JP2001157841A - Catalyst for hydrogenating carboxylic acid - Google Patents

Catalyst for hydrogenating carboxylic acid

Info

Publication number
JP2001157841A
JP2001157841A JP2000130777A JP2000130777A JP2001157841A JP 2001157841 A JP2001157841 A JP 2001157841A JP 2000130777 A JP2000130777 A JP 2000130777A JP 2000130777 A JP2000130777 A JP 2000130777A JP 2001157841 A JP2001157841 A JP 2001157841A
Authority
JP
Japan
Prior art keywords
acid
carboxylic acid
catalyst
method
carboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000130777A
Other languages
Japanese (ja)
Other versions
JP4472109B2 (en
Inventor
Mitsuo Konishi
Eizaburo Ueno
英三郎 上野
満月男 小西
Original Assignee
Asahi Kasei Corp
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP26726799 priority Critical
Priority to JP11-267267 priority
Application filed by Asahi Kasei Corp, 旭化成株式会社 filed Critical Asahi Kasei Corp
Priority to JP2000130777A priority patent/JP4472109B2/en
Publication of JP2001157841A publication Critical patent/JP2001157841A/en
Application granted granted Critical
Publication of JP4472109B2 publication Critical patent/JP4472109B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals
    • Y02P20/52Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of obtaining an alcohol group in high yield notwithstanding type of carboxylic acid, even if any type of carboxylic acid is used, and further to provide a method for manufacturing an alcohol group by direct hydrogenation using the catalyst. SOLUTION: The catalyst having ruthenium and tin supported on an activated carbon wherein the catalyst is a zinc chloride-activated carbon, and the volume of the microporosity of which the radius of the microporosity is not more than 10 Å is from 0.03 cm3/g to 0.8 cm3/g, the volume of the microporosity of which the radius of the microporosity is 10A-100 Å is from 0.5 cm3/g to 2.0 cm3/g, total volume of the microporosity is from 1.2 cm3/g to 3.0 cm3/g and the specific surface area is 800 m2/g to not more than 2000 m2, and a method for manufacturing an alcohol group by hydrogenating carboxylic acid in the presence of water using said catalyst are provided.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術的分野】本発明は、水存在下、水素によりカルボン酸類を原料としてエステル化工程を経ることなく直接水添してアルコール類を製造する際に使用する触媒および直接水添してアルコール類を製造する方法に関するものである。 The present invention TECHNICAL FIELD OF THE INVENTION, the presence of water, a carboxylic acid directly hydrogenated without going through an esterification process and catalyst and directly hydrogenated for use in preparing the alcohol as a raw material by hydrogenation to a method for producing an alcohol Te.

【0002】 [0002]

【従来の技術】アルコール類は、種々の産業分野で広範に使用されている有用な物質である。 BACKGROUND ART alcohols are useful substance that is widely used in various industrial fields. 特にジオール類はポリエステル樹脂、ウレタンフォームやウレタン塗料、 Especially diols polyester resin, urethane foam or urethane paint,
接着剤の原料として有用である。 It is useful as a raw material for adhesives. このようなジオールの1種として例えば1,4−ブタンジオールの製造法については、コハク酸あるいはマレイン酸を水添して製造する方法が数多く報告されている。 Such one as for example 1,4-butanediol preparation of diols, a method of manufacturing by hydrogenating succinic acid or maleic acid have been reported. 最も良く知られている方法として銅系の触媒を用いてコハク酸あるいはマレイン酸のエステルを高温、高圧で水添する方法がある。 The most well-known hot succinic acid or ester of maleic acid using a copper-based catalyst as methods are a method of hydrogenation at high pressure. しかしながら、この方法では、カルボン酸を直接水添することができず、カルボン酸を一旦エステルに転換後水添しなければならず、製造工程が長くなるという問題があった。 However, this method can not be directly hydrogenated carboxylic acid, it must be converted after the hydrogenation of carboxylic acid once ester, there is a problem that the manufacturing process becomes long.

【0003】一方、コハク酸あるいはマレイン酸を直接水添して1,4−ブタンジオールを製造する方法もいくつか提案されている。 [0003] On the other hand, it has been proposed several methods for producing a directly hydrogenated to 1,4-butanediol and succinic acid or maleic acid. その触媒系のみを列記するとルテニウム−鉄酸化物からなる触媒(米国特許第4,82 Ruthenium When listed only the catalytic system - the catalyst consisting of iron oxide (U.S. Pat. No. 4,82
7,001号明細書)、ルテニウム−錫をBET表面積2000m 2 /g以上の多孔質炭素に担持した触媒(特開平5−246915号公報)、ルテニウム及び錫をチタン及び/又はアルミナで修飾したシリカに担持した触媒(特開平6−116182号公報)、ルテニウム及び錫、並びにアルカリ金属化合物またはアルカリ土類金属を担体に担持した触媒(特開平6−239778号公報)、ルテニウムと白金及びロジウムから選ばれた少なくとも1種と錫とを担体に担持した触媒(特開平7−1 7,001 Pat), ruthenium - tin BET surface area 2000 m 2 / g or more porous carbon-supported catalyst (JP-A-5-246915), silica ruthenium and tin modified with titanium and / or alumina supported catalyst (JP-a-6-116182), the selected from ruthenium and tin, and alkali metal compounds or catalysts alkaline earth metal supported on a carrier (JP-6-239778 discloses), ruthenium platinum and rhodium the catalyst of at least one and a tin supported on a carrier which is (JP-a-7-1
65644号公報)、ルテニウムと錫を担体に担持してなる触媒を用い、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う方法(特開平9−12492号公報)、ルテニウム−錫−白金を担体に担持した触媒(特開平9−59190号公報)、炭素数5以下のカルボニル化合物が共存した担持成分を含有する溶液を活性炭に含浸して調製したルテニウム−錫−白金を活性炭に担持した触媒(特開平10− 65644 JP), ruthenium and tin using a catalyst comprising supported on a carrier, the excess hydrogen is circulated in the reaction system, a method of performing the reaction while removing the product coming entrained out of the system (JP-A-9 -12492 discloses), ruthenium - tin - platinum was supported on a support catalyst (JP-a-9-59190), and a solution containing the carrier component 5 or less carbonyl compounds carbon coexist impregnated activated carbon prepared ruthenium - tin - platinum supported on activated carbon catalyst (JP-a-10-
15388号公報)、あらかじめ硝酸と接触した活性炭を使用することにより金属の担持状態を規定したルテニウム−錫−白金を活性炭に担持した触媒(特開平10− 15388 JP), pre-ruthenium was defined supported state of the metal by the use of activated carbon in contact with nitric acid - tin - platinum supported on activated carbon catalyst (JP-A-10-
71332号公報)が提案されているが、いずれの触媒を用いる方法においても、水添生成物である1.4−ブタンジオール、テトラヒドロフラン、γ−ブチロラクトンの選択率が十分でなく、1,4−ブタンジオールの収率は不満足なものであった。 71332 JP) have been proposed, in a method of using any catalyst, it is hydrogenated product 1,4-butanediol, tetrahydrofuran, .gamma.-butyrolactone selectivity is not sufficient, 1,4 the yield of butanediol was unsatisfactory.

【0004】また特開平7−82190号公報にはパラジウムとレニウム化合物からなる触媒を用い、三級アルコールを溶媒として水素化を行う方法が提案されているが、反応速度が未だ不十分であった。 Further using a catalyst composed of the Patent in 7-82190 discloses palladium and rhenium compounds, a method of performing hydrogenation of tertiary alcohol as a solvent is proposed, the reaction rate was still insufficient . 上述したように従来技術においては活性炭を担体とした触媒を用いる直接水添の例が開示されており、活性炭の比表面積や前処理方法についても幾つかの検討がなされている。 In the prior art as described above techniques are examples of direct hydrogenation is disclosed using a catalyst in which the activated carbon as a carrier, several studies have been made also for the specific surface area and the pretreatment method of the activated carbon.

【0005】一般的な活性炭の製造方法として賦活過程という原料炭素質の熱分解工程を経るが、その賦活方法として各種の酸化性ガス(水蒸気、二酸化炭素、空気など)を用いるガス賦活法と、脱水性の塩類及び酸(塩化カルシウム、塩化マグネシウム、塩化亜鉛、リン酸、硫酸、苛性ソーダ、苛性カリなどのアルカリ類など)を用いる薬品賦活法が知られている。 [0005] Through the general activated carbon pyrolysis step of the raw carbonaceous called activation process as a manufacturing method, but a gas activation method using a variety of oxidizing gas as the activation method (water vapor, carbon dioxide, air, etc.), dehydrating salts and acid chemical activating method using (calcium chloride, magnesium chloride, zinc chloride, phosphoric acid, sulfuric acid, caustic soda, alkaline such as potassium hydroxide) is known. 現在、ガス賦活法が米国をはじめ世界的に広く、かつ最も多く採用されており、活性炭製造の主流を占めており、薬品賦活法は現在、特殊用途向けにのみ製造されている。 Currently, including the gas activation method is the United States in the world wide, and are most often employed, and the mainstream of the activated carbon manufacturing, chemical activation method is currently being manufactured only in special applications.

【0006】このような賦活法の違いにより、活性炭の物性として細孔分布の異なる活性炭が得られる。 [0006] due to the difference of such activation method, activated carbon with different pore distribution as the physical properties of the activated carbon can be obtained. 例えば塩化亜鉛賦活粉末炭は、トランジショナル孔と呼ばれる細孔半径が10〜100Åの細孔が発達し、その細孔容積が特異的に大きい。 For example zinc activated charcoal powder chloride, pore radius called transitional hole develops pores of 10-100, the pore volume is specifically large. このような活性炭をジカルボン酸の直接水添触媒の担体に用いることは上述の従来技術には何も記載されていない。 Such activated carbon be used for the carrier of the direct hydrogenation catalyst of dicarboxylic acids nothing is described in the aforementioned prior art. また、米国特許第5,69 In addition, US Patent No. 5,69
8,749号明細書にはパラジウム−銀−レニウムをあらかじめ硝酸酸化処理した活性炭上に担持した触媒を用いてマレイン酸から1,4−ブタンジオールが比較的高収率で得られることは記載されているが、グルタル酸あるいはアジピン酸の水素化還元反応の成績については何も記載されていない。 The 8,749 Pat palladium - silver - that rhenium advance nitric oxide treated butanediol from maleic acid by using a supported catalyst on activated carbon is obtained in relatively high yield is described and which is not described anything about results of the hydrogenation reduction reaction of glutaric acid or adipic acid.

【0007】特開平11−60523号公報にはあらかじめ酸処理した活性炭にルテニウム−錫−白金を担持した触媒を用いてアジピン酸から1,6−ヘキサンジオールが高収率で得られることが記載されているが、前記特開平10−71332号公報において述べたように、この触媒を用いて、コハク酸あるいはマレイン酸から1, It describes that 1,6-hexanediol platinum from adipic acid using a supported catalyst is obtained in a high yield - [0007] Ruthenium on activated carbon in advance acid treatment in JP-A-11-60523 - Tin and that although, as described in the JP-a 10-71332 and JP-using this catalyst, succinic acid or maleic acid 1,
4−ブタンジオールを高収率で得ることは困難である。 To give 4-butanediol in a high yield is difficult.

【0008】 [0008]

【発明が解決しようとする課題】本発明は、カルボン酸の種類に関係なく、いずれのカルボン酸を原料に用いても直接水添によってアルコール類を高収率で得ることができる触媒、およびその触媒を用いたカルボン酸の直接水添によるアルコール類の製造方法を提供することを目的とする。 [SUMMARY OF THE INVENTION The present invention, the catalyst can be regardless of the type of carboxylic acid to obtain the alcohol in high yield by direct hydrogenation using any of the carboxylic acid as a raw material, and and to provide a method for producing alcohols by the direct hydrogenation of carboxylic acids using a catalyst. 特にコハク酸、グルタル酸、アジピン酸のいずれを原料に用いてもジオール類を高収率で得ることができる触媒、およびその触媒を用いた直接水添によるジオール類の製造方法を提供することを目的とする。 In particular succinic acid, glutaric acid, catalyst either adipic acid can be obtained in high yield even diols used as a raw material, and to provide a method for producing a diol by direct hydrogenation using the catalyst for the purpose.

【0009】 [0009]

【課題を解決するための手段】上記課題を解決すべく本発明者らが鋭意検討した結果、驚くべきことに活性炭の細孔としてトランジショナル孔と呼ばれる、細孔半径が10Å以上100Å以下の細孔容積が大きい活性炭を担体として用い、ルテニウム、錫および白金を担持してなる触媒がカルボン酸の種類に関係なく、いずれのカルボン酸を原料に用いてもアルコール類を高収率で得ることができる触媒であることを見出し、本発明を完成したものである。 [Summary of the results of the present inventors to solve the above problems have been studied intensively, surprisingly called transitional pores as the pores of the activated carbon in the following fine 100Å pore radius 10Å or more with pore volume greater activated carbon as a carrier, ruthenium, the catalyst obtained by carrying tin and platinum regardless of the type of carboxylic acid, to obtain any of the carboxylic acid in high yields alcohol be used as a raw material It found to be catalysts which can be, and completed the present invention.

【0010】すなわち本発明は、[1] ルテニウム、 [0010] That is, the present invention is, [1] ruthenium,
錫および白金を活性炭に担持した触媒であり、該活性炭が塩化亜鉛賦活炭であることを特徴とするカルボン酸水添用触媒、[2] ルテニウム、錫および白金を活性炭に担持した触媒であって該活性炭の細孔半径が10Å未満の細孔容積が0.03cm 3 /g以上0.8cm 3 /g Tin and platinum is a catalyst carried on active carbon, the activated carbon is acid water 添用 catalyst which is a zinc chloride-activated charcoal, [2] ruthenium, tin and platinum a catalyst supported on active carbon pore radius of the activated carbon pore volume of less than 10 Å 0.03 cm 3 / g or more 0.8 cm 3 / g
以下、細孔半径が10Å以上100Å以下の細孔容積が0.5cm 3 /g以上2.0cm 3 /g以下であり、全細孔容積が1.2cm 3 /g以上3.0cm 3 /g以下、比表面積が800m 2 /g以上2,000m 2 /g未満であることを特徴とするカルボン酸水添用触媒、[3] カルボン酸および/又はカルボン酸無水物を触媒と水の存在下、水素と反応させて水添し、アルコールを製造する方法において、該触媒として[1]又は[2]記載のカルボン酸水添用触媒を用いることを特徴とするアルコールの製造方法、[4] カルボン酸が一般式(1)で示されるジカルボン酸から選ばれる少なくとも1種のジカルボン酸であり、カルボン酸無水物が一般式(2)で示される少なくとも1種のジカルボン酸無水物であることを特徴とする Hereinafter, 100 Å or less of pore volume higher pore radius 10Å is less 0.5 cm 3 / g or more 2.0 cm 3 / g, a total pore volume of 1.2 cm 3 / g or more 3.0 cm 3 / g hereinafter, a carboxylic acid water添用catalyst, wherein the specific surface area is less than 800 m 2 / g or more 2,000m 2 / g, [3] the presence of a catalyst and water carboxylic acid and / or carboxylic acid anhydride is reacted with hydrogen and hydrogenated, in the method for producing an alcohol, a method of manufacturing an alcohol, which comprises using the [1] or [2], wherein the carboxylic acid solution 添用 catalyst as the catalyst, [4] at least one dicarboxylic acid carboxylic acid is selected from dicarboxylic acids represented by the general formula (1), the carboxylic acid anhydride is at least one dicarboxylic acid anhydride represented by the general formula (2) and wherein 3]記載のアルコールの製造方法、 3] The method of producing alcohol according,

【0011】 [0011]

【化2】 ## STR2 ##

【0012】(式中、R 1およびR 2はそれぞれ独立に炭素数が2〜20である二価の炭化水素基を表す。) [5] カルボン酸がコハク酸、グルタル酸、アジピン酸、シクロヘキサンジカルボン酸、マレイン酸、フマル酸およびテレフタル酸から選ばれる少なくとも1種を含むカルボン酸であり、カルボン酸無水物が無水コハク酸および無水マレイン酸から選ばれる少なくとも1種を含むカルボン酸無水物である[3]又は[4]記載のアルコールの製造方法、[6] カルボン酸および/又はカルボン酸無水物がコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする[5] [0012] (wherein, R 1 and the number of carbon atoms R 2 each independently represent a divalent hydrocarbon radical from 2 to 20.) [5] carboxylic acid is succinic acid, glutaric acid, adipic acid, cyclohexane dicarboxylic acid, maleic acid, a carboxylic acid containing at least one selected from fumaric acid and terephthalic acid, a carboxylic acid anhydride comprising at least one carboxylic anhydride is selected from succinic anhydride and maleic anhydride [3] or [4] the method of producing alcohol according [6] carboxylic acids and / or carboxylic acid anhydride succinic acid, glutaric acid, characterized in that it is a mixture of a carboxylic acid containing adipic acid [5 ]
に記載のアルコールの製造方法、[7] カルボン酸および/又はカルボン酸無水物がシクロヘキサノン及び/ The method of producing alcohol according to [7] carboxylic acids and / or carboxylic acid anhydride cyclohexanone and /
又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする[6]記載のアルコールの製造方法、[8] 温度100℃〜300℃、水素圧1 Or cyclohexanol succinic acid recovered from the oxidation reaction mixture, glutaric acid, a method of producing alcohol [6], wherein the a mixture of a carboxylic acid containing adipic acid, [8] Temperature 100 ° C. to 300 ° C., a hydrogen pressure of 1
MPa〜25MPaの条件下でカルボン酸および/又はカルボン酸無水物を水素と反応させることを特徴とする[3]〜[7]のいずれかに記載のアルコールの製造方法、である。 The carboxylic acid and / or carboxylic acid anhydride and wherein the reaction with hydrogen under the conditions of MPa~25MPa [3] The method of producing an alcohol according to any one of to [7], which is.

【0013】以下、本発明を詳細に説明する。 [0013] The present invention will now be described in detail. 本発明のカルボン酸水添用触媒は、特定の製造方法により製造された活性炭にルテニウムと錫および白金を担持させて調製したものである。 Carboxylic acid solution 添用 catalyst of the present invention is prepared by supporting the produced activated carbon ruthenium and tin and platinum by a specific manufacturing process. 本発明において用いられる活性炭は、塩化亜鉛賦活炭である。 Activated carbon used in the present invention is a zinc chloride-activated charcoal. 塩化亜鉛賦活炭の製造方法は公知の方法を用いればよく、その詳細は例えば「活性炭読本第2版」(柳井弘編著、石崎信男著、日刊工業新聞社)等に記載されているように出発原料として、のこくず、低灰分の泥炭、麦わら、あし、堅果およびカラなどを使用し、塩化亜鉛の濃厚溶液を含浸させた後に焼成する工程を含む製造方法によって製造された活性炭である。 Method for producing a zinc chloride-activated carbon may be a known method, the details of which, for example, "activated carbon readings Second Edition" (Hiroshi Yanai ed, Author Nobuo Ishizaki, Nikkan Kogyo Shimbun) starting as described in such as raw materials, sawdust, peat low ash, using straw, reeds, etc. nuts and color, activated carbon manufactured by the method comprising the step of baking after impregnating a concentrated solution of zinc chloride. また、この活性炭は、不純物を除去するためにルテニウム、錫および白金を担持する前に熱水等で処理してもよい。 Further, the activated carbon may be treated with hot water or the like before carrying ruthenium, tin and platinum to remove impurities.

【0014】この塩化亜鉛賦活炭は、トラジショナル孔と呼ばれる、細孔半径が10Å以上100Å以下の細孔が発達し、その細孔容積が特異的に大きいという特徴をもつ。 [0014] The zinc chloride activated charcoal, called Torajishonaru hole, pore radius developed is 100Å or less pores than 10 Å, its pore volume has a characteristic that specifically large. この塩化亜鉛賦活炭における細孔半径と細孔容積の関係は、窒素ガス吸着法によって細孔容積、BET比表面積を測定した場合に、細孔半径が10Å未満の細孔容積が0.03cm 3 /g以上0.8cm 3 /g以下であり、細孔半径が10Å以上100Å以下の細孔容積が0.5cm 3 /g以上2.0cm 3 /g以下であり、全細孔容積が1.2cm 3 /g以上3.0cm 3 /g以下であり、比表面積が800m 2 /g以上2000m 2 /g未満である。 Relationship pore radius and the pore volume in the zinc chloride activated carbon, the pore volume by nitrogen gas adsorption method, when the BET specific surface area, pore volume less than the pore radius 10Å is 0.03 cm 3 / g or more 0.8cm and a 3 / g or less, 100 Å or less of pore volume higher pore radius 10Å is less 0.5 cm 3 / g or more 2.0 cm 3 / g, total pore volume 1. 2 cm 3 / g or more 3.0cm and a 3 / g or less and a specific surface area of less than 800 m 2 / g or more 2000 m 2 / g. さらに好ましくは細孔半径10Å未満の細孔容積が0.04cm 3 /g以上0.7cm 3 /g以下であり、細孔半径10Å以上100Å以下の細孔容積が0. More preferably the pore volume less than the pore radius 10Å is less 0.04 cm 3 / g or more 0.7cm 3 / g, 100Å volume of pores over pore radius 10Å is 0.
7cm 3 /g以上1.8cm 3 /g以下であり、全細孔容積が1.4cm 3 /g以上2.7cm 3 /g以下であり、 7cm 3 / g or more 1.8cm is a 3 / g or less, the total pore volume is equal to or less than 1.4cm 3 / g or more 2.7cm 3 / g,
比表面積が1000cm 2 /g以上1800m 2 /g以下である。 The specific surface area is less than 1000 cm 2 / g or more 1800 m 2 / g.

【0015】一般的な水蒸気賦活炭の細孔容積は、トラジショナル孔と呼ばれる、細孔半径が10Å以上100 The pore volume of a typical steam activation charcoal, called Torajishonaru hole, pore radius 10Å or 100
Å以下の細孔容積が0.02cm 3 /g以上0.4cm 3 Å below the pore volume of 0.02cm 3 / g or more 0.4cm 3
/g以下である。 / G is less than or equal to. 本発明の目的とする、カルボン酸の種類に関係なくアルコール類を高収率で得る触媒とするには、トラジショナル孔の細孔容積が大きい活性炭を担体に用いることが必要である。 An object of the present invention, in a catalyst in high yield alcohols regardless of the type of carboxylic acid, it is necessary to use activated carbon pore volume of Torajishonaru hole is large carrier. 即ち、細孔半径が10Å以上100Å以下の細孔容積が0.5cm 3 /g以上2. In other words, volume of pores pore radius 10Å or 100Å is 0.5 cm 3 / g or more 2.
0cm 3 /g以下の活性炭を用いることが必要である。 It is necessary to use the 0 cm 3 / g or less of active carbon.

【0016】一方、触媒の担体としてはその構造が維持される強度も必要であることから、担体として用いる活性炭は、上記細孔半径と細孔容積との関係を有することが必要である。 [0016] On the other hand, since as the carrier of the catalyst is also required intensity its structure is maintained, the activated carbon used as the support, it is necessary to have a relationship between the pore radius and pore volume. 即ち、細孔半径が10Å未満の細孔容積が細孔半径が10Å未満の細孔容積が0.03cm 3 That is, the pore volume of less than the pore radius 10Å is pore radius pore volume of less than 10Å 0.03 cm 3 /
g以上0.8cm 3 /g以下であり、全細孔容積が1. g or more 0.8cm is a 3 / g or less, the total pore volume is 1.
2cm 3 /g以上3.0cm 3 /g以下であり、比表面積が800m 2 /g以上2000m 2 /g未満であることが必要である。 2 cm 3 / g or more 3.0cm and a 3 / g or less, a specific surface area should be less than 800 m 2 / g or more 2000 m 2 / g.

【0017】本発明者らが検討した結果では、測定装置によって窒素吸着法による細孔容積、BET比表面積の測定結果に差が生じることがある。 [0017] In result of the present inventors have studied is sometimes pore volume by nitrogen adsorption method by the measurement apparatus, the difference in the measurement results of the BET specific surface area occurs. 本発明者らは、島津マイクロメリテックス ASAP−2400((株)島津製作所製)を用いて測定した。 The present inventors have determined using a Shimadzu Micromeritics Tex ASAP-2400 ((Ltd.) manufactured by Shimadzu Corporation). 細孔容積を計算するためのデータの処理は、BJH法を用いた。 Processing of the data for calculating the pore volume was used BJH method. なお、本装置によるデータ処理結果として細孔半径5Åから1500 Incidentally, the pore radius 5Å as a data processing result by the device 1500
Åのデータが得られるが、一般的に知られているように窒素吸着法によって測定される細孔半径は、約8Åから500Å程度であり、本発明で言う細孔半径10Å未満とは実質上約8Åから10Å未満の細孔半径を言うものであり、全細孔容積とは、実質上約8Åから500Å程度の細孔半径の細孔容積を言うものである。 Although Å data is obtained, the pore radius as measured by the nitrogen adsorption method, as is generally known, about a 500Å order of 8 Å, substantially the less pore radius 10Å in the present invention about is intended to refer to a pore radius of less than 10Å from 8 Å, the total pore volume, is intended to refer to a pore radius of the pore volume of about 500Å from substantially about 8 Å.

【0018】このような細孔構造を有する活性炭をジカルボン酸の直接水添の触媒担体に用いることにより特に有効な効果を発揮する原因については明らかではないが、水蒸気賦活炭等のガス賦活炭に比較してトランジショナル孔と呼ばれる細孔半径が10Å以上100Å以下の細孔容量が大きいために、触媒細孔中でのカルボン酸、水素の拡散がスムーズに進み、特にジカルボン酸を原料とする場合には、ジカルボン酸および中間体のヒドロキシカルボン酸の拡散がスムーズに進み、ジカルボン酸からヒドロキシカルボン酸、さらにジオールへの水添が効率よく進むのではないかと推測している。 [0018] is not clear about the causes which exhibits particularly effective effect by using activated carbon having such a pore structure in the catalyst support of the direct hydrogenation of dicarboxylic acids, the gas activation coal such as steam-activated coal compared to the pore radius called transitional pores large pore volume of 10Å or 100Å or less, if the carboxylic acid in the catalyst pores, the diffusion of hydrogen proceeds smoothly, especially the dicarboxylic acid as a raw material the diffusion of hydroxycarboxylic acids of dicarboxylic acids and intermediates proceeds smoothly, hydroxycarboxylic acids from dicarboxylic acids, more hydrogenation of the diol have speculated that it would be proceeds efficiently.

【0019】活性炭にルテニウムと錫および白金を担持する方法としては浸せき法、イオン交換法、含浸法など担持触媒の調製に一般的に用いられている任意の方法を用いることができる。 As a method for carrying ruthenium and tin and platinum on activated carbon can be used dipping method, ion exchange method, any method commonly used in the preparation of a supported catalyst such as impregnation. 浸せき法によるときは担持する金属成分の原料化合物を水などの溶媒に溶解して金属化合物の溶液を調製し、この溶液に活性炭を浸せきして担体に担持させる。 The starting compound of the metal components to be supported when by immersion method is dissolved in a solvent such as water to prepare a solution of a metal compound, and immersing the active carbon is supported on a carrier in the solution. 担体に各金属成分を担持させる順序については特に制限はなく、全ての金属を同時に担持しても、各成分を個別に担持してもよい。 Carriers No particular limitation is imposed on the order of supporting the respective metal components, be supported all metals simultaneously, it may carry the components individually.

【0020】触媒調製に用いる金属成分の原料化合物としては、触媒の調製法にもよるが通常は硝酸塩、硫酸塩、塩酸塩などの鉱酸塩、酢酸塩などの有機酸塩、水酸化物、酸化物、有機金属化合物などを用いることができる。 [0020] As the starting compound of the metal component used in the catalyst preparation, depending on the preparation method of the catalyst is usually nitrates, sulfates, mineral, such as hydrochloric acid salts, organic acid salts such as acetate, hydroxide, oxide, or the like can be used organic metal compound. その中でも水溶性の原料化合物が好ましい。 Water-soluble starting compounds among them are preferred. 具体的にはルテニウムの原料化合物としては、塩化ルテニウム、硝酸ルテニウム、ルテニウムアセチルアセトナート、ルテニウムカルボニル等であり、錫の原料としては塩化錫(II)、錫酸ナトリウム、酢酸錫(II)等であり、白金の原料としては、塩化白金酸、硝酸白金、白金アセチルアセトナート、塩化白金、臭化白金、シアン化白金等が好ましく用いられる。 As is specifically starting compounds of ruthenium, ruthenium chloride, ruthenium nitrate, ruthenium acetyl acetonate, ruthenium carbonyl, etc., as the raw material for tin and tin chloride (II), sodium stannate, with tin (II) acetate, etc. There, as a platinum material, chloroplatinic acid, platinum nitrate, platinum acetyl acetonate, platinum chloride, platinum bromide, cyanide platinum are preferably used.

【0021】金属成分を担持した炭素質担体は乾燥し、 The carbonaceous carrier carrying the metal component is dried,
次いで所望により焼成した後に還元して触媒とする。 Then the catalyst was reduced after firing desired. 乾燥は通常100℃未満の温度で減圧下に保持するか、又は窒素、空気などの乾燥気体を流通させて行う。 Drying at temperatures generally below 100 ° C. or held under vacuum, or nitrogen, it is passed through a dry gas such as air performed. また焼成は通常100〜600℃の温度で1時間から24時間、窒素、空気などを流通させながら行う。 The calcination is carried out usually 1 to 24 hours at a temperature of 100 to 600 ° C., nitrogen, while passing air or the like. 還元は液相還元又は気相還元のいずれで行ってもよい。 The reduction may be carried out in any of liquid phase reduction or vapor phase reduction. 気相還元に用いる還元ガスとしては、水素、ヒドラジン蒸気、ホルマリン、一酸化炭素等を用いることができる。 The reducing gas used in gas-phase reduction can be used hydrogen, hydrazine vapor, formalin, carbon monoxide and the like. 温度としては、150℃〜500℃の温度が好ましい。 The temperature, the preferred temperature of 0.99 ° C. to 500 ° C. is. 上記焼成した触媒を容器に仕込み、所望の温度に昇温した後に還元ガスを充填することにより還元を行うことができる。 G of the calcined catalyst to the vessel, it is possible to perform reduction by filling the reducing gas after heated to the desired temperature.
所望に応じてこの還元操作を繰り返してもよい。 Desired may be repeated this reduction operation in accordance with the. また、 Also,
容器に還元ガスを流通させて還元操作を行ってもよい。 It may be carried out reduction operations by circulating the reducing gas into the container.
液相還元に用いる還元剤としては、上記気相還元に用いる還元剤の他に水素化硼素ナトリウム、水素化リチウムアルミニウム、ジエチル亜鉛等の還元剤を用いることができる。 The reducing agent to be used in the liquid-phase reduction can be used in addition to sodium borohydride reducing agent used in the gas-phase reduction, lithium aluminum hydride, a reducing agent such as diethylzinc.

【0022】上記、金属成分を担持した活性炭を水および/またはアルコールなどの溶媒中に懸濁させ、室温から250℃の温度で常圧から20MPaの圧力下、上記した還元剤を用いて還元することにより行うことができる。 [0022] The above, activated carbon carrying a metal component is suspended in a solvent such as water and / or alcohol, under a pressure of 20MPa from normal pressure at a temperature of 250 ° C. from room temperature is reduced with a reducing agent as described above it can be carried out by. 水素を還元ガスとして用い、150℃〜500℃の温度で30分から24時間気相還元する方法を好ましく用いることができる。 Using hydrogen as the reducing gas, it is desirable to use a method of reducing 30 minutes to 24 hours gas phase at a temperature of 0.99 ° C. to 500 ° C.. 本発明の触媒において、ルテニウムと錫の担持量は担体に対してそれぞれ金属として0. In the catalyst of the present invention, the supported amount of ruthenium and tin as the metal respectively carrier 0.
5〜50重量%、好ましくは1〜10重量%である。 5 to 50 wt%, preferably 1 to 10 wt%. ルテニウム、錫の比率は金属として元素比でルテニウム: Ruthenium, ruthenium in a ratio of tin atomic ratio metal:
錫比が1:0.1〜1:2が好ましく、さらに好ましくは1:0.2〜1:1.3である。 Tin ratio of 1: 0.1 to 1: 2 is preferred, more preferably 1: 0.2 to 1: 1.3. 白金の担持量は、金属として元素比でルテニウムに対して0.01〜5が好ましく、さらに好ましくは0.1〜2の範囲である。 Supported amount of platinum, 0.01 to 5 preferably in elemental ratio to ruthenium metal, more preferably in the range of 0.1 to 2.

【0023】本発明においてアルコール類の製造に用いられる原料は、カルボン酸および/又はカルボン酸無水物である。 The raw materials used in the production of alcohols in the present invention are carboxylic acids and / or carboxylic acid anhydrides. 具体的にはギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、ペラルゴン酸等の脂肪族飽和モノカルボン酸類、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、メチルコハク酸、2,2−ジメチルコハク酸、2,3−ジメチルコハク酸、メチルマロン酸、α−メチルグルタル酸、β−メチルグルタル酸、2,2−ジメチルグルタル酸、2,4−ジメチルグルタル酸、3.3−ジメチルグルタル酸、2−エチル−2−メチルコハク酸、2,2, Specifically, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, aliphatic saturated monocarboxylic acids such as pelargonic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid , pimelic acid, suberic acid, azelaic acid, sebacic acid, methyl succinic acid, 2,2-dimethyl succinic acid, 2,3-dimethyl succinic acid, methylmalonic acid, alpha-methyl glutaric acid, beta-methylglutaric acid, 2, 2-dimethyl glutaric acid, 2,4-dimethyl glutaric acid, 3.3- dimethyl glutaric acid, 2-ethyl-2-methyl succinate, 2,2,
5,5−テトラメチルヘキサン二酸、3−メチルアジピン酸、コハク酸無水物、アジピン酸無水物、ポリアジピン酸無水物等の脂肪族飽和ジカルボン酸類および脂肪族飽和ジカルボン酸無水物類、アクリル酸、クロトン酸、 5,5-tetramethyl-hexanedioic acid, 3-methyl adipic acid, succinic anhydride, adipic acid anhydride, polyadipic acid anhydride and aliphatic saturated dicarboxylic acids and saturated aliphatic dicarboxylic acid anhydrides such as acrylic acid, crotonic acid,
イソクロトン酸、ビニル酢酸、メタクリル酸等の脂肪族不飽和モノカルボン酸類、フマル酸、マレイン酸、無水マレイン酸、メチルマレイン酸、メチルフマル酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、ムスコン酸、2−メチルムスコン酸、アセチレンジカルボン酸、1−プロピン−1,3−ジカルボン酸類等の脂肪族不飽和ジカルボン酸類および脂肪族不飽和ジカルボン酸無水物、メチントリカルボン酸、エチレントリカルボン酸などの脂肪族ポリカルボン酸類、シクロヘキサンカルボン酸、1,2−シクロヘキサンジカルボン酸、1, Isocrotonic acid, vinyl acetate, aliphatic unsaturated monocarboxylic acids such as methacrylic acid, fumaric acid, maleic acid, maleic anhydride, methyl maleic acid, methylfumaric acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, muscone acid, 2 Mechirumusukon acid, acetylene dicarboxylic acid, aliphatic unsaturated dicarboxylic acids and aliphatic unsaturated dicarboxylic acid anhydrides such as 1-propyne-1,3-dicarboxylic acid, methine tricarboxylic acids, aliphatic such as poly ethylene tricarboxylic acid carboxylic acids, cyclohexane carboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,
3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、3,3−テトラメチレングルタル酸、コラン酸、リトコール酸、コール酸等の脂肪族脂環式モノ及びジカルボン酸類、安息香酸、トルイル酸、ジメチル安息香酸、クミン酸、フタル酸、無水フタル酸、 3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 3,3-tetramethylene glutaric acid, cholanic acid, lithocholic acid, aliphatic cycloaliphatic mono- and dicarboxylic acids such as cholic acid, benzoic acid, toluic acid, dimethyl benzoic acid, cumin acid, phthalic acid, phthalic anhydride,
イソフタル酸、テレフタル酸等の芳香族カルボン酸類および芳香族カルボン酸無水物である。 Isophthalic acid, aromatic carboxylic acids and aromatic carboxylic acid anhydrides such as terephthalic acid.

【0024】この中でも下記一般式(1)で示されるジカルボン酸および下記一般式(2)で示されるジカルボン酸無水物が好ましく、具体的にはコハク酸、グルタル酸、アジピン酸、シクロヘキサンジカルボン酸、マレイン酸、フマル酸、テレフタル酸、無水コハク酸、無水マレイン酸が挙げられる。 The dicarboxylic acid anhydride is preferably represented by the dicarboxylic acids and the following general formula represented by the following general formula (1) among the (2), specifically succinic acid, glutaric acid, adipic acid, cyclohexane dicarboxylic acid, maleic acid, fumaric acid, terephthalic acid, succinic anhydride, maleic anhydride. 分子内に窒素、硫黄、リン元素を持たないカルボン酸および/又はカルボン酸無水物が好ましい。 Nitrogen in the molecule, sulfur, carboxylic acid without a phosphorus element and / or carboxylic acid anhydrides are preferred.

【0025】 [0025]

【化3】 [Formula 3]

【0026】(式中、R 1 、R 2はそれぞれ独立に炭素数が2〜20である二価の炭化水素基を表す。) なお、不飽和カルボン酸および不飽和カルボン酸無水物を原料に用いた場合には本発明の触媒を用いた水添反応によって飽和のアルコール類が得られ、また芳香族カルボン酸および芳香族カルボン酸無水物を原料に用いた場合には、脂環式アルコール類が得られる。 [0026] (wherein, R 1, R 2 carbon atoms each independently represent a divalent hydrocarbon radical from 2 to 20.) Note that the unsaturated carboxylic acids and unsaturated carboxylic acid anhydride as a raw material when alcohols saturated by hydrogenation reaction using the catalyst of the present invention when used to obtain, also with aromatic carboxylic acids and aromatic carboxylic acid anhydride as the raw material, the alicyclic alcohols It is obtained.

【0027】さらに、原料のカルボン酸は、複数のカルボン酸の混合物であっても、複数のカルボン酸無水物の混合物であっても、カルボン酸とカルボン酸無水物の混合物であっても何ら問題ない。 Furthermore, the carboxylic acid starting material may be a mixture of carboxylic acids may be a mixture of a plurality of carboxylic acid anhydride, no problem even if a mixture of carboxylic acid and carboxylic acid anhydride Absent. 好ましいジカルボン酸の混合物としては、コハク酸、グルタル酸、アジピン酸を含有する混合物である。 The preferred mixture of dicarboxylic acids is a mixture containing succinic acid, glutaric acid, adipic acid. また、シクロヘキサノンおよび/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するジカルボン酸類にはコハク酸、グルタル酸、アジピン酸が含まれており、本発明の特に好適な原料である。 Further, the dicarboxylic acids by-produced in the production of adipic acid by oxidation of cyclohexanone and / or cyclohexanol succinic acid, glutaric acid, includes adipic acid, a particularly preferred material of the present invention. このジカルボン酸を原料として有用な化合物を得ることができれば、アジピン酸製造に際して発生する廃棄物の量を減らすことができること、またこの副生物はコハク酸、グルタル酸、アジピン酸が含まれていることから1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールという工業的に有用なジオール類をも併産することができ、本発明の触媒のカルボン酸原料の種類を問わず、高収率でアルコール類を得ることができるという特徴を発揮するに最適の原料であることから特に好ましい。 If it is possible to obtain useful compounds of this dicarboxylic acid as a raw material, that it is possible to reduce the amount of waste generated during adipic acid manufacture, and this by-product that contains succinic acid, glutaric acid, adipic acid 1,4-butanediol, 1,5-pentanediol, can also be co-producing industrially useful diols of 1,6-hexanediol, any type of carboxylic acid starting material of the catalyst of the present invention It not particularly preferred because it is the optimal raw material exhibits a characteristic that it is possible to obtain an alcohol in a high yield.

【0028】本発明において特に好ましく用いられる、 [0028] particularly preferably used in the present invention,
シクロヘキサノンおよび/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際に副生するジカルボン酸混合物とは、アジピン酸を晶析分離したろ液である。 The dicarboxylic acid mixture by-produced cyclohexanone and / or cyclohexanol in producing adipic acid by nitric acid oxidation, a filtrate release the adipic acid crystals 析分. 本発明ではそのろ液をそのまま用いても良いが、触媒の水添活性が減じる時には硝酸酸化触媒の脱触媒、脱水、脱硝酸などの工程を経たものを用いることが好ましい。 The present invention may be used as the filtrate, but when the water 添活 of the catalyst reduces the catalyst removal of nitric oxide catalysts, dehydration, be those through the steps such as de-nitric preferred. 本発明では上記のルテニウム、錫および白金を前述の活性炭に担持した触媒を用い、水の存在下にカルボン酸および/又はカルボン酸無水物の水添反応を行う。 The above ruthenium present invention, the tin and platinum with a catalyst supported on the above-mentioned activated carbon, the hydrogenation reaction of the carboxylic acid and / or carboxylic acid anhydride in the presence of water carried. 反応における水の量はカルボン酸および/又はカルボン酸無水物に対して0.5〜100重量倍である。 The amount of water in the reaction is 0.5 to 100 times by weight relative to the carboxylic acid and / or carboxylic acid anhydrides. さらに好ましくは1〜20重量倍である。 More preferably 1 to 20 times by weight. 水添温度においてカルボン酸又はカルボン酸無水物の全量が溶解する水量が好ましい。 Amount of water total amount is dissolved in the carboxylic acid or carboxylic acid anhydride in water 添温 degree is preferred. 水添反応の温度は、100〜300℃が好ましく、さらに好ましくは130〜250℃である。 Temperature of the hydrogenation reaction is preferably from 100 to 300 ° C., more preferably from 130 to 250 ° C.. 水素圧は1〜25MPa、さらに好ましくは5MPa〜20M Hydrogen pressure 1~25MPa, more preferably 5MPa~20M
Paである。 Is Pa.

【0029】水添反応は連続、回分のいずれで行ってもよい、また反応型式としては液相懸濁反応、固定床流通反応のいずれも用いることができる。 The hydrogenation reaction may be conducted in either a continuous, batch, or liquid-phase suspension reaction and a reaction type may be either a fixed bed flow reaction. 本発明において原料にシクロヘキサノンおよび/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際に副生するコハク酸、グルタル酸、アジピン酸のジカルボン酸混合物を用いた場合には水添生成物として1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの混合物が得られるが、これらのジオールは必要に応じて通常の精製方法、例えば蒸留分離によって精製することができる。 1 cyclohexanone and / or cyclohexanol in the raw material in the present invention succinic acid by-produced during the production of adipic acid by nitric acid oxidation, glutaric acid, as hydrogenated products when using dicarboxylic acid mixtures of adipic acid , 4-butanediol, 1,5-pentanediol, mixtures of 1,6-hexanediol can be obtained, conventional purification methods, if these diols necessary, be purified, for example by distillation separation.

【0030】 [0030]

【発明の実施の形態】以下、本発明を実施例などを用いて更に詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter will be described in more detail with reference to such a present invention embodiment. なお、反応成績のうち、原料の転化率は液体クロマトグラフィーの分析値から算出し、 Among the reaction performance, raw material conversion ratio calculated from the analysis of liquid chromatography,
ジオール類の収率はガスクロマトグラフィーの分析値から算出した。 The yield of diols were calculated from analysis of gas chromatography. また、コハク酸、グルタル酸、アジピン酸の混合物はアジピン酸を晶析分離したろ液から脱水、脱硝酸処理して得た。 Moreover, succinic acid, glutaric acid, mixtures of adipic acid dehydration from the filtrate to release the adipic acid crystallization 析分, obtained by removing nitric acid treatment. 組成は液体クロマトグラフィーの分析によりコハク酸23重量%、グルタル酸60重量%、 Composition succinic acid 23 wt% by analysis of liquid chromatography, 60 wt% glutaric acid,
アジピン酸17重量%であった。 It was 17 wt% adipic acid.

【0031】 [0031]

【実施例1】触媒の担体に、二村化学工業(株)製、グレード名「太閤SGP」の活性炭を用いた。 The carrier of Example 1 catalyst, Futamura Chemical Industry Co., Ltd., was using the activated carbon of the grade name "Taiko SGP". この活性炭の細孔容積、全比表面積を、窒素ガス吸着法によりカルロエルバ社製ソープトマチックを用いて二村化学工業(株)で測定した結果は、細孔半径10Å未満の細孔容積は0.05cm 3 /g、細孔半径10Å以上100Å The pore volume of the activated carbon, the total specific surface area, the result of measurement by Futamura Chemical Industry Co., Ltd. using a Carlo Erba Co. soap preparative matic by a nitrogen gas adsorption method, a pore volume of less than the pore radius 10Å 0. 05cm 3 / g, 100Å or more pore radius of 10Å
以下の細孔容量は0.75cm 3 /g、全細孔容量は1.08cm 3 /g、比表面積は、1050m2/gであった。 The following pore volume 0.75 cm 3 / g, total pore volume 1.08cm 3 / g, the specific surface area was 1050m2 / g. さらに島津マイクロメリテックス ASAP− In addition Shimadzu Micromeritics Tex ASAP-
2400を用いて窒素ガス吸着法により同活性炭を測定したところ、細孔半径10Å未満の細孔容積は0.52 Was measured by the same activated carbon by a nitrogen gas adsorption method using a 2400, pore volume of less than the pore radius 10Å 0.52
cm 3 /g、細孔半径10Å以上100Å以下の細孔容量は1.02cm 3 /g、全細孔容量は2.02cm 3 cm 3 / g, 100Å or less of the pore volume or pore radius 10Å is 1.02 cm 3 / g, total pore volume 2.02cm 3 /
g、比表面積は、1786m2/gであった。 g, the specific surface area was 1786m2 / g.

【0032】<Ru−Sn−Pt触媒の調製>100m [0032] <Ru-Sn-Pt the preparation of the catalyst> 100m
lのナスフラスコに塩化白金酸6水和物0.48gを入れ、5N−塩酸3.36mlを加えて溶解した。 Eggplant flask l put chloroplatinic acid hexahydrate 0.48 g, it was dissolved by adding 5N- hydrochloride 3.36 mL. この溶液に塩化錫(II価)2水和物0.51gを入れて溶解し、3塩化ルテニウム3水和物0.84gを入れて溶解させた。 The solution of tin chloride (II value) 2 was dissolved therein hydrates 0.51 g, it is dissolved by putting 3 ruthenium chloride trihydrate 0.84 g. この溶液に上記活性炭3.00gを加え、室温で15時間静置した。 The activated carbon 3.00g was added to this solution and allowed to stand at room temperature for 15 hours. エバポレーターを用いて70℃、 70 ℃ by using an evaporator,
2.7kPaで水を留去した後、窒素ガス雰囲気下15 After evaporation of the water in the 2.7kPa, under a nitrogen gas atmosphere 15
0℃、2時間焼成処理し、ついで水素雰囲気下450℃ 0 ° C., then 2 hours calcination treatment, and then a hydrogen atmosphere 450 ° C.
で2時間還元処理した。 In 2 hours reduction treatment. 再び窒素ガス雰囲気にし、室温まで冷却した後に0.1%酸素/窒素雰囲気で2時間静置した。 The nitrogen gas atmosphere again and allowed to stand for 2 hours with 0.1% oxygen / nitrogen atmosphere was cooled to room temperature. 上記方法により6.1重量%ルテニウム−5. 6.1 wt% ruthenium -5 by the method described above.
0重量%錫−3.4重量%白金を活性炭に担持した触媒(担持量は活性炭に対する値である。)を調製した。 0 wt% of tin -3.4 wt% platinum supported on activated carbon catalyst (supported amount is the value for the activated carbon.) Was prepared.

【0033】<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>容量30mlのオートクレーブに、 The autoclave capacity 30 ml <succinic acid, glutaric acid, hydrogen reduction reaction of adipic acid mixture>
水5g、上記コハク酸、グルタル酸、アジピン酸の混合物2.1gと上記方法で調製した触媒0.15gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPaに圧入し、180℃まで昇温した。 Water 5g, the succinic acid, glutaric acid, were charged and the mixture 2.1g catalyst 0.15g prepared in the above method of adipic acid, after replacing the atmosphere in the autoclave at room temperature under nitrogen, pressing the hydrogen 2.0MPa and it was heated to 180 ° C.. 180℃に達した時点で水素を圧入し15MPaとした。 Press-fitting the hydrogen when it reaches 180 ° C. was 15 MPa. この圧力で10時間水素化還元反応を行った。 In this pressure for 10 hours hydrogenation reduction reaction. 反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。 After completion of the reaction, the catalyst was separated by decantation, the catalyst was washed with purified water. デカンテーションにより分離した反応液と触媒洗浄液を合わせて各ジカルボン酸の転化率とジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。 The yield of conversion and diols each dicarboxylic acid obtained in the analysis by liquid chromatography and gas chromatography combined reaction solution and the catalyst washing liquid separated by decantation. その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ94 As a result, succinic acid, glutaric acid, the conversion of adipic acid, respectively 94
%、94%、97%であり、1,4−ブタンジオール、 %, 94%, 97%, 1,4-butanediol,
1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ50%、76%、61%であった。 1,5-pentanediol, 1,6-hexanediol yield, 50% respectively, 76%, was 61%.

【0034】 [0034]

【比較例1】三菱化学製石炭系活性炭CX−2の細孔容積、比表面積を実施例1と同様に島津マイクロメリテックス ASAP−2400を用いて窒素ガス吸着法により測定したところ、細孔半径10Å以下の細孔容積が0.57cm 3 /g、細孔半径10Å以上100Å以下の細孔容量が0.44cm 3 /g、全細孔容量が1.0 Pore ​​volume of Comparative Example 1 manufactured by Mitsubishi Chemical coal-based activated carbon CX-2, was measured by a specific surface area of ​​nitrogen gas adsorption method similarly using Shimadzu Micromeritics Tex ASAP-2400 in Example 1, the pore radius 10Å following pore volume 0.57cm 3 / g, pore volume of more than 100Å or less pore radius 10Å is 0.44 cm 3 / g, a total pore volume 1.0
7cm 3 /g、比表面積は、1615m 2 /gであった。 7 cm 3 / g, the specific surface area was 1615m 2 / g.

【0035】特開平10−71332号公報の実施例に従って、CX−2に30%硝酸を加え、95℃で3時間処理した。 [0035] according to Example of JP-A-10-71332 discloses, CX-2 in 30% nitric acid were added and treated for 3 hours at 95 ° C.. この活性炭を濾過、水洗、乾燥後、上記と同様の方法により細孔容積、比表面積を測定した。 The activated carbon is filtered, washed with water, dried and then measured pore volume, specific surface area by the same method as above. その結果、細孔半径10Å以下の細孔容積が0.45cm 3 As a result, volume of pores pore radius 10Å is 0.45 cm 3 /
g、細孔半径10Å以上100Å以下の細孔容量が0. g, the following pore volume 100Å or more pore radius of 10Å is 0.
38cm 3 /g、全細孔容量が0.89cm 3 /g、比表面積は、1332m 2 /gであり、細孔半径10〜10 38cm 3 / g, total pore volume 0.89 cm 3 / g, specific surface area was 1332m 2 / g, pore radius 10 to 10
0Åの細孔容量が本発明の塩化亜鉛賦活炭とは異なることを確認した。 Pore ​​volume of 0Å was confirmed different from the zinc chloride activated carbon of the present invention.

【0036】 [0036]

【比較例2】比較例1と同様の方法、装置を用いて測定した細孔容積、比表面積が、細孔半径10Å未満の細孔容積が0.35cm 3 /g、細孔半径10Å以上100 [Comparative Example 2] same manner as in Comparative Example 1, the pore volume measured by using a device, specific surface area, pore volume of less than the pore radius 10Å is 0.35 cm 3 / g, pore radius 10Å or 100
Å未満の細孔容積が0.23cm 3 /g、全細孔容量が0.61cm 3 /g、比表面積が937m 2 /gである活性炭を用いて、実施例1の触媒調製と同様にしてルテニウム−錫−白金/活性炭触媒を調製した。 Pore volume of less than Å is 0.23 cm 3 / g, total pore volume 0.61 cm 3 / g, a specific surface area by using the activated carbon is a 937m 2 / g, in the same manner as the catalyst preparation of Example 1 ruthenium - tin - was prepared platinum / activated carbon catalyst. この触媒を用い、実施例1と同様の手順で上記ジカルボン酸混合物の水素化還元反応を行った。 Using this catalyst, the hydrogenation was carried out reduction reaction of the dicarboxylic acid mixture in the same manner as in Example 1. その結果コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ91%、90%、9 Consequently succinic acid, glutaric acid, respectively 91% conversion of adipic acid, 90%, 9
2%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率はそれぞれ40%、68%、55%であった。 2%, 1,4-butanediol, 1,5-pentanediol, 40% respectively, the yield of 1,6-hexanediol, 68%, was 55%.

【0037】 [0037]

【実施例2】容量50mlのオートクレーブに、水5 In the autoclave of Example 2] capacity 50ml, water 5
g、コハク酸2.10gと実施例1で調製した触媒0. g, the catalyst prepared 2.10g succinic acid as in Example 1 0.
30gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPa圧入し、180℃ Were charged 30g, after replacing the atmosphere in the autoclave at room temperature under nitrogen, the hydrogen was 2.0MPa pressed, 180 ° C.
まで昇温した。 The temperature was raised up. 180℃に達した時点で水素を圧入し1 Press-fitting the hydrogen when it reaches 180 ° C. 1
5MPaとした。 Was 5MPa. この圧力で6時間水添反応を行った。 In this pressure was carried out for 6 hours hydrogenation reaction.
反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。 After completion of the reaction, the catalyst was separated by decantation, the catalyst was washed with purified water. デカンテーションにより分離した反応液と触媒洗浄液を合わせてコハク酸の転化率と1,4−ブタンジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。 The yield of the conversion of 1,4-butanediol succinate determined by analysis by liquid chromatography and gas chromatography combined reaction solution and the catalyst washing liquid separated by decantation. その結果、コハク酸の転化率は98%であり、1,4−ブタンジオールの収率は、88%であった。 As a result, the conversion of succinate was 98%, and the yield of 1,4-butanediol was 88%.

【0038】 [0038]

【実施例3】容量50mlのオートクレーブに、水5 In the autoclave of Example 3] capacity 50ml, water 5
g、グルタル酸2.10gと実施例1で調製した触媒0.30gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPa圧入し、24 g, were charged catalyst 0.30g prepared glutaric acid 2.10g as in Example 1, after replacing the atmosphere in the autoclave at room temperature under nitrogen, the hydrogen was 2.0MPa press-24
0℃まで昇温した。 And the temperature was raised to 0 ℃. 240℃に達した時点で水素を圧入し9.8MPaとした。 Press-fitting the hydrogen when it reaches 240 ° C. was 9.8 MPa. この圧力で3.5時間水添反応を行った。 It was carried out for 3.5 hours hydrogenation reaction at this pressure. 反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。 After completion of the reaction, the catalyst was separated by decantation, the catalyst was washed with purified water. デカンテーションにより分離した反応液と触媒洗浄液を合わせてグルタル酸の転化率と1,5−ペンタンジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。 The yield of conversion and 1,5 glutarate obtained in analysis by liquid chromatography and gas chromatography combined reaction solution and the catalyst washing liquid separated by decantation. その結果、グルタル酸の転化率は100%であり、1,5−ペンタンジオールの収率は、92%であった。 As a result, the conversion of glutaric acid was 100%, the yield of 1,5-pentanediol was 92%.

【0039】 [0039]

【実施例4】容量50mlのオートクレーブに、水5 [Example 4] to the autoclave having a capacity of 50ml, water 5
g、アジピン酸2.10gと実施例1で調製した触媒0.30gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を2.0MPa圧入し、24 g, were charged catalyst 0.30g prepared adipate 2.10g as in Example 1, after replacing the atmosphere in the autoclave at room temperature under nitrogen, the hydrogen was 2.0MPa press-24
0℃まで昇温した。 And the temperature was raised to 0 ℃. 240℃に達した時点で水素を圧入し9.8MPaとした。 Press-fitting the hydrogen when it reaches 240 ° C. was 9.8 MPa. この圧力で3.5時間水添反応を行った。 It was carried out for 3.5 hours hydrogenation reaction at this pressure. 反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。 After completion of the reaction, the catalyst was separated by decantation, the catalyst was washed with purified water. デカンテーションにより分離した反応液と触媒洗浄液を合わせてアジピン酸の転化率と1,6−ヘキサンジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。 The yield of conversion and 1,6-hexanediol adipic acid was determined by analysis by liquid chromatography and gas chromatography combined reaction solution and the catalyst washing liquid separated by decantation. その結果、アジピン酸の転化率は100%であり、1,6−ヘキサンジオールの収率は、90%であった。 As a result, the conversion of adipic acid is 100%, the yield of 1,6-hexanediol was 90%.

【0040】 [0040]

【発明の効果】本発明は、カルボン酸の種類に関わらず、直接水添により高い収率でアルコール類を製造することができるものである。 According to the present invention, regardless of the type of carboxylic acids are those that can be produced alcohols in high yield by direct hydrogenation. 特にシクロヘキサンノンおよび/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際の副生物であるコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物から、1,4−ブタンジオール、1.5−ペンタンジオール、1,6−ヘキサンジオールの混合物を高収率で製造することができる。 In particular cyclohexanone and / or cyclohexanol succinic acid by-product in the manufacture of adipic acid by nitric acid oxidation, glutaric acid, mixtures of dicarboxylic acids, including adipic acid, 1,4-butanediol, 1.5 - it can be prepared pentanediol, a mixture of 1,6-hexanediol in a high yield.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) C07C 33/26 C07C 33/26 // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA03 AA14 BA08A BA08B BB02A BB02B BC22A BC22B BC70A BC70B BC75A BC75B CB02 CB70 DA05 EA02Y EC04X EC04Y EC05X EC05Y EC08X EC08Y EC09X EC09Y EC12X EC12Y EC13X EC13Y EC14X EC14Y EC18X EC18Y 4H006 AA02 AC11 AC42 BA11 BA23 BA26 BA32 BA85 BC10 BC11 BE20 FC50 FE11 FG26 FG29 4H039 CA60 CB40 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) C07C 33/26 C07C 33/26 // C07B 61/00 300 C07B 61/00 300 F -term (reference) 4G069 AA03 AA14 BA08A BA08B BB02A BB02B BC22A BC22B BC70A BC70B BC75A BC75B CB02 CB70 DA05 EA02Y EC04X EC04Y EC05X EC05Y EC08X EC08Y EC09X ​​EC09Y EC12X EC12Y EC13X EC13Y EC14X EC14Y EC18X EC18Y 4H006 AA02 AC11 AC42 BA11 BA23 BA26 BA32 BA85 BC10 BC11 BE20 FC50 FE11 FG26 FG29 4H039 CA60 CB40

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 ルテニウム、錫および白金を活性炭に担持した触媒であり、該活性炭が塩化亜鉛賦活炭であることを特徴とするカルボン酸水添用触媒。 1. A ruthenium, a catalyst tin and platinum supported on active carbon, acid water 添用 catalyst, wherein the activated carbon is zinc chloride activated carbon.
  2. 【請求項2】 ルテニウム、錫および白金を活性炭に担持した触媒であって該活性炭の細孔半径が10Å未満の細孔容積が0.03cm 3 /g以上0.8cm 3 /g以下、細孔半径が10Å以上100Å以下の細孔容積が0.5cm 3 /g以上2.0cm 3 /g以下であり、全細孔容積が1.2cm 3 /g以上3.0cm Wherein ruthenium, pore volume of less than the pore radius 10Å tin and platinum a catalyst supported on active carbon the activated carbon 0.03 cm 3 / g or more 0.8 cm 3 / g or less, a pore volume of pores radius 10Å or 100Å is less 0.5 cm 3 / g or more 2.0 cm 3 / g, a total pore volume of 1.2 cm 3 / g or more 3.0cm 3 /g以下、比表面積が800m 2 /g以上2,000m 2 /g未満であることを特徴とするカルボン酸水添用触媒。 3 / g or less, carboxylic acid water添用catalyst, wherein the specific surface area is less than 800 m 2 / g or more 2,000 m 2 / g.
  3. 【請求項3】 カルボン酸および/又はカルボン酸無水物を触媒と水の存在下、水素と反応させて水添し、アルコールを製造する方法において、該触媒として請求項1 The presence of 3. catalysts and carboxylic acid and / or carboxylic acid anhydrides and water is reacted with hydrogen and hydrogenated, in the method for producing an alcohol according to claim 1 as the catalyst
    又は2記載のカルボン酸水添用触媒を用いることを特徴とするアルコールの製造方法。 Or method for producing alcohols, which comprises using a second aspect of the carboxylic acid solution 添用 catalyst.
  4. 【請求項4】 カルボン酸が一般式(1)で示されるジカルボン酸から選ばれる少なくとも1種のジカルボン酸であり、カルボン酸無水物が一般式(2)で示される少なくとも1種のジカルボン酸無水物であることを特徴とする請求項3記載のアルコールの製造方法。 Wherein at least one dicarboxylic acid carboxylic acid is selected from dicarboxylic acids represented by the general formula (1), at least one dicarboxylic acid anhydride to carboxylic acid anhydride represented by the general formula (2) method for producing an alcohol according to claim 3, wherein the object is a. 【化1】 [Formula 1] (式中、R 1およびR 2はそれぞれ独立に炭素数が2〜2 (In the formula, R 1 and R 2 are each independently a carbon number 2 to 2
    0である二価の炭化水素基を表す。 It represents a divalent hydrocarbon group which is 0. )
  5. 【請求項5】 カルボン酸がコハク酸、グルタル酸、アジピン酸、シクロヘキサンジカルボン酸、マレイン酸、 Wherein the carboxylic acid is succinic acid, glutaric acid, adipic acid, cyclohexane dicarboxylic acid, maleic acid,
    フマル酸およびテレフタル酸から選ばれる少なくとも1 At least selected from fumaric acid and terephthalic acid 1
    種を含むカルボン酸であり、カルボン酸無水物が無水コハク酸および無水マレイン酸から選ばれる少なくとも1 A carboxylic acid containing species, at least one carboxylic anhydride is selected from succinic anhydride and maleic anhydride
    種を含むカルボン酸無水物である請求項3又は4記載のアルコールの製造方法。 Method for producing an alcohol according to claim 3 or 4 wherein the carboxylic acid anhydride containing species.
  6. 【請求項6】 カルボン酸および/又はカルボン酸無水物がコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする請求項5に記載のアルコールの製造方法。 6. carboxylic acids and / or carboxylic acid anhydride succinic acid, glutaric acid, method for producing an alcohol according to claim 5, characterized in that a mixture of a carboxylic acid containing adipic acid.
  7. 【請求項7】 カルボン酸および/又はカルボン酸無水物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むカルボン酸の混合物であることを特徴とする請求項6記載のアルコールの製造方法。 7. A carboxylic acid and / or carboxylic acid anhydride cyclohexanone and / or succinic acid recovered from the oxidation reaction of cyclohexanol, glutaric acid, characterized in that it is a mixture of a carboxylic acid containing adipic acid method for producing an alcohol according to claim 6, wherein.
  8. 【請求項8】 温度100℃〜300℃、水素圧1MP 8. Temperature 100 ° C. to 300 ° C., the hydrogen pressure 1MP
    a〜25MPaの条件下でカルボン酸および/又はカルボン酸無水物を水素と反応させることを特徴とする請求項3〜7のいずれかに記載のアルコールの製造方法。 Method for producing an alcohol according to any one of claims 3-7 which comprises reacting a carboxylic acid and / or carboxylic anhydrides with hydrogen under the conditions of A~25MPa.
JP2000130777A 1999-09-21 2000-04-28 Carboxylic acid water 添用 catalyst Expired - Fee Related JP4472109B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP26726799 1999-09-21
JP11-267267 1999-09-21
JP2000130777A JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid water 添用 catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130777A JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid water 添用 catalyst

Publications (2)

Publication Number Publication Date
JP2001157841A true JP2001157841A (en) 2001-06-12
JP4472109B2 JP4472109B2 (en) 2010-06-02

Family

ID=26547788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130777A Expired - Fee Related JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid water 添用 catalyst

Country Status (1)

Country Link
JP (1) JP4472109B2 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076348A1 (en) * 2002-03-11 2003-09-18 Nippon Shokubai Co., Ltd. Method for treating waste water
JP2006504788A (en) * 2002-11-01 2006-02-09 カーギル,インコーポレイティド Method for producing 1,3-propanediol
US7538068B2 (en) 2005-03-18 2009-05-26 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent and method of manufacturing the same
WO2010014151A2 (en) 2008-07-31 2010-02-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US7820852B2 (en) 2008-07-31 2010-10-26 Celanese International Corporation Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
US7820853B2 (en) 2008-12-31 2010-10-26 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
US8080694B2 (en) 2008-07-31 2011-12-20 Celanese International Corporation Catalyst for gas phase hydrogenation of carboxylic acids having a support modified with a reducible metal oxide
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8487143B2 (en) 2008-07-31 2013-07-16 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8569549B2 (en) 2010-02-02 2013-10-29 Celanese International Corporation Catalyst supports having crystalline support modifiers
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8865609B2 (en) 2012-01-06 2014-10-21 Celanese International Corporation Hydrogenation catalysts
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US9024087B2 (en) 2008-07-31 2015-05-05 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
US9051238B2 (en) 2010-02-02 2015-06-09 Celanese International Corporation Process for recovering ethanol
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
CN105142784A (en) * 2013-04-25 2015-12-09 日产自动车株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
JP2017515656A (en) * 2014-04-07 2017-06-15 ロッテ ケミカル コーポレーション Composite metal catalyst Construction material and Cyclohexanedicarboxylic methanol manufacturing method and apparatus was 1,4-cyclohexylene use it
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076348A1 (en) * 2002-03-11 2003-09-18 Nippon Shokubai Co., Ltd. Method for treating waste water
US7247240B2 (en) 2002-03-11 2007-07-24 Nippon Shokubai Co., Ltd. Method for treating waste water
JP2006504788A (en) * 2002-11-01 2006-02-09 カーギル,インコーポレイティド Method for producing 1,3-propanediol
US7538068B2 (en) 2005-03-18 2009-05-26 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent and method of manufacturing the same
US8669400B2 (en) 2008-07-31 2014-03-11 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/ tin catalyst
WO2010014151A3 (en) * 2008-07-31 2010-05-27 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US7820852B2 (en) 2008-07-31 2010-10-26 Celanese International Corporation Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
US8853122B2 (en) 2008-07-31 2014-10-07 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
WO2010014151A2 (en) 2008-07-31 2010-02-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
CN102149661A (en) * 2008-07-31 2011-08-10 国际人造丝公司 Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8071821B2 (en) 2008-07-31 2011-12-06 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/ tin catalyst
US8080694B2 (en) 2008-07-31 2011-12-20 Celanese International Corporation Catalyst for gas phase hydrogenation of carboxylic acids having a support modified with a reducible metal oxide
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8993815B2 (en) 2008-07-31 2015-03-31 Celanese International Corporation Process for vapor phase hydrogenation
US9040443B2 (en) 2008-07-31 2015-05-26 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8889923B2 (en) 2008-07-31 2014-11-18 Celanese International Corporation Synthesis of ethanol from biomass
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8487143B2 (en) 2008-07-31 2013-07-16 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US9024087B2 (en) 2008-07-31 2015-05-05 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US7820853B2 (en) 2008-12-31 2010-10-26 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US9051238B2 (en) 2010-02-02 2015-06-09 Celanese International Corporation Process for recovering ethanol
US8569549B2 (en) 2010-02-02 2013-10-29 Celanese International Corporation Catalyst supports having crystalline support modifiers
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US9447005B2 (en) 2010-02-02 2016-09-20 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US9670119B2 (en) 2010-07-09 2017-06-06 Celanese International Corporation Process for producing ethanol using multiple beds each having different catalysts
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US8975200B2 (en) 2012-01-06 2015-03-10 Celanese International Corporation Hydrogenation catalysts with cobalt-modified supports
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US9381500B2 (en) 2012-01-06 2016-07-05 Celanese International Corporation Process for producing ethanol using hydrogenation catalysts
US9308523B2 (en) 2012-01-06 2016-04-12 Celanese International Corporation Hydrogenation catalysts with cobalt-modified supports
US8865609B2 (en) 2012-01-06 2014-10-21 Celanese International Corporation Hydrogenation catalysts
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US9486781B2 (en) 2012-03-13 2016-11-08 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
CN105142784A (en) * 2013-04-25 2015-12-09 日产自动车株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
JPWO2014175098A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 Fuel cell electrode catalyst and the electrode catalyst layer using the catalyst, a membrane electrode assembly and a fuel cell
JP2017515656A (en) * 2014-04-07 2017-06-15 ロッテ ケミカル コーポレーション Composite metal catalyst Construction material and Cyclohexanedicarboxylic methanol manufacturing method and apparatus was 1,4-cyclohexylene use it
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer

Also Published As

Publication number Publication date
JP4472109B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US3584039A (en) Fiber-grade terephthalic acid by catalytic hydrogen treatment of dissolved impure terephthalic acid
US5061671A (en) Catalyst for the production of alcohols by hydrogenation of carboxylic acids and process for the preparation of the catalyst
CN102442883B (en) Preparation of ethanol from acetic acid using a cobalt catalyst
US3775342A (en) Process for the production of catalysts for making vinyl esters
CA1268752A (en) Pd/re hydrogenation catalyst and process for making tetrahydrofuran and 1,4-butanediol
US6291725B1 (en) Catalysts and process for hydrogenolysis of sugar alcohols to polyols
US20050176972A1 (en) Catalytic hydrogenation over rhenium-containing catalysts supported on activated carbon
US4476242A (en) Process for preparing palladium on carbon catalysts for purification of crude terephthalic acid
US8211821B2 (en) Processes for making tin-containing catalysts
US3755423A (en) Process for preparing an unsaturated glycol diester
US20090118536A1 (en) Process for the Production of Aromatic Carboxylic Acids in Water
CN102272089B (en) Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
US4764498A (en) Silica-containing shaped articles and a process for their preparation
US3689533A (en) Production of carboxylic acids and esters
EP0123517B1 (en) Vapour phase hydrogenation of esters
US8309757B2 (en) Integrated process for the production of vinyl acetate from acetic acid via ethylene
US6008384A (en) Method and Ru,Re,Sn/carbon catalyst for hydrogenation in aqueous solution
CA2339503A1 (en) Two-stage process for the production of 1,3-propanediol by catalytic hydrogenation of 3-hydroxypropanal
CA1267913A (en) Process for the preparation of ethylene glycol
US5905159A (en) Method of producing 1,4-butanediol and tetrahydrofuran from furan
EP1160196B1 (en) Catalyst and process for the direct synthesis of hydrogen peroxide
US7586002B2 (en) Catalyst for purification of aromatic acids
US4394299A (en) Palladium-rhodium catalyst for purification of crude terephthalic acid
CN1151908A (en) Supported palladium catalyst for selective catalytic hydrogenation of acetylene in hydrocarbonaceous streams
JPH08510685A (en) METHOD catalyst and for this use in the manufacture of an unsaturated carboxylic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees