JP4282830B2 - Method for producing diols - Google Patents
Method for producing diols Download PDFInfo
- Publication number
- JP4282830B2 JP4282830B2 JP17073599A JP17073599A JP4282830B2 JP 4282830 B2 JP4282830 B2 JP 4282830B2 JP 17073599 A JP17073599 A JP 17073599A JP 17073599 A JP17073599 A JP 17073599A JP 4282830 B2 JP4282830 B2 JP 4282830B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- mixture
- producing
- catalyst
- succinic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術的分野】
本発明はコハク酸、グルタル酸、アジピン酸を含むジカルボン酸混合物を原料としてエステル化工程を経ることなく直接水素化して1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを含むジオール混合物を製造する方法に関するものである。ジオール類はポリエステル樹脂、ウレタンフォームやウレタン塗料、接着剤の原料として有用な物質である。
【0002】
【従来の技術】
従来、コハク酸あるいはマレイン酸を水素化し、1,4−ブタンジオールを製造する方法は数多く報告されている。例えば、最も良く知られている方法として銅系の触媒を用いる方法がある。しかしながら、この方法では、コハク酸を直接還元することができず、カルボン酸を一旦エステルに転換後還元しなければならず、製造工程が長くなる。
【0003】
一方、コハク酸あるいはマレイン酸を直接還元して1,4−ブタンジオールを製造する方法もいくつか提案されている。その触媒系のみを列記するとルテニウム−鉄酸化物からなる触媒(米国特許4,827,001号)、ルテニウム−錫をBET表面積2000m2/g以上の多孔質炭素に担持した触媒(特開平5−246915号)、ルテニウム及び錫をチタン及び/又はアルミナで修飾したシリカに担持した触媒(特開平6−116182号)、ルテニウム及び錫、並びにアルカリ金属化合物またはアルカリ土類金属を担体に担持した触媒(特開平6−239778号)、ルテニウムと白金及びロジウムから選ばれた少なくとも1種と錫とを担体に担持した触媒(特開平7−165644号)、ルテニウムと錫を担体に担持してなる触媒を用い、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う方法(特開平9−12492号)、ルテニウム−錫−白金を担体に担持した触媒(特開平9−59190号)、炭素数5以下のカルボニル化合物が共存した担持成分を含有する溶液を活性炭に含浸して調整したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−15388号)、あらかじめ硝酸と接触した活性炭を使用することにより金属の担持状態を規定したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−71332号)が提案されているが、いずれの触媒を用いる方法においても、1.4−ブタンジオール、テトラヒドロフラン、γ−ブチロラクトンの選択率が十分でなく、1,4−ブタンジオールの収率は不満足なものであった。また特開平7−82190にはパラジウムとレニウム化合物からなる触媒を用い、三級アルコールを溶媒として水素化を行う方法が提案されているが、反応速度が未だ不十分であった。
【0004】
一方、含酸素C4炭化水素原料としては、ブタンの空気酸化で得られる無水マレイン酸あるいはマレイン酸が工業的に製造されていることから好適ではあるが、シクロヘキサノン及び/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するジカルボン酸類に含まれるコハク酸もまた好適な原料である。すなわちこのジカルボン酸を原料として工業的に有用な化合物を得ることができれば、アジピン酸製造に際して発生する廃棄物を減らすことができること、またこの副生物には一般的にコハク酸以外にグルタル酸、アジピン酸が含まれていることから1,4−ブタンジオールのみならず、1,5−ペンタンジオール、1,6−ヘキサンジオールという工業的に有用なジオール類を併産できることが期待されることからも直接水素化の原料として好適である。
【0005】
米国特許5,698,749にはパラジウム−銀−レニウムをあらかじめ硝酸酸化処理した活性炭上に担持した触媒を用いてマレイン酸から1,4−ブタンジオールが比較的高収率で得られることが述べられているが、グルタル酸あるいはアジピン酸の水素化還元反応の成績については何も記載されていない。また、特開平10−298123にはルテニウム−レニウムを水蒸気賦活法で製造された活性炭に担持し、エーテル系溶媒を用いてジカルボン酸を水素化還元する方法が述べられているが、好ましいジカルボン酸としてはグルタル酸以上の炭素数を持つジカルボン酸と述べられており、コハク酸から1,4−ブタンジオールを得る成績については述べられていない。また、特開平11−60523号にはあらかじめ酸処理した活性炭にルテニウム−錫−白金を担持した触媒を用いてアジピン酸から1,6−ヘキサンジオールが高収率で得られることが述べられているが、先に述べたように特開平10−71332号に述べられている同じ触媒を用いたコハク酸の水素化の結果から、上記ジカルボン酸の混合物に含まれるコハク酸から1,4−ブタンジオールを高収率で得ることは困難である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、シクロヘキサノン及び/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するコハク酸、グルタル酸、アジピン酸を含有するジカルボン酸の混合物から直接水素化還元反応により1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを含有するジオール類の混合物を高収率で得る製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決すべく本発明者らが鋭意検討した結果、驚くべきことにあらかじめ水蒸気及び/又は二酸化炭素で処理した炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持した触媒を用いることにより、コハク酸及びグルタル酸とアジピン酸を含有するジカルボン酸の混合物から1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを収率よく製造し得ることを見出し、本発明を完成したものである。
【0008】
すなわち本発明は、以下の[1]〜[7]のジオール類の製造方法である。
[1] コハク酸及び下記式(1)に示すジカルボン酸からなる混合物を触媒と水の存在下、水素と反応させて1,4−ブタンジオール及び下記式(2)のジオールからなる混合物を製造する方法において触媒としてあらかじめ水蒸気及び/又は二酸化炭素で処理した炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持して調整した触媒を用いることを特徴とするジオール類の製造方法。
HOOC−R−COOH (1)
(式中、Rは炭素数が3〜20である飽和の二価の炭化水素基を表す)
HO−CH2−R−CH2OH (2)
(式中、Rは、式(1)のRと同じである)
[2] コハク酸及び式(1)のジカルボン酸からなる混合物がコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする[1]に記載のジオール類の製造方法。
[3] 炭素質担体が活性炭であることを特徴とする[1]または[2]に記載のジオール類の製造方法。
【0009】
[4] 該前処理が水蒸気による処理であることを特徴とする[1]〜[3]のいずれかに記載のジオール類の製造方法。
[5] 炭素質担体に担持した金属がルテニウム−錫−レニウムであることを特徴とする[1]〜[4]のいずれかに記載のジオール類の製造方法。
[6] コハク酸及び式(1)のジカルボン酸からなる混合物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする[1]〜[5]のいずれかに記載のジオール類の製造方法。
[7] 温度100℃〜300℃、圧力1MPa〜25MPaの条件下でジカルボン酸の混合物を水素と反応させることを特徴とする[1]〜[6]のいずれかに記載のジオールの製造方法。
【0010】
以下、本発明を詳細に説明する。
本発明において1,4−ブタンジオールを含むジオール類の製造に用いられる原料は、コハク酸及び式(1)のジカルボン酸からなる混合物であり、特にコハク酸、グルタル酸、アジピン酸を含有するジカルボン酸の混合物である。このような原料の1例は、シクロヘキサンノン及び/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際に副生するジカルボン酸の混合物であり、例えばアジピン酸を晶析分離した母液中に含まれるジカルボン酸の混合物である。本発明ではその母液(水溶液)をそのまま用いても良いし、何らかの夾雑物により触媒の水素還元活性が減じる時には脱触媒、脱水、脱硝酸などの工程を経たものを用いることもできる。
【0011】
本発明で用いる水素還元触媒は、炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持させて調整したものである。炭素質担体としては活性炭が好ましいが、カーボンブラック、グラファイトなどを用いることもできる。炭素質担体の表面積に特に制限はないが、水蒸気及び/又は二酸化炭素で処理する前の窒素吸着−BET表面積が600〜2,000m2/gの表面積を持つものが好ましく用いられる。本発明では炭素質担体はあらかじめ水蒸気及び/又は二酸化炭素で処理で処理する前処理を経てから触媒の調整に用いる。
【0012】
水蒸気処理は、炭素質担体に水蒸気を流しながら保持すればよい。炭素質担体に対する水蒸気の量は特に制限はないが水蒸気量を水に換算した場合、炭素質担体の体積に対して0.01〜10倍の体積/hrが望ましい。処理温度は400〜1000℃が好ましい。さらに好ましくは600〜950℃である。処理時間は水蒸気量、処理温度にもよるが数分から数時間である。0.2〜6時間がさらに好ましい。処理圧力は特に制限はないが常圧から数気圧が好ましい。
【0013】
二酸化炭素処理も水蒸気処理と同様に、二酸化炭素気流下に400〜1000℃、さらに好ましくは600〜950℃の温度で数分から数時間炭素質担体を保持することによる。二酸化炭素の量は二酸化炭素の常温、常圧での体積に換算した場合に炭素質担体の体積に対して0.1〜50倍の体積/hrが望ましい。二酸化炭素は、空気あるいは窒素などの不活性ガス、また水蒸気で希釈して用いても良い。
【0014】
水蒸気及び/または二酸化炭素処理した炭素質担体にルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を担持する方法としては浸せき法、イオン交換法、含浸法など担持触媒の調整に一般的に用いられている任意の方法を用いることができる。浸せき法によるときは担持する金属成分の原料化合物を水などの溶媒に溶解して金属化合物の溶液を調整し、この溶液に上記方法で過酸化水素水及び/又はオゾン水溶液で前処理した炭素質担体を浸せきして担体に担持させる。担体に各金属成分を担持させる順序については特に制限はなく、全ての金属を同時に担持しても、各成分を個別に担持してもよい。
【0015】
触媒調整に用いる金属成分の原料としては、触媒の調整法にもよるが通常は硝酸塩、硫酸塩、塩酸塩などの鉱酸塩、酢酸塩などの有機酸塩、水酸化物、酸化物、有機金属化合物などを用いることができる。
金属成分を担持した炭素質担体は乾燥し、次いで所望により焼成、還元して触媒とする。乾燥は通常200℃以下の温度で減圧下に保持するか、又は窒素、空気などの乾燥気体を流通させて行う。また焼成は通常100〜600℃の温度で窒素、空気などを流通させながら行う。還元は液相還元又は気相還元のいずれで行ってもよい。
【0016】
通常は水素を還元ガスとして、200〜500℃の温度で気相還元する。ルテニウムと錫の担持量は担体に対してそれぞれ金属として0.5〜50重量%、好ましくは1〜10重量%である。ルテニウム、錫の比率は金属として元素比でルテニウム:錫比が1:0.1〜1:2が好ましく、さらに好ましくは1:0.2〜1:1である。本発明ではルテニウムと錫に加えてレニウム、モリブデンから選ばれる少なくとも一つの金属を担持するが、この中でも特にレニウムが好ましい。レニウム、モリブデンの担持量は、金属として元素比でルテニウムに対して0.1〜5が好ましく、さらに好ましくは0.2〜2の範囲である。
【0017】
本発明では上記のルテニウムと錫及びレニウム、モリブデンから選ばれる少なくとも一つの金属を炭素質担体に担持した触媒と水の存在下にコハク酸、グルタル酸、アジピン酸からなるジカルボン酸混合物の水素化還元を行う。反応における水の量はジカルボン酸混合物に対して0.5〜100重量倍である。さらに好ましくは1〜20倍である。水素化還元温度においてジカルボン酸の全量が溶解する水量が好ましい。水素化還元の温度は、50〜400℃が好ましく、さらに好ましくは100〜300℃である。圧力は0.5〜40MPa、さらに好ましくは1MPa〜25MPaである。
【0018】
還元反応は連続、回分のいずれで行ってもよい、また反応型式としては液相懸濁反応、固定床流通反応のいずれも用いることができる。
本発明においてジオールとして1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの混合物が得られるが、これらのジオール類必要に応じて通常の精製方法、例えば蒸留分離によって精製することができる。
【0019】
【発明の実施の形態】
以下、本発明を実施例などを用いて更に詳細に説明する。なお、反応成績のうち、原料の転化率は液体クロマトグラフィーの分析値から算出し、ジオール類の収率はガスクロマトグラフィーの分析値から算出した。また、コハク酸、グルタル酸、アジピン酸の混合物はアジピン酸を晶析分離した母液から脱水、脱硝酸処理して得た。組成は液体クロマトグラフィーの分析によりコハク酸23重量%、グルタル酸60重量%、アジピン酸17重量%であった。
【0020】
【実施例1】
<活性炭の水蒸気処理>
粒状活性炭(粒径10〜20メッシュ、窒素吸着−BET表面積1400m2/g)10gを900℃に保ち水を10g/hrの速度で常圧下1時間流し、水蒸気処理を行った。水蒸気処理後、窒素を流しながら常温まで冷却した。
<Ru−Sn−Re触媒の調整>
100mlのナスフラスコにイオン交換水2.00g、塩化ルテニウム・3水和物0.39gを入れ溶解した。その溶液に塩化錫(II価)・2水和物0.20gを加え溶解した。更に七酸化二レニウム0.22gを加え溶解した。この溶液に上記の水蒸気処理した活性炭3.00gを加え、室温で15時間振とうした。エバポレーターを用いて70℃、20torrで水を留去した後、窒素ガス雰囲気下150℃、2時間焼成処理し、ついで水素雰囲気下450℃で2時間還元処理した。再び窒素ガス雰囲気にし、室温まで冷却した後に0.1%酸素/窒素雰囲気で2時間静置した。
上記方法により5.0重量%ルテニウム−3.5重量%錫−5.6重量%レニウムを活性炭に担持した触媒を調整した。
【0021】
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
容量100mlのオートクレーブに、水10g、上記コハク酸、グルタル酸、アジピン酸の混合物1gと上記方法で調製した触媒0.3gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を20kg/cm2圧入し、180℃まで昇温した。180℃に達した時点で水素を圧入し150kg/cm2とした。この圧力で6時間水素化還元反応を行った。反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。デカンテーションにより分離した反応液と触媒洗浄液を合わせて各ジカルボン酸の転化率とジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ78%、81%、79%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ75%、78%、75%であった。
【0022】
【実施例2】
<Ru−Sn−Mo触媒の調整>
実施例1の七酸化二レニウム0.22gに代えて(NH4)6Mo7O24・4水和物0.08gを用いた以外は実施例1同様にして触媒を調整した。
これにより5.0重量%ルテニウム−3.5重量%錫−1.5重量%モリブデンを活性炭に担持した触媒を調整した。
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
触媒として上記で調整したルテニウム−錫−モリブデン/活性炭触媒を用いた以外は実施例1と同様にして水素化反応を行った。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ81%、80%、76%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ77%、76%、73%であった。
【0023】
【実施例3】
<活性炭の二酸化炭素処理>
実施例1で用いたのと同じ粒状活性炭10gを900℃に保持し、二酸化炭素を10ml/分と窒素10ml/分の混合ガスを3時間流した。その後、ガスを窒素のみとし常温まで冷却し、二酸化炭素処理した活性炭を得た。
<触媒の調整>
実施例1の触媒調整の水蒸気処理した活性炭にかえて上記の二酸化炭素処理した活性炭を用いた以外は実施例1と同様の操作を行った。
【0024】
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
実施例1の触媒に代えて、上記の二酸化炭素処理した活性炭に担持したルテニウム−錫−レニウム触媒を用いて水素化還元反応を行った。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ79%、78%、72%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ73%、77%、70%であった。
【0025】
【比較例1】
前処理を行っていない活性炭を用いて実施例1の触媒調整と同様にしてルテニウム−錫−レニウム/活性炭触媒を調整した。この触媒を用い、実施例1と同様の手順で上記ジカルボン酸混合物の水素化還元反応を行った。その結果コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ78%、75%、67%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率はそれぞれ23%、24%、21%であった。
【0026】
【発明の効果】
以上述べたように、本発明のルテニウムと錫及び、レニウム、モリブデンから選ばれる少なくとも一つの金属をあらかじめ水蒸気及び/または二酸化炭素で処理した炭素質担体に担持した触媒を用いることによりコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物から1,4−ブタンジオール、1.5−ペンタンジオール、1,6−ヘキサンジオールを含むジオール混合物を高収率で製造することができるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol by directly hydrogenating a dicarboxylic acid mixture containing succinic acid, glutaric acid, and adipic acid without going through an esterification step. Relates to a process for producing a diol mixture comprising Diols are useful substances as raw materials for polyester resins, urethane foam, urethane paints, and adhesives.
[0002]
[Prior art]
Conventionally, many methods for producing 1,4-butanediol by hydrogenating succinic acid or maleic acid have been reported. For example, as the most well-known method, there is a method using a copper-based catalyst. However, in this method, succinic acid cannot be directly reduced, and the carboxylic acid must be once converted to an ester and then reduced, resulting in a long production process.
[0003]
On the other hand, several methods for producing 1,4-butanediol by directly reducing succinic acid or maleic acid have been proposed. When only the catalyst system is listed, a catalyst made of ruthenium-iron oxide (US Pat. No. 4,827,001), a catalyst in which ruthenium-tin is supported on porous carbon having a BET surface area of 2000 m 2 / g or more (Japanese Patent Laid-Open No. Hei 5- 246915), a catalyst in which ruthenium and tin are supported on silica modified with titanium and / or alumina (Japanese Patent Laid-Open No. 6-116182), a catalyst in which ruthenium and tin, and an alkali metal compound or alkaline earth metal are supported on a support ( JP-A-6-239778), a catalyst in which at least one selected from ruthenium, platinum and rhodium and tin are supported on a carrier (JP-A-7-165644), and a catalyst in which ruthenium and tin are supported on a carrier. A method in which excess hydrogen is circulated in the reaction system and the reaction is carried out while removing entrained products out of the system (JP-A-9-12). 92), ruthenium-tin-platinum-supported catalyst (Japanese Patent Laid-Open No. 9-59190), and ruthenium prepared by impregnating activated carbon with a solution containing a supporting component in which a carbonyl compound having 5 or less carbon atoms coexists. A catalyst in which tin-platinum is supported on activated carbon (Japanese Patent Laid-Open No. 10-15388), and a catalyst in which ruthenium-tin-platinum in which the supported state of the metal is defined by using activated carbon previously contacted with nitric acid is supported on the activated carbon (Japanese Patent Laid-Open No. 10-71332) has been proposed, but in any of the methods using a catalyst, the selectivity of 1.4-butanediol, tetrahydrofuran and γ-butyrolactone is not sufficient, and the yield of 1,4-butanediol is Was unsatisfactory. Japanese Patent Application Laid-Open No. 7-82190 proposes a method of performing hydrogenation using a catalyst composed of palladium and a rhenium compound and a tertiary alcohol as a solvent, but the reaction rate is still insufficient.
[0004]
On the other hand, as an oxygen-containing C4 hydrocarbon raw material, maleic anhydride or maleic acid obtained by air oxidation of butane is suitable because it is industrially produced. However, cyclohexanone and / or cyclohexanol is oxidized to form adipine. Succinic acid contained in dicarboxylic acids by-produced when producing the acid is also a suitable raw material. That is, if an industrially useful compound can be obtained using this dicarboxylic acid as a raw material, waste generated in the production of adipic acid can be reduced, and this by-product generally includes glutaric acid and adipine in addition to succinic acid. Because it contains acid, it is expected that not only 1,4-butanediol but also industrially useful diols such as 1,5-pentanediol and 1,6-hexanediol can be produced. Suitable as a raw material for direct hydrogenation.
[0005]
U.S. Pat. No. 5,698,749 states that 1,4-butanediol can be obtained from maleic acid in a relatively high yield using a catalyst supported on activated carbon that has been pretreated with nitric acid in palladium-silver-rhenium. However, nothing is described about the results of the hydroreduction reaction of glutaric acid or adipic acid. Japanese Patent Laid-Open No. 10-298123 describes a method in which ruthenium-rhenium is supported on activated carbon produced by a steam activation method, and a dicarboxylic acid is hydrogenated and reduced using an ether solvent. Is described as a dicarboxylic acid having a carbon number equal to or greater than that of glutaric acid, and the result of obtaining 1,4-butanediol from succinic acid is not described. Japanese Patent Application Laid-Open No. 11-60523 describes that 1,6-hexanediol can be obtained from adipic acid in a high yield by using a catalyst in which ruthenium-tin-platinum is supported on activated carbon that has been previously acid-treated. As described above, from the result of hydrogenation of succinic acid using the same catalyst described in JP-A-10-71332, 1,4-butanediol was obtained from succinic acid contained in the mixture of dicarboxylic acids. Is difficult to obtain in high yield.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to directly perform hydroreduction reaction from a mixture of dicarboxylic acids containing succinic acid, glutaric acid and adipic acid by-produced in the production of adipic acid by oxidizing cyclohexanone and / or cyclohexanol. An object of the present invention is to provide a production method for obtaining a mixture of diols containing 4-butanediol, 1,5-pentanediol and 1,6-hexanediol in high yield.
[0007]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors to solve the above problems, surprisingly, at least one metal selected from ruthenium, tin, rhenium, and molybdenum is supported on a carbonaceous support previously treated with water vapor and / or carbon dioxide. By using the prepared catalyst, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol can be produced with high yield from succinic acid and a mixture of dicarboxylic acid containing glutaric acid and adipic acid. The present invention has been found and the present invention has been completed.
[0008]
That is, the present invention is a method for producing the following diols [1] to [7].
[1] A mixture comprising succinic acid and a dicarboxylic acid represented by the following formula (1) is reacted with hydrogen in the presence of a catalyst and water to produce a mixture comprising 1,4-butanediol and a diol represented by the following formula (2). A catalyst prepared by supporting at least one metal selected from ruthenium, tin, rhenium, and molybdenum on a carbonaceous support that has been treated with water vapor and / or carbon dioxide in advance as a catalyst. Production method.
HOOC-R-COOH (1)
(In the formula, R represents a saturated divalent hydrocarbon group having 3 to 20 carbon atoms)
HO—CH 2 —R—CH 2 OH (2)
(Wherein R is the same as R in formula (1))
[2] The method for producing a diol according to [1], wherein the mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid and adipic acid.
[3] The method for producing a diol according to [1] or [2], wherein the carbonaceous carrier is activated carbon.
[0009]
[4] The method for producing a diol according to any one of [1] to [3] , wherein the pretreatment is a treatment with water vapor.
[5] The method for producing a diol according to any one of [1] to [4] , wherein the metal supported on the carbonaceous support is ruthenium-tin-rhenium.
[6] The mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid, and adipic acid collected from the oxidation reaction liquid of cyclohexanone and / or cyclohexanol. The method for producing a diol according to any one of [1] to [5].
[7] The process for producing a diol according to any one of [1] to [6] , wherein a mixture of dicarboxylic acids is reacted with hydrogen under conditions of a temperature of 100 ° C to 300 ° C and a pressure of 1 MPa to 25 MPa.
[0010]
Hereinafter, the present invention will be described in detail.
In the present invention, the raw material used for the production of diols containing 1,4-butanediol is a mixture comprising succinic acid and the dicarboxylic acid of the formula (1), and in particular, dicarboxylic acid containing succinic acid, glutaric acid and adipic acid. It is a mixture of acids. An example of such a raw material is a mixture of dicarboxylic acids by-produced when nitric acid is oxidized to cyclohexanenone and / or cyclohexanol to produce adipic acid. For example, it is contained in a mother liquor obtained by crystallization separation of adipic acid. A mixture of dicarboxylic acids. In the present invention, the mother liquor (aqueous solution) may be used as it is, or when the hydrogen reduction activity of the catalyst is reduced by some impurities, it can be used after steps such as decatalysis, dehydration, and denitrification.
[0011]
The hydrogen reduction catalyst used in the present invention is prepared by supporting at least one metal selected from ruthenium, tin, rhenium and molybdenum on a carbonaceous support. As the carbonaceous support, activated carbon is preferable, but carbon black, graphite, and the like can also be used. Although there is no restriction | limiting in particular in the surface area of a carbonaceous support | carrier, What has a surface area of nitrogen adsorption-BET surface area before processing with water vapor | steam and / or carbon dioxide of 600-2,000 m < 2 > / g is used preferably. In the present invention, the carbonaceous support is used for the preparation of the catalyst after being pretreated by treatment with steam and / or carbon dioxide in advance.
[0012]
The water vapor treatment may be held while flowing water vapor through the carbonaceous carrier. The amount of water vapor with respect to the carbonaceous carrier is not particularly limited, but when the amount of water vapor is converted to water, a volume / hr that is 0.01 to 10 times the volume of the carbonaceous carrier is desirable. The treatment temperature is preferably 400 to 1000 ° C. More preferably, it is 600-950 degreeC. The treatment time is several minutes to several hours depending on the amount of water vapor and the treatment temperature. 0.2 to 6 hours is more preferable. The treatment pressure is not particularly limited but is preferably from atmospheric pressure to several atmospheres.
[0013]
Similarly to the steam treatment, the carbon dioxide treatment is carried out by holding the carbonaceous carrier at a temperature of 400 to 1000 ° C., more preferably 600 to 950 ° C. for several minutes to several hours in a carbon dioxide stream. The amount of carbon dioxide is preferably 0.1 to 50 times the volume / hr of the volume of the carbonaceous carrier when converted to the volume of carbon dioxide at normal temperature and normal pressure. Carbon dioxide may be diluted with an inert gas such as air or nitrogen, or with water vapor.
[0014]
As a method for supporting at least one metal selected from ruthenium, tin, rhenium, and molybdenum on a carbonaceous support treated with water vapor and / or carbon dioxide, it is generally used to adjust a supported catalyst such as an immersion method, an ion exchange method, and an impregnation method. Any method used can be used. When the immersion method is used, a metal compound solution is prepared by dissolving a metal compound material to be supported in a solvent such as water, and the carbonaceous material pretreated with hydrogen peroxide and / or an ozone aqueous solution by the above-described method. The carrier is immersed and supported on the carrier. There is no particular limitation on the order in which each metal component is supported on the carrier, and all the metals may be supported simultaneously or each component may be individually supported.
[0015]
Depending on the catalyst preparation method, the metal component materials used for catalyst preparation are usually mineral salts such as nitrates, sulfates and hydrochlorides, organic acid salts such as acetates, hydroxides, oxides and organics. A metal compound or the like can be used.
The carbonaceous support carrying the metal component is dried and then calcined and reduced as desired to form a catalyst. Drying is usually performed at a temperature of 200 ° C. or lower under reduced pressure or by passing a dry gas such as nitrogen or air. Firing is usually performed at a temperature of 100 to 600 ° C. while circulating nitrogen, air, or the like. The reduction may be performed by either liquid phase reduction or gas phase reduction.
[0016]
Usually, gas phase reduction is performed at a temperature of 200 to 500 ° C. using hydrogen as a reducing gas. The supported amount of ruthenium and tin is 0.5 to 50% by weight, preferably 1 to 10% by weight, as a metal, respectively, with respect to the support. The ratio of ruthenium and tin is an element ratio as a metal, and the ruthenium: tin ratio is preferably 1: 0.1 to 1: 2, more preferably 1: 0.2 to 1: 1. In the present invention, at least one metal selected from rhenium and molybdenum is supported in addition to ruthenium and tin, among which rhenium is particularly preferable. The supported amount of rhenium and molybdenum is preferably 0.1 to 5 and more preferably 0.2 to 2 with respect to ruthenium as an element ratio as a metal.
[0017]
In the present invention, hydrogenation reduction of a dicarboxylic acid mixture comprising succinic acid, glutaric acid, and adipic acid in the presence of a catalyst in which at least one metal selected from ruthenium, tin, rhenium, and molybdenum is supported on a carbonaceous support and water. I do. The amount of water in the reaction is 0.5 to 100 times by weight with respect to the dicarboxylic acid mixture. More preferably, it is 1 to 20 times. An amount of water in which the entire amount of the dicarboxylic acid dissolves at the hydroreduction temperature is preferred. The hydrogenation temperature is preferably 50 to 400 ° C, more preferably 100 to 300 ° C. The pressure is 0.5 to 40 MPa, more preferably 1 MPa to 25 MPa.
[0018]
The reduction reaction may be carried out either continuously or batchwise. As the reaction type, either a liquid phase suspension reaction or a fixed bed flow reaction can be used.
In the present invention, a mixture of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol is obtained as the diol. These diols can be purified by a conventional purification method, for example, distillation separation as necessary. can do.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples and the like. Of the reaction results, the conversion rate of the raw material was calculated from the analytical value of liquid chromatography, and the yield of diols was calculated from the analytical value of gas chromatography. A mixture of succinic acid, glutaric acid, and adipic acid was obtained by dehydration and denitration treatment from a mother liquor obtained by crystallization separation of adipic acid. The composition was 23% by weight of succinic acid, 60% by weight of glutaric acid, and 17% by weight of adipic acid by liquid chromatography analysis.
[0020]
[Example 1]
<Steam treatment of activated carbon>
10 g of granular activated carbon (particle size 10 to 20 mesh, nitrogen adsorption—BET surface area 1400 m 2 / g) was kept at 900 ° C. and water was allowed to flow at a rate of 10 g / hr for 1 hour under normal pressure to perform steam treatment. After the steam treatment, it was cooled to room temperature while flowing nitrogen.
<Preparation of Ru-Sn-Re catalyst>
In a 100 ml eggplant flask, 2.00 g of ion exchange water and 0.39 g of ruthenium chloride trihydrate were dissolved. To the solution, 0.20 g of tin chloride (II) dihydrate was added and dissolved. Further, 0.22 g of dirhenium heptoxide was added and dissolved. To this solution, 3.00 g of the above activated carbon treated with steam was added and shaken at room temperature for 15 hours. After distilling off water at 70 ° C. and 20 torr using an evaporator, it was baked at 150 ° C. for 2 hours in a nitrogen gas atmosphere, and then reduced at 450 ° C. for 2 hours in a hydrogen atmosphere. The atmosphere was again a nitrogen gas atmosphere, cooled to room temperature, and allowed to stand in a 0.1% oxygen / nitrogen atmosphere for 2 hours.
By the above method, a catalyst having 5.0 wt% ruthenium-3.5 wt% tin-5.6 wt% rhenium supported on activated carbon was prepared.
[0021]
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
An autoclave with a capacity of 100 ml was charged with 10 g of water, 1 g of a mixture of succinic acid, glutaric acid and adipic acid and 0.3 g of the catalyst prepared by the above method, and after replacing the atmosphere in the autoclave with nitrogen at room temperature, 20 kg of hydrogen / Cm 2 was injected and the temperature was raised to 180 ° C. When the temperature reached 180 ° C., hydrogen was injected to make 150 kg / cm 2 . The hydroreduction reaction was performed at this pressure for 6 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction liquid and catalyst washing liquid separated by decantation were combined, and the conversion rate of each dicarboxylic acid and the yield of diol were determined by analysis by liquid chromatography and gas chromatography. As a result, the conversion rates of succinic acid, glutaric acid, and adipic acid were 78%, 81%, and 79%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were obtained. Were 75%, 78%, and 75%, respectively.
[0022]
[Example 2]
<Preparation of Ru-Sn-Mo catalyst>
A catalyst was prepared in the same manner as in Example 1 except that 0.08 g of (NH 4) 6 Mo 7 O 24 · tetrahydrate was used instead of 0.22 g of dirhenium heptoxide in Example 1.
As a result, a catalyst in which 5.0 wt% ruthenium-3.5 wt% tin-1.5 wt% molybdenum was supported on activated carbon was prepared.
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
A hydrogenation reaction was carried out in the same manner as in Example 1 except that the ruthenium-tin-molybdenum / activated carbon catalyst prepared above was used as the catalyst. As a result, the conversion rates of succinic acid, glutaric acid, and adipic acid were 81%, 80%, and 76%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were obtained. Were 77%, 76% and 73%, respectively.
[0023]
[Example 3]
<Carbon dioxide treatment of activated carbon>
The same granular activated carbon 10 g used in Example 1 was kept at 900 ° C., and a mixed gas of carbon dioxide at 10 ml / min and nitrogen at 10 ml / min was allowed to flow for 3 hours. Thereafter, the gas was cooled to room temperature only with nitrogen, and carbon dioxide-treated activated carbon was obtained.
<Catalyst adjustment>
The same operation as in Example 1 was performed except that the activated carbon treated with carbon dioxide was used in place of the activated carbon treated with water vapor for catalyst adjustment in Example 1.
[0024]
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
Instead of the catalyst of Example 1, the hydrogenation reduction reaction was performed using the ruthenium-tin-rhenium catalyst supported on the carbon dioxide-treated activated carbon. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 79%, 78% and 72%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. Were 73%, 77%, and 70%, respectively.
[0025]
[Comparative Example 1]
A ruthenium-tin-rhenium / activated carbon catalyst was prepared in the same manner as the catalyst preparation of Example 1 using activated carbon that had not been pretreated. Using this catalyst, the hydrogenation-reduction reaction of the dicarboxylic acid mixture was performed in the same procedure as in Example 1. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 78%, 75% and 67%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. They were 23%, 24%, and 21%, respectively.
[0026]
【The invention's effect】
As described above, succinic acid and glutar can be obtained by using a catalyst in which at least one metal selected from ruthenium, tin, rhenium and molybdenum according to the present invention is supported on a carbonaceous support that has been treated with water vapor and / or carbon dioxide in advance. A diol mixture containing 1,4-butanediol, 1.5-pentanediol and 1,6-hexanediol can be produced in high yield from a mixture of an acid and a dicarboxylic acid containing adipic acid.
Claims (7)
HOOC−R−COOH (1)
(式中、Rは炭素数が3〜20である飽和の二価の炭化水素基を表す)
HO−CH2−R−CH2OH (2)
(式中、Rは、式(1)のRと同じである)In a method for producing a mixture comprising 1,4-butanediol and a diol represented by the following formula (2) by reacting a mixture comprising succinic acid and the dicarboxylic acid represented by the following formula (1) with hydrogen in the presence of a catalyst and water. A method for producing diols, characterized in that a catalyst prepared by supporting at least one metal selected from ruthenium, tin, rhenium, and molybdenum on a carbonaceous support previously treated with water vapor and / or carbon dioxide is used as a catalyst.
HOOC-R-COOH (1)
(In the formula, R represents a saturated divalent hydrocarbon group having 3 to 20 carbon atoms)
HO—CH 2 —R—CH 2 OH (2)
(Wherein R is the same as R in formula (1))
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17073599A JP4282830B2 (en) | 1999-06-17 | 1999-06-17 | Method for producing diols |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17073599A JP4282830B2 (en) | 1999-06-17 | 1999-06-17 | Method for producing diols |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001002603A JP2001002603A (en) | 2001-01-09 |
JP4282830B2 true JP4282830B2 (en) | 2009-06-24 |
Family
ID=15910425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17073599A Expired - Fee Related JP4282830B2 (en) | 1999-06-17 | 1999-06-17 | Method for producing diols |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4282830B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100546986B1 (en) * | 1999-11-05 | 2006-01-26 | 아사히 가세이 가부시키가이샤 | Process for the preparation of diol mixtures |
JP4640748B2 (en) * | 2001-07-12 | 2011-03-02 | 旭化成ケミカルズ株式会社 | Catalyst for direct hydrogenation of carboxylic acid |
EP1556320B1 (en) | 2002-11-01 | 2015-05-13 | Novozymes A/S | Process for preparation of 1,3-propanediol |
CN111097411B (en) * | 2018-10-25 | 2024-01-23 | 中国石油化工股份有限公司 | Liquid-phase hydrogenation synthesis method of 1, 5-pentanediol based on modified palladium supported catalyst |
-
1999
- 1999-06-17 JP JP17073599A patent/JP4282830B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001002603A (en) | 2001-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4472109B2 (en) | Carboxylic acid hydrogenation catalyst | |
KR100460371B1 (en) | Catalysts for hydrogenation of carboxylic acid | |
US4550185A (en) | Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst | |
JPH10306047A (en) | Production of 1,6-hexanediol | |
KR100546986B1 (en) | Process for the preparation of diol mixtures | |
JP4282832B2 (en) | Process for producing diols | |
JP4282830B2 (en) | Method for producing diols | |
US5969194A (en) | Process for preparing 1, 6-hexanediol | |
JP4282831B2 (en) | Production method of diols | |
JP2000007596A (en) | Production of 1,4-cyclohexanedimethanol | |
JP4472108B2 (en) | Carboxylic acid hydrogenation catalyst | |
JP3921877B2 (en) | Method for producing 1,4-cyclohexanedimethanol | |
JP4282153B2 (en) | Method for producing diol mixture | |
JP4627828B2 (en) | Method for producing d, l-menthol | |
JP4282154B2 (en) | Method for producing diol mixture | |
KR0131203B1 (en) | Process for the production of ñò-butyrolactone | |
JP3744023B2 (en) | Process for producing 1,4-butanediol and / or tetrahydrofuran | |
JP2000051701A (en) | Method for regenerating catalyst and hydrogenation method using regenerated catalyst | |
JPS63277643A (en) | Production of unsaturated glycol diester | |
WO2000006528A1 (en) | Process for producing adipic acid | |
JP3873389B2 (en) | Method for producing 1,6-hexanediol | |
JP3979702B2 (en) | Improved catalyst for hydrogenating aqueous maleic acid to 1,4-butanediol | |
JP3921788B2 (en) | Method for producing 1,6-hexanediol | |
JP2001097904A (en) | Method for producing 1,6-hexanediol | |
JP2001278822A (en) | Method for producing diol mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090318 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130327 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140327 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |