield regardless of the type of carboxylic acid, and using any carboxylic acid as a raw material. The invention has been completed.
[0010]
That is, the present invention
[1] A catalyst for hydrogenating carboxylic acid, characterized in that ruthenium, tin and platinum are supported on activated carbon, and the activated carbon is zinc chloride activated charcoal,
[2] A catalyst in which ruthenium, tin and platinum are supported on activated carbon, and the pore volume of the activated carbon having a pore radius of less than 10 mm is 0.03 cm Three / G or more 0.8cm Three / G or less, pore volume of 10 cm to 100 mm in pore radius is 0.5 cm Three / G or more 2.0cm Three / G or less, and the total pore volume is 1.2 cm. Three / G or more 3.0cm Three / G or less, specific surface area 800m 2 / G or more 2,000m 2 Carboxylic acid hydrogenation catalyst, characterized by being less than / g
[3] In a method for producing an alcohol by reacting hydrogenation with carboxylic acid and / or carboxylic anhydride in the presence of a catalyst and water to produce an alcohol, the carboxylic acid according to [1] or [2] A method for producing an alcohol, characterized by using a hydrogenation catalyst;
[4] The carboxylic acid is at least one dicarboxylic acid selected from dicarboxylic acids represented by the general formula (1), and the carboxylic acid anhydride is at least one dicarboxylic anhydride represented by the general formula (2). The method for producing an alcohol according to [3], wherein
[0011]
[Chemical formula 2]
Figure 0004472109
[0012]
(Wherein R 1 And R 2 Each independently represents a divalent hydrocarbon group having 2 to 20 carbon atoms. )
[5] The carboxylic acid is a carboxylic acid containing at least one selected from succinic acid, glutaric acid, adipic acid, cyclohexanedicarboxylic acid, maleic acid, fumaric acid and terephthalic acid, and the carboxylic acid anhydride is succinic anhydride and anhydrous The method for producing an alcohol according to [3] or [4], which is a carboxylic acid anhydride containing at least one selected from maleic acid,
[6] The method for producing an alcohol according to [5], wherein the carboxylic acid and / or carboxylic anhydride is a mixture of carboxylic acids including succinic acid, glutaric acid, and adipic acid,
[7] The carboxylic acid and / or carboxylic acid anhydride is a mixture of carboxylic acids including succinic acid, glutaric acid and adipic acid recovered from the oxidation reaction liquid of cyclohexanone and / or cyclohexanol [6] ] The manufacturing method of alcohol of description,
[8] The method according to any one of [3] to [7], wherein carboxylic acid and / or carboxylic anhydride is reacted with hydrogen under conditions of a temperature of 100 ° C. to 300 ° C. and a hydrogen pressure of 1 MPa to 25 MPa. Alcohol production method,
It is.
[0013]
Hereinafter, the present invention will be described in detail.
The carboxylic acid hydrogenation catalyst of the present invention is prepared by supporting ruthenium, tin and platinum on activated carbon produced by a specific production method.
The activated carbon used in the present invention is zinc chloride activated charcoal. A known method may be used as a method for producing zinc chloride activated charcoal, and details thereof are described, for example, as described in “Activated carbon reader second edition” (by Hiroshi Yanai, Nobuo Ishizaki, Nikkan Kogyo Shimbun). It is activated carbon produced by a production method including a step of using a sawdust, low ash peat, straw, straw, nuts, and kala as a raw material, and impregnating a concentrated solution of zinc chloride, followed by firing. The activated carbon may be treated with hot water or the like before carrying ruthenium, tin and platinum in order to remove impurities.
[0014]
This zinc chloride activated charcoal is characterized by the development of pores having a pore radius of 10 to 100 mm, called traditional pores, and the pore volume being specifically large. The relationship between the pore radius and the pore volume in this zinc chloride activated charcoal is as follows. When the pore volume and BET specific surface area are measured by the nitrogen gas adsorption method, the pore volume with a pore radius of less than 10 mm is 0.03 cm. Three / G or more 0.8cm Three / G or less, and the pore volume with a pore radius of 10 to 100 cm is 0.5 cm. Three / G or more 2.0cm Three / G or less, and the total pore volume is 1.2 cm. Three / G or more 3.0cm Three / G or less and a specific surface area of 800 m 2 / G or more 2000m 2 / G. More preferably, the pore volume with a pore radius of less than 10 mm is 0.04 cm. Three / G or more 0.7cm Three / G or less, and the pore volume with a pore radius of 10 mm to 100 mm is 0.7 cm. Three / G or more 1.8cm Three / G or less, and the total pore volume is 1.4 cm. Three / G or more 2.7cm Three / G or less and a specific surface area of 1000 cm 2 / G or more 1800m 2 / G or less.
[0015]
The pore volume of a general steam activated charcoal is referred to as a traditional pore, and the pore volume with a pore radius of 10 to 100 cm is 0.02 cm. Three / G or more 0.4cm Three / G or less. In order to make the catalyst which can obtain alcohols with a high yield irrespective of the kind of carboxylic acid which is the object of the present invention, it is necessary to use activated carbon having a large pore volume of traditional pores as a support. That is, the pore volume with a pore radius of 10 mm to 100 mm is 0.5 cm. Three / G or more 2.0cm Three / G or less of activated carbon is required.
[0016]
On the other hand, since the strength of maintaining the structure of the catalyst support is also necessary, the activated carbon used as the support needs to have a relationship between the pore radius and the pore volume. That is, the pore volume having a pore radius of less than 10 mm is 0.03 cm. Three / G or more 0.8cm Three / G or less, and the total pore volume is 1.2 cm. Three / G or more 3.0cm Three / G or less and a specific surface area of 800 m 2 / G or more 2000m 2 It is necessary to be less than / g.
[0017]
As a result of investigations by the present inventors, there may be a difference in the measurement results of the pore volume and the BET specific surface area by the nitrogen adsorption method depending on the measuring device. The inventors measured using Shimadzu Micromeritex ASAP-2400 (manufactured by Shimadzu Corporation). The data processing for calculating the pore volume was performed using the BJH method. As a result of data processing by this apparatus, data with a pore radius of 5 to 1500 mm is obtained. As is generally known, the pore radius measured by the nitrogen adsorption method is about 8 to 500 mm. In the present invention, a pore radius of less than 10 mm means a pore radius of about 8 mm to less than 10 mm, and a total pore volume means a pore having a pore radius of about 8 mm to 500 mm. It is a volume.
[0018]
It is not clear why the activated carbon having such a pore structure exhibits a particularly effective effect by using it as a catalyst for direct hydrogenation of dicarboxylic acid, but compared with gas activated charcoal such as steam activated charcoal. Since the pore volume called the transitional pore has a large pore volume of 10 to 100 大 き い, the diffusion of carboxylic acid and hydrogen in the catalyst pore proceeds smoothly, especially when dicarboxylic acid is used as a raw material, It is speculated that the diffusion of dicarboxylic acid and intermediate hydroxycarboxylic acid proceeds smoothly, and hydrogenation from dicarboxylic acid to hydroxycarboxylic acid and further to diol proceeds efficiently.
[0019]
As a method for supporting ruthenium, tin and platinum on activated carbon, any method generally used for the preparation of a supported catalyst, such as a dipping method, an ion exchange method and an impregnation method, can be used. When the immersion method is used, a metal compound raw material compound to be supported is dissolved in a solvent such as water to prepare a metal compound solution, and activated carbon is immersed in this solution and supported on a carrier. There is no particular limitation on the order in which each metal component is supported on the carrier, and all the metals may be supported simultaneously or each component may be individually supported.
[0020]
As a raw material compound of the metal component used for catalyst preparation, although it depends on the preparation method of the catalyst, mineral salts such as nitrates, sulfates and hydrochlorides, organic acid salts such as acetates, hydroxides, oxides, An organometallic compound or the like can be used. Among these, water-soluble raw material compounds are preferable. Specifically, ruthenium raw material compounds include ruthenium chloride, ruthenium nitrate, ruthenium acetylacetonate, ruthenium carbonyl, etc., and tin raw materials include tin (II) chloride, sodium stannate, tin (II) acetate, etc. As the platinum raw material, chloroplatinic acid, platinum nitrate, platinum acetylacetonate, platinum chloride, platinum bromide, platinum cyanide and the like are preferably used.
[0021]
The carbonaceous support carrying the metal component is dried, then calcined as desired, and then reduced to a catalyst. Drying is usually carried out at a temperature lower than 100 ° C. under reduced pressure or by passing a dry gas such as nitrogen or air. Firing is usually performed at a temperature of 100 to 600 ° C. for 1 to 24 hours while flowing nitrogen, air, or the like. The reduction may be performed by either liquid phase reduction or gas phase reduction. As the reducing gas used for the gas phase reduction, hydrogen, hydrazine vapor, formalin, carbon monoxide, or the like can be used. As temperature, the temperature of 150 to 500 degreeC is preferable. Reduction can be carried out by charging the calcined catalyst into a container and heating the catalyst to a desired temperature and then charging with a reducing gas. This reduction operation may be repeated as desired. Further, the reducing operation may be performed by circulating a reducing gas in the container. As a reducing agent used for liquid phase reduction, a reducing agent such as sodium borohydride, lithium aluminum hydride, diethyl zinc and the like can be used in addition to the reducing agent used for the gas phase reduction.
[0022]
The above-mentioned activated carbon carrying a metal component is suspended in a solvent such as water and / or alcohol, and reduced by using the above reducing agent at a temperature from room temperature to 250 ° C. under a pressure from normal pressure to 20 MPa. be able to. A method of using a hydrogen gas as a reducing gas and performing gas phase reduction at a temperature of 150 ° C. to 500 ° C. for 30 minutes to 24 hours can be preferably used.
In the catalyst of the present invention, the supported amount of ruthenium and tin is 0.5 to 50% by weight, preferably 1 to 10% by weight, respectively, as a metal relative to the support. The ratio of ruthenium and tin is an element ratio as a metal, and the ruthenium: tin ratio is preferably 1: 0.1 to 1: 2, more preferably 1: 0.2 to 1: 1.3. The supported amount of platinum is preferably 0.01 to 5 and more preferably 0.1 to 2 with respect to ruthenium in terms of element ratio as a metal.
[0023]
In the present invention, the raw material used for the production of alcohols is carboxylic acid and / or carboxylic anhydride. Specifically, aliphatic saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid , Pimelic acid, suberic acid, azelaic acid, sebacic acid, methyl succinic acid, 2,2-dimethyl succinic acid, 2,3-dimethyl succinic acid, methyl malonic acid, α-methyl glutaric acid, β-methyl glutaric acid, 2, 2-dimethylglutaric acid, 2,4-dimethylglutaric acid, 3.3-dimethylglutaric acid, 2-ethyl-2-methylsuccinic acid, 2,2,5,5-tetramethylhexanedioic acid, 3-methyladipic acid Aliphatic saturated dicarboxylic acids such as succinic anhydride, adipic anhydride, polyadipic anhydride and aliphatic saturated dicarboxylic anhydrides, acrylic Aliphatic unsaturated monocarboxylic acids such as phosphoric acid, crotonic acid, isocrotonic acid, vinyl acetic acid, methacrylic acid, fumaric acid, maleic acid, maleic anhydride, methyl maleic acid, methyl fumaric acid, itaconic acid, citraconic acid, mesaconic acid, Aliphatic unsaturated dicarboxylic acids and aliphatic unsaturated dicarboxylic acid anhydrides such as glutaconic acid, muskonic acid, 2-methylmuskonic acid, acetylenedicarboxylic acid, 1-propyne-1,3-dicarboxylic acids, methine tricarboxylic acid, ethylene tricarboxylic acid Aliphatic polycarboxylic acids such as acids, cyclohexanecarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 3,3-tetramethyleneglutaric acid, colanic acid, lithol Aliphatic rings such as acid and cholic acid Mono- and dicarboxylic acids, benzoic acid, toluic acid, dimethyl benzoic acid, cumin acid, phthalic acid, phthalic anhydride, isophthalic acid, aromatic carboxylic acids and aromatic carboxylic acid anhydrides such as terephthalic acid.
[0024]
Among these, dicarboxylic acids represented by the following general formula (1) and dicarboxylic anhydrides represented by the following general formula (2) are preferable, and specifically, succinic acid, glutaric acid, adipic acid, cyclohexanedicarboxylic acid, maleic acid, Examples include fumaric acid, terephthalic acid, succinic anhydride, and maleic anhydride. Carboxylic acid and / or carboxylic acid anhydride having no nitrogen, sulfur or phosphorus element in the molecule is preferred.
[0025]
[Chemical 3]
Figure 0004472109
[0026]
(Wherein R 1 , R 2 Each independently represents a divalent hydrocarbon group having 2 to 20 carbon atoms. )
When unsaturated carboxylic acid and unsaturated carboxylic acid anhydride are used as raw materials, saturated alcohols are obtained by hydrogenation reaction using the catalyst of the present invention, and aromatic carboxylic acids and aromatic carboxylic acids are obtained. When an anhydride is used as a raw material, alicyclic alcohols are obtained.
[0027]
Furthermore, the raw material carboxylic acid may be a mixture of a plurality of carboxylic acids, a mixture of a plurality of carboxylic anhydrides, or a mixture of a carboxylic acid and a carboxylic anhydride. A preferred mixture of dicarboxylic acids is a mixture containing succinic acid, glutaric acid, and adipic acid.
Moreover, succinic acid, glutaric acid, and adipic acid are included in the dicarboxylic acids produced as a by-product in the production of adipic acid by oxidizing cyclohexanone and / or cyclohexanol, and are particularly suitable raw materials of the present invention. If a useful compound can be obtained using this dicarboxylic acid as a raw material, the amount of waste generated during the production of adipic acid can be reduced, and this by-product should contain succinic acid, glutaric acid, and adipic acid. Industrially useful diols such as 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol can be produced together, regardless of the type of carboxylic acid raw material of the catalyst of the present invention. Therefore, it is particularly preferable because it is an optimal raw material for exhibiting the characteristic that alcohols can be obtained in a high yield.
[0028]
The dicarboxylic acid mixture by-produced when nitric acid is oxidized to cyclohexanone and / or cyclohexanol to produce adipic acid, which is particularly preferably used in the present invention, is a filtrate obtained by crystallizing and separating adipic acid. In the present invention, the filtrate may be used as it is, but when the hydrogenation activity of the catalyst is reduced, it is preferable to use a filtrate that has undergone steps such as decatalysis, dehydration, and denitration of the nitric acid oxidation catalyst.
In the present invention, a hydrogenation reaction of a carboxylic acid and / or a carboxylic acid anhydride is performed in the presence of water using a catalyst in which the above-mentioned ruthenium, tin and platinum are supported on activated carbon. The amount of water in the reaction is 0.5 to 100 times by weight based on the carboxylic acid and / or carboxylic anhydride. More preferably, it is 1 to 20 times by weight. An amount of water in which the entire amount of carboxylic acid or carboxylic anhydride is dissolved at the hydrogenation temperature is preferred. The temperature of the hydrogenation reaction is preferably 100 to 300 ° C, more preferably 130 to 250 ° C. The hydrogen pressure is 1-25 MPa, more preferably 5 MPa-20 MPa.
[0029]
The hydrogenation reaction may be performed either continuously or batchwise. As a reaction type, either a liquid phase suspension reaction or a fixed bed flow reaction can be used.
In the present invention, when a mixture of dicarboxylic acids of succinic acid, glutaric acid and adipic acid produced as a by-product in the production of adipic acid by nitric acid oxidation of cyclohexanone and / or cyclohexanol as a raw material is 1 as a hydrogenated product. 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol are obtained, and these diols can be purified by an ordinary purification method such as distillation separation, if necessary.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples and the like. Of the reaction results, the conversion rate of the raw material was calculated from the analytical value of liquid chromatography, and the yield of diols was calculated from the analytical value of gas chromatography. A mixture of succinic acid, glutaric acid and adipic acid was obtained by dehydration and denitration treatment from the filtrate obtained by crystallization separation of adipic acid. The composition was 23% by weight of succinic acid, 60% by weight of glutaric acid, and 17% by weight of adipic acid by liquid chromatography analysis.
[0031]
[Example 1]
As a catalyst carrier, activated carbon having a grade name “Dazai SGP” manufactured by Futura Chemical Industry Co., Ltd. was used. The pore volume and the total specific surface area of this activated carbon were measured by Nimura Chemical Co., Ltd. using Sorptomatic manufactured by Carlo Elba Co. by nitrogen gas adsorption method. 05cm Three / G, pore volume with a pore radius of 10 to 100 cm is 0.75 cm Three / G, total pore volume is 1.08cm Three / G, specific surface area was 1050 m <2> / g. Further, when the activated carbon was measured by a nitrogen gas adsorption method using Shimadzu Micromeritex ASAP-2400, the pore volume with a pore radius of less than 10 mm was 0.52 cm. Three / G, pore volume with a pore radius of 10 to 100 cm is 1.02 cm Three / G, total pore volume is 2.02 cm Three / G, specific surface area was 1786 m2 / g.
[0032]
<Preparation of Ru-Sn-Pt catalyst>
In a 100 ml eggplant flask, 0.48 g of chloroplatinic acid hexahydrate was placed and dissolved by adding 3.36 ml of 5N hydrochloric acid. In this solution, 0.51 g of tin chloride (II) dihydrate was added and dissolved, and 0.84 g of ruthenium trichloride trihydrate was added and dissolved. To this solution was added 3.00 g of the activated carbon, and the mixture was allowed to stand at room temperature for 15 hours. After distilling off water at 70 ° C. and 2.7 kPa using an evaporator, it was baked at 150 ° C. for 2 hours in a nitrogen gas atmosphere, and then reduced at 450 ° C. for 2 hours in a hydrogen atmosphere. The atmosphere was again a nitrogen gas atmosphere, cooled to room temperature, and allowed to stand in a 0.1% oxygen / nitrogen atmosphere for 2 hours. By the above method, a catalyst (supported amount is a value relative to the activated carbon) in which 6.1 wt% ruthenium-5.0 wt% tin-3.4 wt% platinum was supported on activated carbon was prepared.
[0033]
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
An autoclave with a capacity of 30 ml was charged with 5 g of water, 2.1 g of a mixture of succinic acid, glutaric acid and adipic acid and 0.15 g of the catalyst prepared by the above method, and the atmosphere in the autoclave was replaced with nitrogen at room temperature. Was pressed into 2.0 MPa, and the temperature was raised to 180 ° C. When the temperature reached 180 ° C., hydrogen was injected to a pressure of 15 MPa. The hydrogenation reduction reaction was carried out at this pressure for 10 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction liquid and catalyst washing liquid separated by decantation were combined, and the conversion rate of each dicarboxylic acid and the yield of diol were determined by analysis by liquid chromatography and gas chromatography. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 94%, 94% and 97%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. Were 50%, 76% and 61%, respectively.
[0034]
[Comparative Example 1]
The pore volume and specific surface area of coal-based activated carbon CX-2 manufactured by Mitsubishi Chemical Corporation were measured by a nitrogen gas adsorption method using Shimadzu Micromeritex ASAP-2400 in the same manner as in Example 1. The volume is 0.57cm Three / G, pore volume with a pore radius of 10 to 100 cm is 0.44 cm Three / G, total pore volume is 1.07 cm Three / G, specific surface area is 1615m 2 / G.
[0035]
According to the example of JP-A-10-71332, 30% nitric acid was added to CX-2 and treated at 95 ° C. for 3 hours. The activated carbon was filtered, washed with water, and dried, and then the pore volume and specific surface area were measured by the same method as described above. As a result, the pore volume with a pore radius of 10 mm or less was 0.45 cm. Three / G, pore volume with a pore radius of 10 to 100 cm is 0.38 cm Three / G, total pore volume is 0.89cm Three / G, specific surface area is 1332m 2 / G, and it was confirmed that the pore volume with a pore radius of 10 to 100 kg was different from that of the zinc chloride activated carbon of the present invention.
[0036]
[Comparative Example 2]
The pore volume and specific surface area measured using the same method and apparatus as in Comparative Example 1 were 0.35 cm. Three / G, pore volume with a pore radius of 10 mm or more and less than 100 mm is 0.23 cm Three / G, total pore volume is 0.61 cm Three / G, specific surface area is 937m 2 A ruthenium-tin-platinum / activated carbon catalyst was prepared in the same manner as in the preparation of the catalyst in Example 1, using activated carbon of / g. Using this catalyst, the hydrogenation reduction reaction of the above dicarboxylic acid mixture was carried out in the same procedure as in Example 1. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 91%, 90% and 92%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. They were 40%, 68% and 55%, respectively.
[0037]
[Example 2]
An autoclave with a capacity of 50 ml was charged with 5 g of water, 2.10 g of succinic acid and 0.30 g of the catalyst prepared in Example 1, and the atmosphere in the autoclave was replaced with nitrogen at room temperature. The temperature was raised to ° C. When the temperature reached 180 ° C., hydrogen was injected to a pressure of 15 MPa. Hydrogenation reaction was carried out at this pressure for 6 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction liquid and catalyst washing liquid separated by decantation were combined, and the conversion of succinic acid and the yield of 1,4-butanediol were determined by analysis by liquid chromatography and gas chromatography. As a result, the conversion of succinic acid was 98%, and the yield of 1,4-butanediol was 88%.
[0038]
[Example 3]
An autoclave with a capacity of 50 ml was charged with 5 g of water, 2.10 g of glutaric acid and 0.30 g of the catalyst prepared in Example 1, and the atmosphere in the autoclave was replaced with nitrogen at room temperature. The temperature was raised to ° C. When the temperature reached 240 ° C., hydrogen was injected to reach 9.8 MPa. Hydrogenation reaction was performed at this pressure for 3.5 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction liquid and catalyst washing liquid separated by decantation were combined, and the conversion rate of glutaric acid and the yield of 1,5-pentanediol were determined by analysis by liquid chromatography and gas chromatography. As a result, the conversion rate of glutaric acid was 100%, and the yield of 1,5-pentanediol was 92%.
[0039]
[Example 4]
An autoclave with a capacity of 50 ml was charged with 5 g of water, 2.10 g of adipic acid and 0.30 g of the catalyst prepared in Example 1, and the atmosphere in the autoclave was replaced with nitrogen at room temperature. The temperature was raised to ° C. When the temperature reached 240 ° C., hydrogen was injected to reach 9.8 MPa. Hydrogenation reaction was performed at this pressure for 3.5 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction solution separated by decantation and the catalyst washing solution were combined and the conversion of adipic acid and the yield of 1,6-hexanediol were determined by analysis by liquid chromatography and gas chromatography. As a result, the conversion of adipic acid was 100%, and the yield of 1,6-hexanediol was 90%.
[0040]
【The invention's effect】
In the present invention, alcohols can be produced in high yield by direct hydrogenation regardless of the type of carboxylic acid. In particular, from a mixture of dicarboxylic acids including succinic acid, glutaric acid and adipic acid, which are by-products in the production of adipic acid by nitric acid oxidation of cyclohexanenone and / or cyclohexanol, 1,4-butanediol, 1.5 -A mixture of pentanediol and 1,6-hexanediol can be produced in high yield.

Claims (8)

ルテニウム、錫および白金を活性炭に担持した触媒であり、該活性炭が塩化亜鉛賦活炭であることを特徴とするカルボン酸水添用触媒。A catalyst for hydrogenation of carboxylic acid, which is a catalyst in which ruthenium, tin and platinum are supported on activated carbon, and the activated carbon is zinc chloride activated charcoal. ルテニウム、錫および白金を活性炭に担持した触媒であって該活性炭の細孔半径が10Å未満の細孔容積が0.03cm3/g以上0.8cm3/g以下、細孔半径が10Å以上100Å以下の細孔容積が0.5cm3/g以上2.0cm3/g以下であり、全細孔容積が1.2cm3/g以上3.0cm3/g以下、比表面積が800m2/g以上2,000m2/g未満であることを特徴とするカルボン酸水添用触媒。Ruthenium, the pore volume of the tin and platinum a catalyst supported on activated carbon under 10Å pore radius of the activated carbon 0.03 cm 3 / g or more 0.8 cm 3 / g or less, a pore radius of 10Å or 100Å The following pore volume is 0.5 cm 3 / g or more and 2.0 cm 3 / g or less, the total pore volume is 1.2 cm 3 / g or more and 3.0 cm 3 / g or less, and the specific surface area is 800 m 2 / g. The catalyst for hydrogenation of carboxylic acid characterized by being less than 2,000 m 2 / g. カルボン酸および/又はカルボン酸無水物を触媒と水の存在下、水素と反応させて水添し、アルコールを製造する方法において、該触媒として請求項1又は2記載のカルボン酸水添用触媒を用いることを特徴とするアルコールの製造方法。In the method of hydrogenating a carboxylic acid and / or a carboxylic acid anhydride by reacting with hydrogen in the presence of a catalyst and water to produce an alcohol, the catalyst for hydrogenating a carboxylic acid according to claim 1 or 2 is used as the catalyst. A method for producing alcohol, characterized in that it is used. カルボン酸が一般式(1)で示されるジカルボン酸から選ばれる少なくとも1種のジカルボン酸であり、カルボン酸無水物が一般式(2)で示される少なくとも1種のジカルボン酸無水物であることを特徴とする請求項3記載のアルコールの製造方法。
Figure 0004472109
(式中、R1およびR2はそれぞれ独立に炭素数が2〜20である二価の炭化水素基を表す。)
The carboxylic acid is at least one dicarboxylic acid selected from dicarboxylic acids represented by the general formula (1), and the carboxylic acid anhydride is at least one dicarboxylic anhydride represented by the general formula (2). 4. The method for producing alcohol according to claim 3, wherein
Figure 0004472109
(In the formula, R 1 and R 2 each independently represents a divalent hydrocarbon group having 2 to 20 carbon atoms.)
カルボン酸がコハク酸、グルタル酸、アジピン酸、シクロヘキサンジカルボン酸、マレイン酸、フマル酸およびテレフタル酸から選ばれる少なくとも1種を含むカルボン酸であり、カルボン酸無水物が無水コハク酸および無水マレイン酸から選ばれる少なくとも1種を含むカルボン酸無水物である請求項3又は4記載のアルコールの製造方法。The carboxylic acid is a carboxylic acid containing at least one selected from succinic acid, glutaric acid, adipic acid, cyclohexanedicarboxylic acid, maleic acid, fumaric acid and terephthalic acid, and the carboxylic acid anhydride is selected from succinic anhydride and maleic anhydride. The method for producing an alcohol according to claim 3 or 4, which is a carboxylic acid anhydride containing at least one selected from the group. カルボン酸および/又はカルボン酸無水物がコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする請求項5に記載のアルコールの製造方法。The method for producing an alcohol according to claim 5, wherein the carboxylic acid and / or carboxylic anhydride is a mixture of carboxylic acids including succinic acid, glutaric acid, and adipic acid. カルボン酸および/又はカルボン酸無水物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする請求項6記載のアルコールの製造方法。The carboxylic acid and / or carboxylic anhydride is a mixture of carboxylic acids including succinic acid, glutaric acid, and adipic acid recovered from an oxidation reaction solution of cyclohexanone and / or cyclohexanol. A method for producing alcohol. 温度100℃〜300℃、水素圧1MPa〜25MPaの条件下でカルボン酸および/又はカルボン酸無水物を水素と反応させることを特徴とする請求項3〜7のいずれかに記載のアルコールの製造方法。The method for producing an alcohol according to any one of claims 3 to 7, wherein a carboxylic acid and / or a carboxylic acid anhydride is reacted with hydrogen under conditions of a temperature of 100 ° C to 300 ° C and a hydrogen pressure of 1 MPa to 25 MPa. .
JP2000130777A 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst Expired - Fee Related JP4472109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130777A JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26726799 1999-09-21
JP11-267267 1999-09-21
JP2000130777A JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2001157841A JP2001157841A (en) 2001-06-12
JP4472109B2 true JP4472109B2 (en) 2010-06-02

Family

ID=26547788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130777A Expired - Fee Related JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP4472109B2 (en)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI228105B (en) 2002-03-11 2005-02-21 Nippon Catalytic Chem Ind Method for treating waste water
WO2004041421A2 (en) * 2002-11-01 2004-05-21 Cargill, Incorporated Process for preparation of 1,3-propanediol
JP4381254B2 (en) * 2004-08-26 2009-12-09 花王株式会社 Method for producing catechin-containing composition
JP2006255667A (en) 2005-03-18 2006-09-28 Toshiba Corp Carbon dioxide absorbent and method for preparing it
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US7608744B1 (en) 2008-07-31 2009-10-27 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US7820852B2 (en) 2008-07-31 2010-10-26 Celanese International Corporation Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US7820853B2 (en) 2008-12-31 2010-10-26 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
TW201136660A (en) 2010-02-02 2011-11-01 Celanese Int Corp Catalyst supports having crystalline support modifiers
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
WO2012148509A1 (en) 2011-04-26 2012-11-01 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
AU2011274524A1 (en) 2010-07-09 2012-11-15 Celanese International Corporation Finishing reactor for purifying ethanol
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
TW201302684A (en) 2011-04-26 2013-01-16 Celanese Int Corp Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
CN104039446B (en) 2012-01-06 2016-12-28 国际人造丝公司 Hydrogenation catalyst
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol
WO2014175098A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
WO2014175097A1 (en) 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, method for producing same, and electrode catalyst layer using said catalyst
US9663426B2 (en) * 2014-04-07 2017-05-30 Lotte Chemical Corporation Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
JP6339220B2 (en) 2014-10-29 2018-06-06 日産自動車株式会社 ELECTRODE CATALYST LAYER FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
CN110382452B (en) 2017-03-08 2022-11-15 三菱化学株式会社 Catalyst for hydrogenation of carbonyl compound and method for producing alcohol
CN112469683A (en) 2018-07-23 2021-03-09 三菱化学株式会社 Method for producing alcohol and catalyst

Also Published As

Publication number Publication date
JP2001157841A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
US6495730B1 (en) Catalysts for hydrogenation of carboxylic acid
KR100546986B1 (en) Process for the preparation of diol mixtures
JPH10306047A (en) Production of 1,6-hexanediol
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
KR102223388B1 (en) Preparation method of ruthenium-platinum-tin catalyst for hydrogenation of cyclohexane dicarboxylic acid (CHDA) and method for producing cyclohexane dimethanol (CHDM) using said catalyst
JP4282832B2 (en) Process for producing diols
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP4282831B2 (en) Production method of diols
JP4640748B2 (en) Catalyst for direct hydrogenation of carboxylic acid
JP3726504B2 (en) Catalyst regeneration method and hydrogenation method using regenerated catalyst
JP4282153B2 (en) Method for producing diol mixture
JP4282830B2 (en) Method for producing diols
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP3873389B2 (en) Method for producing 1,6-hexanediol
JP4282154B2 (en) Method for producing diol mixture
JP2001097904A (en) Method for producing 1,6-hexanediol
JP3132532B2 (en) Lactone production method
JP3921788B2 (en) Method for producing 1,6-hexanediol
JP2004137180A (en) Method for producing carboxylate
JP3704758B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP4559742B2 (en) Process for producing α, β-unsaturated carboxylic acid
JP4635315B2 (en) Method for producing phenyl ester and catalyst
JPS5849536B2 (en) Method for producing alkenyl ester of polycarboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees