JP2001157841A - Catalyst for hydrogenating carboxylic acid - Google Patents

Catalyst for hydrogenating carboxylic acid

Info

Publication number
JP2001157841A
JP2001157841A JP2000130777A JP2000130777A JP2001157841A JP 2001157841 A JP2001157841 A JP 2001157841A JP 2000130777 A JP2000130777 A JP 2000130777A JP 2000130777 A JP2000130777 A JP 2000130777A JP 2001157841 A JP2001157841 A JP 2001157841A
Authority
JP
Japan
Prior art keywords
acid
catalyst
carboxylic
activated carbon
anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000130777A
Other languages
Japanese (ja)
Other versions
JP4472109B2 (en
Inventor
Mitsuo Konishi
満月男 小西
Eizaburo Ueno
英三郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000130777A priority Critical patent/JP4472109B2/en
Publication of JP2001157841A publication Critical patent/JP2001157841A/en
Application granted granted Critical
Publication of JP4472109B2 publication Critical patent/JP4472109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst capable of obtaining an alcohol group in high yield notwithstanding type of carboxylic acid, even if any type of carboxylic acid is used, and further to provide a method for manufacturing an alcohol group by direct hydrogenation using the catalyst. SOLUTION: The catalyst having ruthenium and tin supported on an activated carbon wherein the catalyst is a zinc chloride-activated carbon, and the volume of the microporosity of which the radius of the microporosity is not more than 10 Å is from 0.03 cm3/g to 0.8 cm3/g, the volume of the microporosity of which the radius of the microporosity is 10A-100 Å is from 0.5 cm3/g to 2.0 cm3/g, total volume of the microporosity is from 1.2 cm3/g to 3.0 cm3/g and the specific surface area is 800 m2/g to not more than 2000 m2, and a method for manufacturing an alcohol group by hydrogenating carboxylic acid in the presence of water using said catalyst are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術的分野】本発明は、水存在下、水素
によりカルボン酸類を原料としてエステル化工程を経る
ことなく直接水添してアルコール類を製造する際に使用
する触媒および直接水添してアルコール類を製造する方
法に関するものである。
TECHNICAL FIELD The present invention relates to a catalyst used for producing alcohols by directly hydrogenating a carboxylic acid with hydrogen as a raw material without going through an esterification step in the presence of water, and a catalyst for direct hydrogenation. And a method for producing alcohols.

【0002】[0002]

【従来の技術】アルコール類は、種々の産業分野で広範
に使用されている有用な物質である。特にジオール類は
ポリエステル樹脂、ウレタンフォームやウレタン塗料、
接着剤の原料として有用である。このようなジオールの
1種として例えば1,4−ブタンジオールの製造法につ
いては、コハク酸あるいはマレイン酸を水添して製造す
る方法が数多く報告されている。最も良く知られている
方法として銅系の触媒を用いてコハク酸あるいはマレイ
ン酸のエステルを高温、高圧で水添する方法がある。し
かしながら、この方法では、カルボン酸を直接水添する
ことができず、カルボン酸を一旦エステルに転換後水添
しなければならず、製造工程が長くなるという問題があ
った。
BACKGROUND OF THE INVENTION Alcohols are useful substances that are widely used in various industrial fields. Especially diols are polyester resin, urethane foam and urethane paint,
Useful as a raw material for adhesives. As a method for producing 1,4-butanediol, for example, as one of such diols, many methods have been reported for producing succinic acid or maleic acid by hydrogenation. The best known method is to hydrogenate an ester of succinic or maleic acid at high temperature and pressure using a copper catalyst. However, in this method, the carboxylic acid cannot be directly hydrogenated, and the carboxylic acid must be once converted into an ester and then hydrogenated, resulting in a problem that the production process becomes long.

【0003】一方、コハク酸あるいはマレイン酸を直接
水添して1,4−ブタンジオールを製造する方法もいく
つか提案されている。その触媒系のみを列記するとルテ
ニウム−鉄酸化物からなる触媒(米国特許第4,82
7,001号明細書)、ルテニウム−錫をBET表面積
2000m2/g以上の多孔質炭素に担持した触媒(特
開平5−246915号公報)、ルテニウム及び錫をチ
タン及び/又はアルミナで修飾したシリカに担持した触
媒(特開平6−116182号公報)、ルテニウム及び
錫、並びにアルカリ金属化合物またはアルカリ土類金属
を担体に担持した触媒(特開平6−239778号公
報)、ルテニウムと白金及びロジウムから選ばれた少な
くとも1種と錫とを担体に担持した触媒(特開平7−1
65644号公報)、ルテニウムと錫を担体に担持して
なる触媒を用い、過剰の水素を反応系に流通させ、同伴
してくる生成物を系外に除去しながら反応を行う方法
(特開平9−12492号公報)、ルテニウム−錫−白
金を担体に担持した触媒(特開平9−59190号公
報)、炭素数5以下のカルボニル化合物が共存した担持
成分を含有する溶液を活性炭に含浸して調製したルテニ
ウム−錫−白金を活性炭に担持した触媒(特開平10−
15388号公報)、あらかじめ硝酸と接触した活性炭
を使用することにより金属の担持状態を規定したルテニ
ウム−錫−白金を活性炭に担持した触媒(特開平10−
71332号公報)が提案されているが、いずれの触媒
を用いる方法においても、水添生成物である1.4−ブ
タンジオール、テトラヒドロフラン、γ−ブチロラクト
ンの選択率が十分でなく、1,4−ブタンジオールの収
率は不満足なものであった。
On the other hand, several methods have been proposed for producing 1,4-butanediol by directly hydrogenating succinic acid or maleic acid. The catalyst system consisting solely of ruthenium-iron oxide (US Pat. No. 4,82
7,001), a catalyst in which ruthenium-tin is supported on porous carbon having a BET surface area of 2000 m 2 / g or more (JP-A-5-246915), and a silica in which ruthenium and tin are modified with titanium and / or alumina. Selected from the group consisting of ruthenium and tin, ruthenium and tin, and a catalyst supporting an alkali metal compound or an alkaline earth metal on a carrier (JP-A-6-239778), ruthenium, platinum and rhodium. Catalyst in which at least one of the above-mentioned and tin are supported on a carrier (Japanese Unexamined Patent Publication No.
No. 65644), a method in which an excess hydrogen is circulated through a reaction system using a catalyst in which ruthenium and tin are supported on a carrier, and a reaction is carried out while entrained products are removed from the system (Japanese Patent Application Laid-Open No. H9-0995). -12492), a catalyst containing ruthenium-tin-platinum supported on a carrier (JP-A-9-59190), and a solution containing a supported component in which a carbonyl compound having 5 or less carbon atoms coexists with activated carbon. Catalyst in which activated ruthenium-tin-platinum is supported on activated carbon
No. 15388), a catalyst in which ruthenium-tin-platinum having a prescribed metal loading state by using activated carbon previously contacted with nitric acid is supported on activated carbon (Japanese Unexamined Patent Publication No.
However, in any of the methods using any of the catalysts, the selectivity of the hydrogenated products of 1.4-butanediol, tetrahydrofuran and γ-butyrolactone is not sufficient, and The yield of butanediol was unsatisfactory.

【0004】また特開平7−82190号公報にはパラ
ジウムとレニウム化合物からなる触媒を用い、三級アル
コールを溶媒として水素化を行う方法が提案されている
が、反応速度が未だ不十分であった。上述したように従
来技術においては活性炭を担体とした触媒を用いる直接
水添の例が開示されており、活性炭の比表面積や前処理
方法についても幾つかの検討がなされている。
Japanese Patent Application Laid-Open No. 7-82190 proposes a method in which a catalyst comprising palladium and a rhenium compound is used to carry out hydrogenation using a tertiary alcohol as a solvent, but the reaction rate is still insufficient. . As described above, the prior art discloses an example of direct hydrogenation using a catalyst using activated carbon as a carrier, and several studies have been made on the specific surface area of activated carbon and a pretreatment method.

【0005】一般的な活性炭の製造方法として賦活過程
という原料炭素質の熱分解工程を経るが、その賦活方法
として各種の酸化性ガス(水蒸気、二酸化炭素、空気な
ど)を用いるガス賦活法と、脱水性の塩類及び酸(塩化
カルシウム、塩化マグネシウム、塩化亜鉛、リン酸、硫
酸、苛性ソーダ、苛性カリなどのアルカリ類など)を用
いる薬品賦活法が知られている。現在、ガス賦活法が米
国をはじめ世界的に広く、かつ最も多く採用されてお
り、活性炭製造の主流を占めており、薬品賦活法は現
在、特殊用途向けにのみ製造されている。
[0005] As a general method for producing activated carbon, a raw material carbonaceous pyrolysis step called an activation step is performed. As the activation method, a gas activation method using various oxidizing gases (steam, carbon dioxide, air, etc.) Chemical activation methods using dehydrating salts and acids (calcium chloride, magnesium chloride, zinc chloride, phosphoric acid, sulfuric acid, alkalis such as caustic soda and caustic potash) are known. At present, the gas activation method is widely and most widely adopted in the United States and the world, and occupies the mainstream of activated carbon production. The chemical activation method is currently produced only for special applications.

【0006】このような賦活法の違いにより、活性炭の
物性として細孔分布の異なる活性炭が得られる。例えば
塩化亜鉛賦活粉末炭は、トランジショナル孔と呼ばれる
細孔半径が10〜100Åの細孔が発達し、その細孔容
積が特異的に大きい。このような活性炭をジカルボン酸
の直接水添触媒の担体に用いることは上述の従来技術に
は何も記載されていない。また、米国特許第5,69
8,749号明細書にはパラジウム−銀−レニウムをあ
らかじめ硝酸酸化処理した活性炭上に担持した触媒を用
いてマレイン酸から1,4−ブタンジオールが比較的高
収率で得られることは記載されているが、グルタル酸あ
るいはアジピン酸の水素化還元反応の成績については何
も記載されていない。
Due to such a difference in the activation method, activated carbons having different pore distributions as physical properties of the activated carbon can be obtained. For example, zinc chloride activated powdered coal develops pores having a pore radius of 10 to 100 ° called transitional pores, and the pore volume is specifically large. The use of such activated carbon as a carrier for a direct hydrogenation catalyst of dicarboxylic acid is not described in the above-mentioned prior art. Also, U.S. Pat.
No. 8,749 describes that 1,4-butanediol can be obtained in a relatively high yield from maleic acid by using a catalyst in which palladium-silver-rhenium is supported on activated carbon which has been previously subjected to nitric acid oxidation treatment. However, nothing is described about the results of the hydrogenation-reduction reaction of glutaric acid or adipic acid.

【0007】特開平11−60523号公報にはあらか
じめ酸処理した活性炭にルテニウム−錫−白金を担持し
た触媒を用いてアジピン酸から1,6−ヘキサンジオー
ルが高収率で得られることが記載されているが、前記特
開平10−71332号公報において述べたように、こ
の触媒を用いて、コハク酸あるいはマレイン酸から1,
4−ブタンジオールを高収率で得ることは困難である。
JP-A-11-60523 discloses that 1,6-hexanediol can be obtained in high yield from adipic acid by using a catalyst in which activated carbon previously treated with acid and supporting ruthenium-tin-platinum is used. However, as described in JP-A-10-71332, this catalyst is used to convert succinic acid or maleic acid into 1,
It is difficult to obtain 4-butanediol in high yield.

【0008】[0008]

【発明が解決しようとする課題】本発明は、カルボン酸
の種類に関係なく、いずれのカルボン酸を原料に用いて
も直接水添によってアルコール類を高収率で得ることが
できる触媒、およびその触媒を用いたカルボン酸の直接
水添によるアルコール類の製造方法を提供することを目
的とする。特にコハク酸、グルタル酸、アジピン酸のい
ずれを原料に用いてもジオール類を高収率で得ることが
できる触媒、およびその触媒を用いた直接水添によるジ
オール類の製造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to a catalyst capable of obtaining alcohols in high yield by direct hydrogenation using any carboxylic acid as a raw material, regardless of the type of carboxylic acid, and a catalyst therefor. An object of the present invention is to provide a method for producing alcohols by direct hydrogenation of a carboxylic acid using a catalyst. In particular, it is an object of the present invention to provide a catalyst capable of obtaining diols in high yield using any of succinic acid, glutaric acid and adipic acid as a raw material, and a method for producing diols by direct hydrogenation using the catalyst. Aim.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すべく本
発明者らが鋭意検討した結果、驚くべきことに活性炭の
細孔としてトランジショナル孔と呼ばれる、細孔半径が
10Å以上100Å以下の細孔容積が大きい活性炭を担
体として用い、ルテニウム、錫および白金を担持してな
る触媒がカルボン酸の種類に関係なく、いずれのカルボ
ン酸を原料に用いてもアルコール類を高収率で得ること
ができる触媒であることを見出し、本発明を完成したも
のである。
Means for Solving the Problems As a result of intensive studies by the present inventors to solve the above-mentioned problems, surprisingly, fine pores having a pore radius of 10 ° or more and 100 ° or less, called transitional pores, are used as activated carbon pores. Using activated carbon having a large pore volume as a carrier, and a catalyst supporting ruthenium, tin and platinum, regardless of the type of carboxylic acid, it is possible to obtain alcohols in high yield using any carboxylic acid as a raw material. The present invention was found to be a catalyst that can be made, and the present invention has been completed.

【0010】すなわち本発明は、[1] ルテニウム、
錫および白金を活性炭に担持した触媒であり、該活性炭
が塩化亜鉛賦活炭であることを特徴とするカルボン酸水
添用触媒、[2] ルテニウム、錫および白金を活性炭
に担持した触媒であって該活性炭の細孔半径が10Å未
満の細孔容積が0.03cm3/g以上0.8cm3/g
以下、細孔半径が10Å以上100Å以下の細孔容積が
0.5cm3/g以上2.0cm3/g以下であり、全細
孔容積が1.2cm3/g以上3.0cm3/g以下、比
表面積が800m2/g以上2,000m2/g未満であ
ることを特徴とするカルボン酸水添用触媒、[3] カ
ルボン酸および/又はカルボン酸無水物を触媒と水の存
在下、水素と反応させて水添し、アルコールを製造する
方法において、該触媒として[1]又は[2]記載のカ
ルボン酸水添用触媒を用いることを特徴とするアルコー
ルの製造方法、[4] カルボン酸が一般式(1)で示
されるジカルボン酸から選ばれる少なくとも1種のジカ
ルボン酸であり、カルボン酸無水物が一般式(2)で示
される少なくとも1種のジカルボン酸無水物であること
を特徴とする[3]記載のアルコールの製造方法、
That is, the present invention relates to [1] ruthenium,
A catalyst in which tin and platinum are supported on activated carbon, wherein the activated carbon is zinc chloride activated carbon; and [2] a catalyst in which ruthenium, tin and platinum are supported on activated carbon. pore radius of the activated carbon pore volume of less than 10 Å 0.03 cm 3 / g or more 0.8 cm 3 / g
Hereinafter, the pore volume with a pore radius of 10 ° to 100 ° is 0.5 cm 3 / g to 2.0 cm 3 / g, and the total pore volume is 1.2 cm 3 / g to 3.0 cm 3 / g. Hereinafter, a carboxylic acid hydrogenation catalyst having a specific surface area of 800 m 2 / g or more and less than 2,000 m 2 / g, [3] a carboxylic acid and / or carboxylic anhydride in the presence of a catalyst and water. A method for producing an alcohol by reacting with hydrogen to produce an alcohol, wherein the catalyst for hydrogenating a carboxylic acid according to [1] or [2] is used as the catalyst, [4] The carboxylic acid is at least one dicarboxylic acid selected from dicarboxylic acids represented by the general formula (1), and the carboxylic anhydride is at least one dicarboxylic anhydride represented by the general formula (2). Feature 3] The method of producing alcohol according,

【0011】[0011]

【化2】 Embedded image

【0012】(式中、R1およびR2はそれぞれ独立に炭
素数が2〜20である二価の炭化水素基を表す。) [5] カルボン酸がコハク酸、グルタル酸、アジピン
酸、シクロヘキサンジカルボン酸、マレイン酸、フマル
酸およびテレフタル酸から選ばれる少なくとも1種を含
むカルボン酸であり、カルボン酸無水物が無水コハク酸
および無水マレイン酸から選ばれる少なくとも1種を含
むカルボン酸無水物である[3]又は[4]記載のアル
コールの製造方法、[6] カルボン酸および/又はカ
ルボン酸無水物がコハク酸、グルタル酸、アジピン酸を
含むカルボン酸の混合物であることを特徴とする[5]
に記載のアルコールの製造方法、[7] カルボン酸お
よび/又はカルボン酸無水物がシクロヘキサノン及び/
又はシクロヘキサノールの酸化反応液から回収されたコ
ハク酸、グルタル酸、アジピン酸を含むカルボン酸の混
合物であることを特徴とする[6]記載のアルコールの
製造方法、[8] 温度100℃〜300℃、水素圧1
MPa〜25MPaの条件下でカルボン酸および/又は
カルボン酸無水物を水素と反応させることを特徴とする
[3]〜[7]のいずれかに記載のアルコールの製造方
法、である。
(Wherein R 1 and R 2 each independently represent a divalent hydrocarbon group having 2 to 20 carbon atoms.) [5] The carboxylic acid is succinic acid, glutaric acid, adipic acid, cyclohexane It is a carboxylic acid containing at least one selected from dicarboxylic acid, maleic acid, fumaric acid and terephthalic acid, and the carboxylic anhydride is a carboxylic anhydride containing at least one selected from succinic anhydride and maleic anhydride. [3] The method for producing an alcohol according to [4], [6] the carboxylic acid and / or the carboxylic anhydride is a mixture of carboxylic acids including succinic acid, glutaric acid, and adipic acid [5]. ]
The method for producing an alcohol according to [7], wherein the carboxylic acid and / or carboxylic anhydride is cyclohexanone and / or
Or a mixture of carboxylic acids containing succinic acid, glutaric acid, and adipic acid recovered from an oxidation reaction solution of cyclohexanol, [8] a method for producing an alcohol, [8] a temperature of 100 ° C to 300 ° C. ℃, hydrogen pressure 1
The method for producing an alcohol according to any one of [3] to [7], wherein the carboxylic acid and / or carboxylic anhydride is reacted with hydrogen under the conditions of MPa to 25 MPa.

【0013】以下、本発明を詳細に説明する。本発明の
カルボン酸水添用触媒は、特定の製造方法により製造さ
れた活性炭にルテニウムと錫および白金を担持させて調
製したものである。本発明において用いられる活性炭
は、塩化亜鉛賦活炭である。塩化亜鉛賦活炭の製造方法
は公知の方法を用いればよく、その詳細は例えば「活性
炭読本第2版」(柳井弘編著、石崎信男著、日刊工業新
聞社)等に記載されているように出発原料として、のこ
くず、低灰分の泥炭、麦わら、あし、堅果およびカラな
どを使用し、塩化亜鉛の濃厚溶液を含浸させた後に焼成
する工程を含む製造方法によって製造された活性炭であ
る。また、この活性炭は、不純物を除去するためにルテ
ニウム、錫および白金を担持する前に熱水等で処理して
もよい。
Hereinafter, the present invention will be described in detail. The carboxylic acid hydrogenation catalyst of the present invention is prepared by supporting ruthenium, tin and platinum on activated carbon produced by a specific production method. The activated carbon used in the present invention is zinc chloride activated carbon. The method for producing zinc chloride activated carbon may be a known method, and details thereof are described in, for example, "Activated Carbon Reader 2nd Edition" (edited by Hiroshi Yanai, edited by Nobuo Ishizaki, Nikkan Kogyo Shimbun) and the like. Activated carbon produced by a production method including a step of impregnating with a concentrated solution of zinc chloride, using a sawdust, a low-ash peat, straw, a reed, a nut, a lump, and the like as a raw material, followed by firing. Further, this activated carbon may be treated with hot water or the like before carrying ruthenium, tin and platinum to remove impurities.

【0014】この塩化亜鉛賦活炭は、トラジショナル孔
と呼ばれる、細孔半径が10Å以上100Å以下の細孔
が発達し、その細孔容積が特異的に大きいという特徴を
もつ。この塩化亜鉛賦活炭における細孔半径と細孔容積
の関係は、窒素ガス吸着法によって細孔容積、BET比
表面積を測定した場合に、細孔半径が10Å未満の細孔
容積が0.03cm3/g以上0.8cm3/g以下であ
り、細孔半径が10Å以上100Å以下の細孔容積が
0.5cm3/g以上2.0cm3/g以下であり、全細
孔容積が1.2cm3/g以上3.0cm3/g以下であ
り、比表面積が800m2/g以上2000m2/g未満
である。さらに好ましくは細孔半径10Å未満の細孔容
積が0.04cm3/g以上0.7cm3/g以下であ
り、細孔半径10Å以上100Å以下の細孔容積が0.
7cm3/g以上1.8cm3/g以下であり、全細孔容
積が1.4cm3/g以上2.7cm3/g以下であり、
比表面積が1000cm2/g以上1800m2/g以下
である。
This zinc chloride activated carbon has a characteristic that pores having a pore radius of 10 ° or more and 100 ° or less, called “traditional pores”, are developed and the pore volume is specifically large. The relationship between the pore radius and the pore volume in the zinc chloride activated carbon is such that when the pore volume and the BET specific surface area are measured by a nitrogen gas adsorption method, the pore volume with a pore radius of less than 10 ° is 0.03 cm 3. / G or more and 0.8 cm 3 / g or less, the pore volume with a pore radius of 10 ° or more and 100 ° or less is 0.5 cm 3 / g or more and 2.0 cm 3 / g or less, and the total pore volume is 1. It is 2 cm 3 / g or more and 3.0 cm 3 / g or less, and the specific surface area is 800 m 2 / g or more and less than 2000 m 2 / g. More preferably the pore volume less than the pore radius 10Å is less 0.04 cm 3 / g or more 0.7cm 3 / g, 100Å volume of pores over pore radius 10Å is 0.
7 cm 3 / g or more and 1.8 cm 3 / g or less, and the total pore volume is 1.4 cm 3 / g or more and 2.7 cm 3 / g or less;
The specific surface area is not less than 1000 cm 2 / g and not more than 1800 m 2 / g.

【0015】一般的な水蒸気賦活炭の細孔容積は、トラ
ジショナル孔と呼ばれる、細孔半径が10Å以上100
Å以下の細孔容積が0.02cm3/g以上0.4cm3
/g以下である。本発明の目的とする、カルボン酸の種
類に関係なくアルコール類を高収率で得る触媒とするに
は、トラジショナル孔の細孔容積が大きい活性炭を担体
に用いることが必要である。即ち、細孔半径が10Å以
上100Å以下の細孔容積が0.5cm3/g以上2.
0cm3/g以下の活性炭を用いることが必要である。
The pore volume of a general steam activated carbon has a pore radius of 10 ° or more and is called a traditional pore.
細孔 The pore volume of not more than 0.02 cm 3 / g or more and 0.4 cm 3
/ G or less. In order to obtain a high yield of alcohols irrespective of the type of carboxylic acid as the object of the present invention, it is necessary to use activated carbon having a large pore volume of a traditional pore as a carrier. That is, a pore volume having a pore radius of 10 ° to 100 ° is 0.5 cm 3 / g or more.
It is necessary to use activated carbon of 0 cm 3 / g or less.

【0016】一方、触媒の担体としてはその構造が維持
される強度も必要であることから、担体として用いる活
性炭は、上記細孔半径と細孔容積との関係を有すること
が必要である。即ち、細孔半径が10Å未満の細孔容積
が細孔半径が10Å未満の細孔容積が0.03cm3
g以上0.8cm3/g以下であり、全細孔容積が1.
2cm3/g以上3.0cm3/g以下であり、比表面積
が800m2/g以上2000m2/g未満であることが
必要である。
On the other hand, the strength of the catalyst is required to maintain its structure, so that the activated carbon used as the carrier must have the relationship between the pore radius and the pore volume. That is, the pore volume having a pore radius of less than 10 ° is 0.03 cm 3 / pore volume having a pore radius of less than 10 °.
g and 0.8 cm 3 / g or less, and the total pore volume is 1.
2 cm 3 / g or more 3.0cm and a 3 / g or less, a specific surface area should be less than 800 m 2 / g or more 2000 m 2 / g.

【0017】本発明者らが検討した結果では、測定装置
によって窒素吸着法による細孔容積、BET比表面積の
測定結果に差が生じることがある。本発明者らは、島津
マイクロメリテックス ASAP−2400((株)島
津製作所製)を用いて測定した。細孔容積を計算するた
めのデータの処理は、BJH法を用いた。なお、本装置
によるデータ処理結果として細孔半径5Åから1500
Åのデータが得られるが、一般的に知られているように
窒素吸着法によって測定される細孔半径は、約8Åから
500Å程度であり、本発明で言う細孔半径10Å未満
とは実質上約8Åから10Å未満の細孔半径を言うもの
であり、全細孔容積とは、実質上約8Åから500Å程
度の細孔半径の細孔容積を言うものである。
According to the results examined by the present inventors, there may be a difference between the measurement results of the pore volume and the BET specific surface area by the nitrogen adsorption method depending on the measuring device. The present inventors measured using Shimadzu Micromeritex ASAP-2400 (made by Shimadzu Corporation). The data processing for calculating the pore volume used the BJH method. It should be noted that as a result of the data processing by this apparatus, the pore radius from 5 ° to 1500
Although the data of 半径 is obtained, the pore radius measured by the nitrogen adsorption method is generally about 8 ° to 500 ° as generally known, and the pore radius of less than 10 ° in the present invention is substantially less than 10 °. A pore radius of about 8 to less than 10 is referred to, and a total pore volume refers to a pore volume of a pore radius of substantially about 8 to 500.

【0018】このような細孔構造を有する活性炭をジカ
ルボン酸の直接水添の触媒担体に用いることにより特に
有効な効果を発揮する原因については明らかではない
が、水蒸気賦活炭等のガス賦活炭に比較してトランジシ
ョナル孔と呼ばれる細孔半径が10Å以上100Å以下
の細孔容量が大きいために、触媒細孔中でのカルボン
酸、水素の拡散がスムーズに進み、特にジカルボン酸を
原料とする場合には、ジカルボン酸および中間体のヒド
ロキシカルボン酸の拡散がスムーズに進み、ジカルボン
酸からヒドロキシカルボン酸、さらにジオールへの水添
が効率よく進むのではないかと推測している。
It is not clear why the activated carbon having such a pore structure exhibits a particularly effective effect when used as a catalyst carrier for direct hydrogenation of dicarboxylic acid. In comparison, since the pore volume called a transitional pore having a pore radius of 10 ° or more and 100 ° or less is large, the diffusion of carboxylic acid and hydrogen in the catalyst pores proceeds smoothly, especially when dicarboxylic acid is used as a raw material. Presumed that the diffusion of the dicarboxylic acid and the intermediate hydroxycarboxylic acid proceeded smoothly, and the hydrogenation of the dicarboxylic acid to the hydroxycarboxylic acid and further to the diol proceeded efficiently.

【0019】活性炭にルテニウムと錫および白金を担持
する方法としては浸せき法、イオン交換法、含浸法など
担持触媒の調製に一般的に用いられている任意の方法を
用いることができる。浸せき法によるときは担持する金
属成分の原料化合物を水などの溶媒に溶解して金属化合
物の溶液を調製し、この溶液に活性炭を浸せきして担体
に担持させる。担体に各金属成分を担持させる順序につ
いては特に制限はなく、全ての金属を同時に担持して
も、各成分を個別に担持してもよい。
As a method for supporting ruthenium, tin and platinum on activated carbon, any method generally used for preparing a supported catalyst such as an immersion method, an ion exchange method, and an impregnation method can be used. In the case of the immersion method, a starting compound of the metal component to be supported is dissolved in a solvent such as water to prepare a solution of the metal compound, and activated carbon is immersed in the solution to be supported on the carrier. The order in which the metal components are supported on the carrier is not particularly limited, and all metals may be supported simultaneously or each component may be supported individually.

【0020】触媒調製に用いる金属成分の原料化合物と
しては、触媒の調製法にもよるが通常は硝酸塩、硫酸
塩、塩酸塩などの鉱酸塩、酢酸塩などの有機酸塩、水酸
化物、酸化物、有機金属化合物などを用いることができ
る。その中でも水溶性の原料化合物が好ましい。具体的
にはルテニウムの原料化合物としては、塩化ルテニウ
ム、硝酸ルテニウム、ルテニウムアセチルアセトナー
ト、ルテニウムカルボニル等であり、錫の原料としては
塩化錫(II)、錫酸ナトリウム、酢酸錫(II)等で
あり、白金の原料としては、塩化白金酸、硝酸白金、白
金アセチルアセトナート、塩化白金、臭化白金、シアン
化白金等が好ましく用いられる。
The starting compound of the metal component used in the preparation of the catalyst is usually a mineral acid salt such as nitrate, sulfate or hydrochloride, an organic acid salt such as acetate, a hydroxide, An oxide, an organometallic compound, or the like can be used. Among them, a water-soluble raw material compound is preferable. Specifically, ruthenium raw material compounds include ruthenium chloride, ruthenium nitrate, ruthenium acetylacetonate, ruthenium carbonyl, and the like. Tin raw materials include tin chloride (II), sodium stannate, tin acetate (II), and the like. As a raw material of platinum, chloroplatinic acid, platinum nitrate, platinum acetylacetonate, platinum chloride, platinum bromide, platinum cyanide and the like are preferably used.

【0021】金属成分を担持した炭素質担体は乾燥し、
次いで所望により焼成した後に還元して触媒とする。乾
燥は通常100℃未満の温度で減圧下に保持するか、又
は窒素、空気などの乾燥気体を流通させて行う。また焼
成は通常100〜600℃の温度で1時間から24時
間、窒素、空気などを流通させながら行う。還元は液相
還元又は気相還元のいずれで行ってもよい。気相還元に
用いる還元ガスとしては、水素、ヒドラジン蒸気、ホル
マリン、一酸化炭素等を用いることができる。温度とし
ては、150℃〜500℃の温度が好ましい。上記焼成
した触媒を容器に仕込み、所望の温度に昇温した後に還
元ガスを充填することにより還元を行うことができる。
所望に応じてこの還元操作を繰り返してもよい。また、
容器に還元ガスを流通させて還元操作を行ってもよい。
液相還元に用いる還元剤としては、上記気相還元に用い
る還元剤の他に水素化硼素ナトリウム、水素化リチウム
アルミニウム、ジエチル亜鉛等の還元剤を用いることが
できる。
The carbonaceous carrier carrying the metal component is dried,
Then, if necessary, after calcining, it is reduced to obtain a catalyst. Drying is usually performed at a temperature lower than 100 ° C. under reduced pressure, or by flowing a dry gas such as nitrogen or air. The calcination is usually performed at a temperature of 100 to 600 ° C. for 1 hour to 24 hours while flowing nitrogen, air and the like. The reduction may be performed by either liquid phase reduction or gas phase reduction. Hydrogen, hydrazine vapor, formalin, carbon monoxide and the like can be used as the reducing gas used for the gas phase reduction. As the temperature, a temperature of 150C to 500C is preferable. The calcined catalyst is charged in a container, heated to a desired temperature, and then filled with a reducing gas to perform reduction.
This reduction operation may be repeated as desired. Also,
The reducing operation may be performed by flowing a reducing gas through the container.
As the reducing agent used in the liquid phase reduction, a reducing agent such as sodium borohydride, lithium aluminum hydride, diethyl zinc or the like can be used in addition to the reducing agent used in the gas phase reduction.

【0022】上記、金属成分を担持した活性炭を水およ
び/またはアルコールなどの溶媒中に懸濁させ、室温か
ら250℃の温度で常圧から20MPaの圧力下、上記
した還元剤を用いて還元することにより行うことができ
る。水素を還元ガスとして用い、150℃〜500℃の
温度で30分から24時間気相還元する方法を好ましく
用いることができる。本発明の触媒において、ルテニウ
ムと錫の担持量は担体に対してそれぞれ金属として0.
5〜50重量%、好ましくは1〜10重量%である。ル
テニウム、錫の比率は金属として元素比でルテニウム:
錫比が1:0.1〜1:2が好ましく、さらに好ましく
は1:0.2〜1:1.3である。白金の担持量は、金
属として元素比でルテニウムに対して0.01〜5が好
ましく、さらに好ましくは0.1〜2の範囲である。
The activated carbon supporting the metal component is suspended in a solvent such as water and / or alcohol, and reduced using the above-described reducing agent at a temperature of room temperature to 250 ° C. and a pressure of normal pressure to 20 MPa. It can be done by doing. A method in which hydrogen is used as a reducing gas and gas phase reduction is performed at a temperature of 150 ° C. to 500 ° C. for 30 minutes to 24 hours can be preferably used. In the catalyst of the present invention, the supported amounts of ruthenium and tin are each 0.1% as metal to the support.
It is 5 to 50% by weight, preferably 1 to 10% by weight. The ratio of ruthenium and tin is as follows:
The tin ratio is preferably from 1: 0.1 to 1: 2, and more preferably from 1: 0.2 to 1: 1.3. The supported amount of platinum is preferably 0.01 to 5, more preferably 0.1 to 2, as a metal relative to ruthenium in elemental ratio.

【0023】本発明においてアルコール類の製造に用い
られる原料は、カルボン酸および/又はカルボン酸無水
物である。具体的にはギ酸、酢酸、プロピオン酸、酪
酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、ペ
ラルゴン酸等の脂肪族飽和モノカルボン酸類、シュウ
酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピ
メリン酸、スベリン酸、アゼライン酸、セバシン酸、メ
チルコハク酸、2,2−ジメチルコハク酸、2,3−ジ
メチルコハク酸、メチルマロン酸、α−メチルグルタル
酸、β−メチルグルタル酸、2,2−ジメチルグルタル
酸、2,4−ジメチルグルタル酸、3.3−ジメチルグ
ルタル酸、2−エチル−2−メチルコハク酸、2,2,
5,5−テトラメチルヘキサン二酸、3−メチルアジピ
ン酸、コハク酸無水物、アジピン酸無水物、ポリアジピ
ン酸無水物等の脂肪族飽和ジカルボン酸類および脂肪族
飽和ジカルボン酸無水物類、アクリル酸、クロトン酸、
イソクロトン酸、ビニル酢酸、メタクリル酸等の脂肪族
不飽和モノカルボン酸類、フマル酸、マレイン酸、無水
マレイン酸、メチルマレイン酸、メチルフマル酸、イタ
コン酸、シトラコン酸、メサコン酸、グルタコン酸、ム
スコン酸、2−メチルムスコン酸、アセチレンジカルボ
ン酸、1−プロピン−1,3−ジカルボン酸類等の脂肪
族不飽和ジカルボン酸類および脂肪族不飽和ジカルボン
酸無水物、メチントリカルボン酸、エチレントリカルボ
ン酸などの脂肪族ポリカルボン酸類、シクロヘキサンカ
ルボン酸、1,2−シクロヘキサンジカルボン酸、1,
3−シクロヘキサンジカルボン酸、1,4−シクロヘキ
サンジカルボン酸、3,3−テトラメチレングルタル
酸、コラン酸、リトコール酸、コール酸等の脂肪族脂環
式モノ及びジカルボン酸類、安息香酸、トルイル酸、ジ
メチル安息香酸、クミン酸、フタル酸、無水フタル酸、
イソフタル酸、テレフタル酸等の芳香族カルボン酸類お
よび芳香族カルボン酸無水物である。
In the present invention, the raw materials used for producing alcohols are carboxylic acids and / or carboxylic anhydrides. Specifically, aliphatic saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, and pelargonic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid , Pimelic acid, suberic acid, azelaic acid, sebacic acid, methylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, methylmalonic acid, α-methylglutaric acid, β-methylglutaric acid, 2, 2-dimethylglutaric acid, 2,4-dimethylglutaric acid, 3.3-dimethylglutaric acid, 2-ethyl-2-methylsuccinic acid, 2,2
Aliphatic saturated dicarboxylic acids and aliphatic saturated dicarboxylic anhydrides such as 5,5-tetramethylhexane diacid, 3-methyl adipic acid, succinic anhydride, adipic anhydride, polyadipic anhydride, acrylic acid, Crotonic acid,
Aliphatic unsaturated monocarboxylic acids such as isocrotonic acid, vinyl acetic acid and methacrylic acid, fumaric acid, maleic acid, maleic anhydride, methyl maleic acid, methyl fumaric acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, and muconic acid; Aliphatic unsaturated dicarboxylic acids such as 2-methylmusconic acid, acetylenedicarboxylic acid, 1-propyne-1,3-dicarboxylic acid, and aliphatic polycarboxylic acids such as aliphatic unsaturated dicarboxylic anhydride, methinetricarboxylic acid and ethylenetricarboxylic acid Carboxylic acids, cyclohexanecarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,
Aliphatic alicyclic mono- and dicarboxylic acids such as 3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 3,3-tetramethyleneglutaric acid, cholanic acid, lithocholic acid, cholic acid, benzoic acid, toluic acid, dimethyl Benzoic acid, cumic acid, phthalic acid, phthalic anhydride,
Aromatic carboxylic acids such as isophthalic acid and terephthalic acid and aromatic carboxylic anhydrides.

【0024】この中でも下記一般式(1)で示されるジ
カルボン酸および下記一般式(2)で示されるジカルボ
ン酸無水物が好ましく、具体的にはコハク酸、グルタル
酸、アジピン酸、シクロヘキサンジカルボン酸、マレイ
ン酸、フマル酸、テレフタル酸、無水コハク酸、無水マ
レイン酸が挙げられる。分子内に窒素、硫黄、リン元素
を持たないカルボン酸および/又はカルボン酸無水物が
好ましい。
Of these, dicarboxylic acids represented by the following general formula (1) and dicarboxylic anhydrides represented by the following general formula (2) are preferred. Specifically, succinic acid, glutaric acid, adipic acid, cyclohexanedicarboxylic acid, Examples include maleic acid, fumaric acid, terephthalic acid, succinic anhydride, and maleic anhydride. Carboxylic acids and / or carboxylic anhydrides having no nitrogen, sulfur or phosphorus elements in the molecule are preferred.

【0025】[0025]

【化3】 Embedded image

【0026】(式中、R1、R2はそれぞれ独立に炭素数
が2〜20である二価の炭化水素基を表す。) なお、不飽和カルボン酸および不飽和カルボン酸無水物
を原料に用いた場合には本発明の触媒を用いた水添反応
によって飽和のアルコール類が得られ、また芳香族カル
ボン酸および芳香族カルボン酸無水物を原料に用いた場
合には、脂環式アルコール類が得られる。
(In the formula, R 1 and R 2 each independently represent a divalent hydrocarbon group having 2 to 20 carbon atoms.) An unsaturated carboxylic acid and an unsaturated carboxylic anhydride are used as raw materials. When used, saturated alcohols are obtained by hydrogenation reaction using the catalyst of the present invention, and when aromatic carboxylic acids and aromatic carboxylic anhydrides are used as raw materials, alicyclic alcohols are used. Is obtained.

【0027】さらに、原料のカルボン酸は、複数のカル
ボン酸の混合物であっても、複数のカルボン酸無水物の
混合物であっても、カルボン酸とカルボン酸無水物の混
合物であっても何ら問題ない。好ましいジカルボン酸の
混合物としては、コハク酸、グルタル酸、アジピン酸を
含有する混合物である。また、シクロヘキサノンおよび
/又はシクロヘキサノールを酸化してアジピン酸を製造
する際に副生するジカルボン酸類にはコハク酸、グルタ
ル酸、アジピン酸が含まれており、本発明の特に好適な
原料である。このジカルボン酸を原料として有用な化合
物を得ることができれば、アジピン酸製造に際して発生
する廃棄物の量を減らすことができること、またこの副
生物はコハク酸、グルタル酸、アジピン酸が含まれてい
ることから1,4−ブタンジオール、1,5−ペンタン
ジオール、1,6−ヘキサンジオールという工業的に有
用なジオール類をも併産することができ、本発明の触媒
のカルボン酸原料の種類を問わず、高収率でアルコール
類を得ることができるという特徴を発揮するに最適の原
料であることから特に好ましい。
Further, the starting carboxylic acid may be any mixture of a plurality of carboxylic acids, a mixture of a plurality of carboxylic anhydrides, or a mixture of a carboxylic acid and a carboxylic anhydride. Absent. A preferred mixture of dicarboxylic acids is a mixture containing succinic acid, glutaric acid and adipic acid. Further, dicarboxylic acids which are by-produced when oxidizing cyclohexanone and / or cyclohexanol to produce adipic acid include succinic acid, glutaric acid, and adipic acid, and are particularly preferable raw materials of the present invention. If a useful compound can be obtained using this dicarboxylic acid as a raw material, the amount of waste generated during the production of adipic acid can be reduced, and this by-product contains succinic acid, glutaric acid, and adipic acid. Can also produce industrially useful diols such as 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol, regardless of the type of the carboxylic acid raw material of the catalyst of the present invention. It is particularly preferable because it is an optimal raw material for exhibiting the characteristic that alcohols can be obtained in high yield.

【0028】本発明において特に好ましく用いられる、
シクロヘキサノンおよび/又はシクロヘキサノールを硝
酸酸化してアジピン酸を製造する際に副生するジカルボ
ン酸混合物とは、アジピン酸を晶析分離したろ液であ
る。本発明ではそのろ液をそのまま用いても良いが、触
媒の水添活性が減じる時には硝酸酸化触媒の脱触媒、脱
水、脱硝酸などの工程を経たものを用いることが好まし
い。本発明では上記のルテニウム、錫および白金を前述
の活性炭に担持した触媒を用い、水の存在下にカルボン
酸および/又はカルボン酸無水物の水添反応を行う。反
応における水の量はカルボン酸および/又はカルボン酸
無水物に対して0.5〜100重量倍である。さらに好
ましくは1〜20重量倍である。水添温度においてカル
ボン酸又はカルボン酸無水物の全量が溶解する水量が好
ましい。水添反応の温度は、100〜300℃が好まし
く、さらに好ましくは130〜250℃である。水素圧
は1〜25MPa、さらに好ましくは5MPa〜20M
Paである。
Particularly preferably used in the present invention,
The dicarboxylic acid mixture by-produced when producing adipic acid by nitric acid oxidation of cyclohexanone and / or cyclohexanol is a filtrate obtained by crystallizing and separating adipic acid. In the present invention, the filtrate may be used as it is, but when the hydrogenation activity of the catalyst decreases, it is preferable to use a filtrate that has undergone steps such as decatalysis, dehydration, and denitrification of the nitric acid oxidation catalyst. In the present invention, a hydrogenation reaction of a carboxylic acid and / or a carboxylic anhydride is carried out in the presence of water using a catalyst in which the above-mentioned ruthenium, tin and platinum are supported on activated carbon. The amount of water in the reaction is 0.5 to 100 times the weight of the carboxylic acid and / or carboxylic anhydride. More preferably, it is 1 to 20 times by weight. The amount of water in which the total amount of the carboxylic acid or carboxylic anhydride is dissolved at the hydrogenation temperature is preferred. The temperature of the hydrogenation reaction is preferably from 100 to 300 ° C, more preferably from 130 to 250 ° C. Hydrogen pressure is 1 to 25 MPa, more preferably 5 MPa to 20 M
Pa.

【0029】水添反応は連続、回分のいずれで行っても
よい、また反応型式としては液相懸濁反応、固定床流通
反応のいずれも用いることができる。本発明において原
料にシクロヘキサノンおよび/又はシクロヘキサノール
を硝酸酸化してアジピン酸を製造する際に副生するコハ
ク酸、グルタル酸、アジピン酸のジカルボン酸混合物を
用いた場合には水添生成物として1,4−ブタンジオー
ル、1,5−ペンタンジオール、1,6−ヘキサンジオ
ールの混合物が得られるが、これらのジオールは必要に
応じて通常の精製方法、例えば蒸留分離によって精製す
ることができる。
The hydrogenation reaction may be carried out either continuously or batchwise. The reaction type may be any of a liquid phase suspension reaction and a fixed bed flow reaction. In the present invention, when a dicarboxylic acid mixture of succinic acid, glutaric acid, and adipic acid, which is a by-product of producing adipic acid by nitric acid oxidation of cyclohexanone and / or cyclohexanol, is used as a hydrogenated product, A mixture of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol is obtained, and these diols can be purified by a usual purification method, for example, distillation separation as required.

【0030】[0030]

【発明の実施の形態】以下、本発明を実施例などを用い
て更に詳細に説明する。なお、反応成績のうち、原料の
転化率は液体クロマトグラフィーの分析値から算出し、
ジオール類の収率はガスクロマトグラフィーの分析値か
ら算出した。また、コハク酸、グルタル酸、アジピン酸
の混合物はアジピン酸を晶析分離したろ液から脱水、脱
硝酸処理して得た。組成は液体クロマトグラフィーの分
析によりコハク酸23重量%、グルタル酸60重量%、
アジピン酸17重量%であった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to embodiments. Among the reaction results, the conversion of the raw material was calculated from the analytical value of liquid chromatography,
The yield of the diols was calculated from the analytical value of gas chromatography. Further, a mixture of succinic acid, glutaric acid and adipic acid was obtained by dehydrating and denitrifying a filtrate obtained by crystallizing and separating adipic acid. The composition was determined by liquid chromatography to be 23% by weight of succinic acid, 60% by weight of glutaric acid,
Adipic acid was 17% by weight.

【0031】[0031]

【実施例1】触媒の担体に、二村化学工業(株)製、グ
レード名「太閤SGP」の活性炭を用いた。この活性炭
の細孔容積、全比表面積を、窒素ガス吸着法によりカル
ロエルバ社製ソープトマチックを用いて二村化学工業
(株)で測定した結果は、細孔半径10Å未満の細孔容
積は0.05cm3/g、細孔半径10Å以上100Å
以下の細孔容量は0.75cm3/g、全細孔容量は
1.08cm3/g、比表面積は、1050m2/gで
あった。さらに島津マイクロメリテックス ASAP−
2400を用いて窒素ガス吸着法により同活性炭を測定
したところ、細孔半径10Å未満の細孔容積は0.52
cm3/g、細孔半径10Å以上100Å以下の細孔容
量は1.02cm3/g、全細孔容量は2.02cm3
g、比表面積は、1786m2/gであった。
Example 1 Activated carbon having a grade name of "Taiko SGP" manufactured by Nimura Chemical Industry Co., Ltd. was used as a catalyst carrier. The pore volume and the total specific surface area of the activated carbon were measured by Nimura Chemical Industry Co., Ltd. using a nitrogen-absorbing method using Carlo Elba's soapmatic. 05cm 3 / g, pore radius 10 ° or more and 100 °
The following pore volume was 0.75 cm 3 / g, the total pore volume was 1.08 cm 3 / g, and the specific surface area was 1050 m 2 / g. Furthermore, Shimadzu Micromeritex ASAP-
When the activated carbon was measured by a nitrogen gas adsorption method using 2400, the pore volume with a pore radius of less than 10 ° was 0.52.
cm 3 / g, 100Å or less of the pore volume or pore radius 10Å is 1.02 cm 3 / g, total pore volume 2.02cm 3 /
g and specific surface area were 1786 m2 / g.

【0032】<Ru−Sn−Pt触媒の調製>100m
lのナスフラスコに塩化白金酸6水和物0.48gを入
れ、5N−塩酸3.36mlを加えて溶解した。この溶
液に塩化錫(II価)2水和物0.51gを入れて溶解
し、3塩化ルテニウム3水和物0.84gを入れて溶解
させた。この溶液に上記活性炭3.00gを加え、室温
で15時間静置した。エバポレーターを用いて70℃、
2.7kPaで水を留去した後、窒素ガス雰囲気下15
0℃、2時間焼成処理し、ついで水素雰囲気下450℃
で2時間還元処理した。再び窒素ガス雰囲気にし、室温
まで冷却した後に0.1%酸素/窒素雰囲気で2時間静
置した。上記方法により6.1重量%ルテニウム−5.
0重量%錫−3.4重量%白金を活性炭に担持した触媒
(担持量は活性炭に対する値である。)を調製した。
<Preparation of Ru-Sn-Pt catalyst>
0.48 g of chloroplatinic acid hexahydrate was placed in a 1-liter eggplant flask, and 3.36 ml of 5N hydrochloric acid was added to dissolve it. To this solution, 0.51 g of tin chloride (II) dihydrate was added and dissolved, and 0.84 g of ruthenium trichloride trihydrate was added and dissolved. 3.00 g of the above activated carbon was added to this solution, and the solution was allowed to stand at room temperature for 15 hours. 70 ° C. using an evaporator,
After water was distilled off at 2.7 kPa, the water was removed under a nitrogen gas atmosphere.
Baking treatment at 0 ° C for 2 hours, and then 450 ° C in a hydrogen atmosphere
For 2 hours. The atmosphere was returned to a nitrogen gas atmosphere, cooled to room temperature, and allowed to stand in a 0.1% oxygen / nitrogen atmosphere for 2 hours. 6.1 wt% ruthenium according to the above method-5.
A catalyst in which 0% by weight tin-3.4% by weight platinum was supported on activated carbon (the supported amount is a value based on the activated carbon) was prepared.

【0033】<コハク酸、グルタル酸、アジピン酸混合
物の水素還元反応>容量30mlのオートクレーブに、
水5g、上記コハク酸、グルタル酸、アジピン酸の混合
物2.1gと上記方法で調製した触媒0.15gを仕込
み、室温下窒素でオートクレーブ内の雰囲気を置換した
後、水素を2.0MPaに圧入し、180℃まで昇温し
た。180℃に達した時点で水素を圧入し15MPaと
した。この圧力で10時間水素化還元反応を行った。反
応終了後、デカンテーションにより触媒を分離し、触媒
は精製水で洗浄した。デカンテーションにより分離した
反応液と触媒洗浄液を合わせて各ジカルボン酸の転化率
とジオールの収率を液体クロマトグラフィーとガスクロ
マトグラフィーによる分析で求めた。その結果、コハク
酸、グルタル酸、アジピン酸の転化率はそれぞれ94
%、94%、97%であり、1,4−ブタンジオール、
1,5−ペンタンジオール、1,6−ヘキサンジオール
の収率は、それぞれ50%、76%、61%であった。
<Hydrogen reduction reaction of a mixture of succinic acid, glutaric acid, and adipic acid> In a 30 ml autoclave,
5 g of water, 2.1 g of a mixture of the above-mentioned succinic acid, glutaric acid and adipic acid and 0.15 g of the catalyst prepared by the above method were charged, and the atmosphere in the autoclave was replaced with nitrogen at room temperature, and then hydrogen was injected to 2.0 MPa. Then, the temperature was raised to 180 ° C. When the temperature reached 180 ° C., hydrogen was injected to 15 MPa. A hydrogenation reduction reaction was performed at this pressure for 10 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The conversion rate of each dicarboxylic acid and the yield of diol were determined by liquid chromatography and gas chromatography analysis by combining the reaction solution separated by decantation and the catalyst washing solution. As a result, the conversion of succinic acid, glutaric acid, and adipic acid was 94% each.
%, 94%, 97%, 1,4-butanediol,
The yields of 1,5-pentanediol and 1,6-hexanediol were 50%, 76%, and 61%, respectively.

【0034】[0034]

【比較例1】三菱化学製石炭系活性炭CX−2の細孔容
積、比表面積を実施例1と同様に島津マイクロメリテッ
クス ASAP−2400を用いて窒素ガス吸着法によ
り測定したところ、細孔半径10Å以下の細孔容積が
0.57cm3/g、細孔半径10Å以上100Å以下
の細孔容量が0.44cm3/g、全細孔容量が1.0
7cm3/g、比表面積は、1615m2/gであった。
Comparative Example 1 The pore volume and the specific surface area of the coal activated carbon CX-2 manufactured by Mitsubishi Chemical were measured by the nitrogen gas adsorption method using Shimadzu Micromeritex ASAP-2400 in the same manner as in Example 1. A pore volume of 10 ° or less is 0.57 cm 3 / g, a pore volume of a pore radius of 10 ° to 100 ° is 0.44 cm 3 / g, and a total pore volume is 1.0.
7 cm 3 / g and the specific surface area was 1615 m 2 / g.

【0035】特開平10−71332号公報の実施例に
従って、CX−2に30%硝酸を加え、95℃で3時間
処理した。この活性炭を濾過、水洗、乾燥後、上記と同
様の方法により細孔容積、比表面積を測定した。その結
果、細孔半径10Å以下の細孔容積が0.45cm3
g、細孔半径10Å以上100Å以下の細孔容量が0.
38cm3/g、全細孔容量が0.89cm3/g、比表
面積は、1332m2/gであり、細孔半径10〜10
0Åの細孔容量が本発明の塩化亜鉛賦活炭とは異なるこ
とを確認した。
According to the example of JP-A-10-71332, 30% nitric acid was added to CX-2 and the mixture was treated at 95 ° C. for 3 hours. After filtering, washing and drying the activated carbon, the pore volume and the specific surface area were measured in the same manner as described above. As a result, the pore volume with a pore radius of 10 ° or less was 0.45 cm 3 /
g, the pore volume of pores having a pore radius of 10 ° or more and 100 ° or less is 0.1 g.
38 cm 3 / g, total pore volume 0.89 cm 3 / g, specific surface area 1332 m 2 / g, pore radius 10-10
It was confirmed that the pore volume of 0 ° was different from the activated zinc chloride activated carbon of the present invention.

【0036】[0036]

【比較例2】比較例1と同様の方法、装置を用いて測定
した細孔容積、比表面積が、細孔半径10Å未満の細孔
容積が0.35cm3/g、細孔半径10Å以上100
Å未満の細孔容積が0.23cm3/g、全細孔容量が
0.61cm3/g、比表面積が937m2/gである活
性炭を用いて、実施例1の触媒調製と同様にしてルテニ
ウム−錫−白金/活性炭触媒を調製した。この触媒を用
い、実施例1と同様の手順で上記ジカルボン酸混合物の
水素化還元反応を行った。その結果コハク酸、グルタル
酸、アジピン酸の転化率はそれぞれ91%、90%、9
2%であり、1,4−ブタンジオール、1,5−ペンタ
ンジオール、1,6−ヘキサンジオールの収率はそれぞ
れ40%、68%、55%であった。
Comparative Example 2 A pore volume and a specific surface area measured using the same method and apparatus as those of Comparative Example 1 were 0.35 cm 3 / g with a pore radius of less than 10 ° and a pore radius of 10 ° or more and 100 mm or less.
Using activated carbon having a pore volume of less than 0.23 cm 3 / g, a total pore volume of 0.61 cm 3 / g, and a specific surface area of 937 m 2 / g, in the same manner as in the catalyst preparation of Example 1, A ruthenium-tin-platinum / activated carbon catalyst was prepared. Using this catalyst, a hydrogenation reduction reaction of the dicarboxylic acid mixture was performed in the same procedure as in Example 1. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 91%, 90% and 9%, respectively.
The yields of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were 40%, 68%, and 55%, respectively.

【0037】[0037]

【実施例2】容量50mlのオートクレーブに、水5
g、コハク酸2.10gと実施例1で調製した触媒0.
30gを仕込み、室温下窒素でオートクレーブ内の雰囲
気を置換した後、水素を2.0MPa圧入し、180℃
まで昇温した。180℃に達した時点で水素を圧入し1
5MPaとした。この圧力で6時間水添反応を行った。
反応終了後、デカンテーションにより触媒を分離し、触
媒は精製水で洗浄した。デカンテーションにより分離し
た反応液と触媒洗浄液を合わせてコハク酸の転化率と
1,4−ブタンジオールの収率を液体クロマトグラフィ
ーとガスクロマトグラフィーによる分析で求めた。その
結果、コハク酸の転化率は98%であり、1,4−ブタ
ンジオールの収率は、88%であった。
Example 2 Water 5 was added to an autoclave having a capacity of 50 ml.
g, 2.10 g of succinic acid and the catalyst prepared in Example 1.
After charging 30 g and replacing the atmosphere in the autoclave with nitrogen at room temperature, 2.0 MPa of hydrogen was injected, and 180 ° C.
Temperature. When the temperature reached 180 ° C, hydrogen was injected and
It was 5 MPa. The hydrogenation reaction was performed at this pressure for 6 hours.
After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction solution separated by decantation and the catalyst washing solution were combined, and the conversion of succinic acid and the yield of 1,4-butanediol were determined by liquid chromatography and gas chromatography. As a result, the conversion of succinic acid was 98%, and the yield of 1,4-butanediol was 88%.

【0038】[0038]

【実施例3】容量50mlのオートクレーブに、水5
g、グルタル酸2.10gと実施例1で調製した触媒
0.30gを仕込み、室温下窒素でオートクレーブ内の
雰囲気を置換した後、水素を2.0MPa圧入し、24
0℃まで昇温した。240℃に達した時点で水素を圧入
し9.8MPaとした。この圧力で3.5時間水添反応
を行った。反応終了後、デカンテーションにより触媒を
分離し、触媒は精製水で洗浄した。デカンテーションに
より分離した反応液と触媒洗浄液を合わせてグルタル酸
の転化率と1,5−ペンタンジオールの収率を液体クロ
マトグラフィーとガスクロマトグラフィーによる分析で
求めた。その結果、グルタル酸の転化率は100%であ
り、1,5−ペンタンジオールの収率は、92%であっ
た。
Example 3 Water 5 was placed in an autoclave having a capacity of 50 ml.
g, 2.10 g of glutaric acid and 0.30 g of the catalyst prepared in Example 1, and the atmosphere in the autoclave was replaced with nitrogen at room temperature.
The temperature was raised to 0 ° C. When the temperature reached 240 ° C., hydrogen was injected to 9.8 MPa. A hydrogenation reaction was performed at this pressure for 3.5 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The conversion rate of glutaric acid and the yield of 1,5-pentanediol were determined by liquid chromatography and gas chromatography analysis by combining the reaction solution separated by decantation and the catalyst washing solution. As a result, the conversion of glutaric acid was 100%, and the yield of 1,5-pentanediol was 92%.

【0039】[0039]

【実施例4】容量50mlのオートクレーブに、水5
g、アジピン酸2.10gと実施例1で調製した触媒
0.30gを仕込み、室温下窒素でオートクレーブ内の
雰囲気を置換した後、水素を2.0MPa圧入し、24
0℃まで昇温した。240℃に達した時点で水素を圧入
し9.8MPaとした。この圧力で3.5時間水添反応
を行った。反応終了後、デカンテーションにより触媒を
分離し、触媒は精製水で洗浄した。デカンテーションに
より分離した反応液と触媒洗浄液を合わせてアジピン酸
の転化率と1,6−ヘキサンジオールの収率を液体クロ
マトグラフィーとガスクロマトグラフィーによる分析で
求めた。その結果、アジピン酸の転化率は100%であ
り、1,6−ヘキサンジオールの収率は、90%であっ
た。
Example 4 Water 5 was added to an autoclave having a capacity of 50 ml.
g, 2.10 g of adipic acid and 0.30 g of the catalyst prepared in Example 1, and the atmosphere in the autoclave was replaced with nitrogen at room temperature.
The temperature was raised to 0 ° C. When the temperature reached 240 ° C., hydrogen was injected to 9.8 MPa. A hydrogenation reaction was performed at this pressure for 3.5 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction solution separated by decantation and the catalyst washing solution were combined, and the conversion of adipic acid and the yield of 1,6-hexanediol were determined by liquid chromatography and gas chromatography. As a result, the conversion of adipic acid was 100%, and the yield of 1,6-hexanediol was 90%.

【0040】[0040]

【発明の効果】本発明は、カルボン酸の種類に関わら
ず、直接水添により高い収率でアルコール類を製造する
ことができるものである。特にシクロヘキサンノンおよ
び/又はシクロヘキサノールを硝酸酸化してアジピン酸
を製造する際の副生物であるコハク酸、グルタル酸、ア
ジピン酸を含むジカルボン酸の混合物から、1,4−ブ
タンジオール、1.5−ペンタンジオール、1,6−ヘ
キサンジオールの混合物を高収率で製造することができ
る。
According to the present invention, regardless of the type of carboxylic acid, alcohols can be produced with high yield by direct hydrogenation. In particular, a mixture of dicarboxylic acids including succinic acid, glutaric acid, and adipic acid, which are by-products in producing adipic acid by nitric acid oxidation of cyclohexanenone and / or cyclohexanol, is converted to 1,4-butanediol, 1.5 A mixture of -pentanediol and 1,6-hexanediol can be produced in high yield.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 33/26 C07C 33/26 // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA03 AA14 BA08A BA08B BB02A BB02B BC22A BC22B BC70A BC70B BC75A BC75B CB02 CB70 DA05 EA02Y EC04X EC04Y EC05X EC05Y EC08X EC08Y EC09X EC09Y EC12X EC12Y EC13X EC13Y EC14X EC14Y EC18X EC18Y 4H006 AA02 AC11 AC42 BA11 BA23 BA26 BA32 BA85 BC10 BC11 BE20 FC50 FE11 FG26 FG29 4H039 CA60 CB40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 33/26 C07C 33/26 // C07B 61/00 300 C07B 61/00 300 F term (Reference) 4G069 AA03 AA14 BA08A BA08B BB02A BB02B BC22A BC22B BC70A BC70B BC75A BC75B CB02 CB70 DA05 EA02Y EC04X EC04Y EC05X EC05Y EC08X EC08Y EC09X EC09Y EC12X EC12Y EC13X EC13Y EC14X EC14Y EC18BA11 BC18 AC12 BC18 ABC18H

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ルテニウム、錫および白金を活性炭に担
持した触媒であり、該活性炭が塩化亜鉛賦活炭であるこ
とを特徴とするカルボン酸水添用触媒。
1. A catalyst for hydrogenating carboxylic acid, which is a catalyst in which ruthenium, tin and platinum are supported on activated carbon, wherein the activated carbon is activated carbon with zinc chloride.
【請求項2】 ルテニウム、錫および白金を活性炭に担
持した触媒であって該活性炭の細孔半径が10Å未満の
細孔容積が0.03cm3/g以上0.8cm3/g以
下、細孔半径が10Å以上100Å以下の細孔容積が
0.5cm3/g以上2.0cm3/g以下であり、全細
孔容積が1.2cm3/g以上3.0cm 3/g以下、比
表面積が800m2/g以上2,000m2/g未満であ
ることを特徴とするカルボン酸水添用触媒。
2. Activated carbon supports ruthenium, tin and platinum.
Catalyst having a pore radius of less than 10 °
Pore volume is 0.03cmThree/ G more than 0.8cmThree/ G or less
Below, the pore volume whose pore radius is 10 ° or more and 100 ° or less
0.5cmThree/ G over 2.0cmThree/ G or less
1.2 cm pore volumeThree/ G or more and 3.0 cm Three/ G or less, ratio
800m surface areaTwo/ G or more and 2,000mTwo/ G
A catalyst for hydrogenating carboxylic acids, comprising:
【請求項3】 カルボン酸および/又はカルボン酸無水
物を触媒と水の存在下、水素と反応させて水添し、アル
コールを製造する方法において、該触媒として請求項1
又は2記載のカルボン酸水添用触媒を用いることを特徴
とするアルコールの製造方法。
3. A method for producing an alcohol by reacting a carboxylic acid and / or carboxylic anhydride with hydrogen in the presence of a catalyst and water to produce an alcohol.
Or a method for producing an alcohol, comprising using the catalyst for hydrogenating a carboxylic acid according to 2 above.
【請求項4】 カルボン酸が一般式(1)で示されるジ
カルボン酸から選ばれる少なくとも1種のジカルボン酸
であり、カルボン酸無水物が一般式(2)で示される少
なくとも1種のジカルボン酸無水物であることを特徴と
する請求項3記載のアルコールの製造方法。 【化1】 (式中、R1およびR2はそれぞれ独立に炭素数が2〜2
0である二価の炭化水素基を表す。)
4. The carboxylic acid is at least one dicarboxylic acid selected from dicarboxylic acids represented by the general formula (1), and the carboxylic anhydride is at least one dicarboxylic anhydride represented by the general formula (2). The method for producing an alcohol according to claim 3, wherein the alcohol is a product. Embedded image (Wherein R 1 and R 2 each independently have 2 to 2 carbon atoms)
Represents a divalent hydrocarbon group which is 0. )
【請求項5】 カルボン酸がコハク酸、グルタル酸、ア
ジピン酸、シクロヘキサンジカルボン酸、マレイン酸、
フマル酸およびテレフタル酸から選ばれる少なくとも1
種を含むカルボン酸であり、カルボン酸無水物が無水コ
ハク酸および無水マレイン酸から選ばれる少なくとも1
種を含むカルボン酸無水物である請求項3又は4記載の
アルコールの製造方法。
5. The method of claim 1, wherein the carboxylic acid is succinic acid, glutaric acid, adipic acid, cyclohexanedicarboxylic acid, maleic acid,
At least one selected from fumaric acid and terephthalic acid
A carboxylic acid containing a seed, wherein the carboxylic anhydride is at least one selected from succinic anhydride and maleic anhydride.
5. The method for producing an alcohol according to claim 3, which is a carboxylic anhydride containing a seed.
【請求項6】 カルボン酸および/又はカルボン酸無水
物がコハク酸、グルタル酸、アジピン酸を含むカルボン
酸の混合物であることを特徴とする請求項5に記載のア
ルコールの製造方法。
6. The method for producing an alcohol according to claim 5, wherein the carboxylic acid and / or carboxylic anhydride is a mixture of carboxylic acids including succinic acid, glutaric acid, and adipic acid.
【請求項7】 カルボン酸および/又はカルボン酸無水
物がシクロヘキサノン及び/又はシクロヘキサノールの
酸化反応液から回収されたコハク酸、グルタル酸、アジ
ピン酸を含むカルボン酸の混合物であることを特徴とす
る請求項6記載のアルコールの製造方法。
7. The carboxylic acid and / or carboxylic anhydride is a mixture of carboxylic acids containing succinic acid, glutaric acid, and adipic acid recovered from an oxidation reaction solution of cyclohexanone and / or cyclohexanol. A method for producing an alcohol according to claim 6.
【請求項8】 温度100℃〜300℃、水素圧1MP
a〜25MPaの条件下でカルボン酸および/又はカル
ボン酸無水物を水素と反応させることを特徴とする請求
項3〜7のいずれかに記載のアルコールの製造方法。
8. Temperature 100 ° C. to 300 ° C., hydrogen pressure 1MP
The method for producing an alcohol according to any one of claims 3 to 7, wherein the carboxylic acid and / or carboxylic anhydride is reacted with hydrogen under the conditions of a to 25 MPa.
JP2000130777A 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst Expired - Fee Related JP4472109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130777A JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26726799 1999-09-21
JP11-267267 1999-09-21
JP2000130777A JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2001157841A true JP2001157841A (en) 2001-06-12
JP4472109B2 JP4472109B2 (en) 2010-06-02

Family

ID=26547788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130777A Expired - Fee Related JP4472109B2 (en) 1999-09-21 2000-04-28 Carboxylic acid hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP4472109B2 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076348A1 (en) * 2002-03-11 2003-09-18 Nippon Shokubai Co., Ltd. Method for treating waste water
JP2006504788A (en) * 2002-11-01 2006-02-09 カーギル,インコーポレイティド Method for producing 1,3-propanediol
JP2006063004A (en) * 2004-08-26 2006-03-09 Kao Corp Method for producing catechins-containing composition
US7538068B2 (en) 2005-03-18 2009-05-26 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent and method of manufacturing the same
WO2010014151A2 (en) 2008-07-31 2010-02-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US7820853B2 (en) 2008-12-31 2010-10-26 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
US7820852B2 (en) 2008-07-31 2010-10-26 Celanese International Corporation Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
US8080694B2 (en) 2008-07-31 2011-12-20 Celanese International Corporation Catalyst for gas phase hydrogenation of carboxylic acids having a support modified with a reducible metal oxide
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8487143B2 (en) 2008-07-31 2013-07-16 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8569549B2 (en) 2010-02-02 2013-10-29 Celanese International Corporation Catalyst supports having crystalline support modifiers
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8704008B2 (en) 2010-07-09 2014-04-22 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US8829250B2 (en) 2010-07-09 2014-09-09 Celanese International Corporation Finishing reactor for purifying ethanol
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8865609B2 (en) 2012-01-06 2014-10-21 Celanese International Corporation Hydrogenation catalysts
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9051238B2 (en) 2010-02-02 2015-06-09 Celanese International Corporation Process for recovering ethanol
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
CN105142784A (en) * 2013-04-25 2015-12-09 日产自动车株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
JP2017515656A (en) * 2014-04-07 2017-06-15 ロッテ ケミカル コーポレーション Composite metal catalyst composition, method for producing 1,4-cyclohexanedimethanol using the same, and apparatus therefor
WO2018164193A1 (en) 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
WO2020022256A1 (en) 2018-07-23 2020-01-30 三菱ケミカル株式会社 Alcohol production method and catalyst
US10573901B2 (en) 2013-04-25 2020-02-25 Tanaka Kikinzoku Kogyo K.K. Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076348A1 (en) * 2002-03-11 2003-09-18 Nippon Shokubai Co., Ltd. Method for treating waste water
CN1323036C (en) * 2002-03-11 2007-06-27 株式会社日本触媒 Method for treating waste water
US7247240B2 (en) 2002-03-11 2007-07-24 Nippon Shokubai Co., Ltd. Method for treating waste water
JP2006504788A (en) * 2002-11-01 2006-02-09 カーギル,インコーポレイティド Method for producing 1,3-propanediol
JP2006063004A (en) * 2004-08-26 2006-03-09 Kao Corp Method for producing catechins-containing composition
US7538068B2 (en) 2005-03-18 2009-05-26 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent and method of manufacturing the same
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US7820852B2 (en) 2008-07-31 2010-10-26 Celanese International Corporation Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
US7863489B2 (en) 2008-07-31 2011-01-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
CN102149661A (en) * 2008-07-31 2011-08-10 国际人造丝公司 Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8071821B2 (en) 2008-07-31 2011-12-06 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/ tin catalyst
US8080694B2 (en) 2008-07-31 2011-12-20 Celanese International Corporation Catalyst for gas phase hydrogenation of carboxylic acids having a support modified with a reducible metal oxide
US8487143B2 (en) 2008-07-31 2013-07-16 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US9040443B2 (en) 2008-07-31 2015-05-26 Celanese International Corporation Catalysts for making ethanol from acetic acid
US9024087B2 (en) 2008-07-31 2015-05-05 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
WO2010014151A3 (en) * 2008-07-31 2010-05-27 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8993815B2 (en) 2008-07-31 2015-03-31 Celanese International Corporation Process for vapor phase hydrogenation
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8889923B2 (en) 2008-07-31 2014-11-18 Celanese International Corporation Synthesis of ethanol from biomass
US8853122B2 (en) 2008-07-31 2014-10-07 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8754270B2 (en) 2008-07-31 2014-06-17 Celanese International Corporation Process for vapor phase hydrogenation
US8669400B2 (en) 2008-07-31 2014-03-11 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/ tin catalyst
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
WO2010014151A2 (en) 2008-07-31 2010-02-04 Celanese International Corporation Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US8471075B2 (en) 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US7820853B2 (en) 2008-12-31 2010-10-26 Celanese International Corporation Integrated process for the production of vinyl acetate from acetic acid via ethyl acetate
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8710277B2 (en) 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8211821B2 (en) 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
US8569203B2 (en) 2010-02-01 2013-10-29 Celanese International Corporation Processes for making tin-containing catalysts
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8569549B2 (en) 2010-02-02 2013-10-29 Celanese International Corporation Catalyst supports having crystalline support modifiers
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8426652B2 (en) 2010-02-02 2013-04-23 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US9051238B2 (en) 2010-02-02 2015-06-09 Celanese International Corporation Process for recovering ethanol
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US9447005B2 (en) 2010-02-02 2016-09-20 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8399719B2 (en) 2010-02-02 2013-03-19 Celanese International Corporation Process for producing a water stream from ethanol production
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8704014B2 (en) 2010-02-02 2014-04-22 Celansese International Corporation Process for purifying ethanol
US8680342B2 (en) 2010-05-07 2014-03-25 Celanese International Corporation Process for recovering alcohol produced by hydrogenating an acetic acid feed stream comprising water
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8569551B2 (en) 2010-05-07 2013-10-29 Celanese International Corporation Alcohol production process integrating acetic acid feed stream comprising water from carbonylation process
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US9670119B2 (en) 2010-07-09 2017-06-06 Celanese International Corporation Process for producing ethanol using multiple beds each having different catalysts
US9024083B2 (en) 2010-07-09 2015-05-05 Celanese International Corporation Process for the production of ethanol from an acetic acid feed and a recycled ethyl acetate feed
US9272970B2 (en) 2010-07-09 2016-03-01 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8829250B2 (en) 2010-07-09 2014-09-09 Celanese International Corporation Finishing reactor for purifying ethanol
US8704008B2 (en) 2010-07-09 2014-04-22 Celanese International Corporation Process for producing ethanol using a stacked bed reactor
US8664454B2 (en) 2010-07-09 2014-03-04 Celanese International Corporation Process for production of ethanol using a mixed feed using copper containing catalyst
US8710279B2 (en) 2010-07-09 2014-04-29 Celanese International Corporation Hydrogenolysis of ethyl acetate in alcohol separation processes
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
US8754268B2 (en) 2011-04-26 2014-06-17 Celanese International Corporation Process for removing water from alcohol mixtures
US8592635B2 (en) 2011-04-26 2013-11-26 Celanese International Corporation Integrated ethanol production by extracting halides from acetic acid
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8703868B2 (en) 2011-11-28 2014-04-22 Celanese International Corporation Integrated process for producing polyvinyl alcohol or a copolymer thereof and ethanol
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US8575406B2 (en) 2011-12-22 2013-11-05 Celanese International Corporation Catalysts having promoter metals and process for producing ethanol
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US8907142B2 (en) 2011-12-29 2014-12-09 Celanese International Corporation Process for promoting catalyst activity for ethyl acetate conversion
US8455702B1 (en) 2011-12-29 2013-06-04 Celanese International Corporation Cobalt and tin catalysts for producing ethanol
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US8865609B2 (en) 2012-01-06 2014-10-21 Celanese International Corporation Hydrogenation catalysts
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
US9381500B2 (en) 2012-01-06 2016-07-05 Celanese International Corporation Process for producing ethanol using hydrogenation catalysts
US8975200B2 (en) 2012-01-06 2015-03-10 Celanese International Corporation Hydrogenation catalysts with cobalt-modified supports
US9308523B2 (en) 2012-01-06 2016-04-12 Celanese International Corporation Hydrogenation catalysts with cobalt-modified supports
US8802588B2 (en) 2012-01-23 2014-08-12 Celanese International Corporation Bismuth catalyst composition and process for manufacturing ethanol mixture
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US9126194B2 (en) 2012-02-29 2015-09-08 Celanese International Corporation Catalyst having support containing tin and process for manufacturing ethanol
US9333496B2 (en) 2012-02-29 2016-05-10 Celanese International Corporation Cobalt/tin catalyst for producing ethanol
US8927786B2 (en) 2012-03-13 2015-01-06 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US9079172B2 (en) 2012-03-13 2015-07-14 Celanese International Corporation Promoters for cobalt-tin catalysts for reducing alkanoic acids
US9486781B2 (en) 2012-03-13 2016-11-08 Celanese International Corporation Ethanol manufacturing process over catalyst having improved radial crush strength
US8536383B1 (en) 2012-03-14 2013-09-17 Celanese International Corporation Rhodium/tin catalysts and processes for producing ethanol
US9073042B2 (en) 2012-03-14 2015-07-07 Celanese International Corporation Acetic acid hydrogenation over a group VIII metal calcined catalyst having a secondary promoter
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol
JPWO2014175098A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL AND ELECTRODE CATALYST LAYER, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
CN105142784A (en) * 2013-04-25 2015-12-09 日产自动车株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US10535881B2 (en) 2013-04-25 2020-01-14 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
US10573901B2 (en) 2013-04-25 2020-02-25 Tanaka Kikinzoku Kogyo K.K. Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
US11031604B2 (en) 2013-04-25 2021-06-08 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
CN112993270A (en) * 2013-04-25 2021-06-18 日产自动车株式会社 Catalyst, and electrode catalyst layer, membrane electrode assembly, and fuel cell using same
JP2017515656A (en) * 2014-04-07 2017-06-15 ロッテ ケミカル コーポレーション Composite metal catalyst composition, method for producing 1,4-cyclohexanedimethanol using the same, and apparatus therefor
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
WO2018164193A1 (en) 2017-03-08 2018-09-13 三菱ケミカル株式会社 Hydrogenation catalyst for carbonyl compound and alcohol production method
US11014862B2 (en) 2017-03-08 2021-05-25 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
US11352309B2 (en) 2017-03-08 2022-06-07 Mitsubishi Chemical Corporation Catalyst for hydrogenation of carbonyl compound and alcohol production method
WO2020022256A1 (en) 2018-07-23 2020-01-30 三菱ケミカル株式会社 Alcohol production method and catalyst

Also Published As

Publication number Publication date
JP4472109B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
US6495730B1 (en) Catalysts for hydrogenation of carboxylic acid
US4394299A (en) Palladium-rhodium catalyst for purification of crude terephthalic acid
JPH10306047A (en) Production of 1,6-hexanediol
US4415479A (en) Palladium on carbon catalyst for purification of crude terephthalic acid
US4467110A (en) Process for purification of crude terephthalic acid
KR19980703190A (en) Process for preparing 1,4-butanediol and tetrahydrofuran from furan
KR20190081064A (en) Noble metal-transition metal complex catalyst of carbon coated silica-alumina and preparation method of thereof
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
JP3046865B2 (en) Method for producing chloroform from carbon tetrachloride and catalyst composition used therefor
KR102223388B1 (en) Preparation method of ruthenium-platinum-tin catalyst for hydrogenation of cyclohexane dicarboxylic acid (CHDA) and method for producing cyclohexane dimethanol (CHDM) using said catalyst
US10597344B2 (en) Method for preparing 1,3-cyclohexanedimethanol
JP4282832B2 (en) Process for producing diols
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP4282831B2 (en) Production method of diols
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
JP4640748B2 (en) Catalyst for direct hydrogenation of carboxylic acid
JP4282153B2 (en) Method for producing diol mixture
JP4282830B2 (en) Method for producing diols
JP3672367B2 (en) Ammonia synthesis catalyst and production method thereof
JP4282154B2 (en) Method for producing diol mixture
JP3911955B2 (en) A method for producing a ruthenium-tin supported catalyst.
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP2004137180A (en) Method for producing carboxylate
JP3873389B2 (en) Method for producing 1,6-hexanediol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees