JPH06247954A - Production of lactone - Google Patents

Production of lactone

Info

Publication number
JPH06247954A
JPH06247954A JP5038351A JP3835193A JPH06247954A JP H06247954 A JPH06247954 A JP H06247954A JP 5038351 A JP5038351 A JP 5038351A JP 3835193 A JP3835193 A JP 3835193A JP H06247954 A JPH06247954 A JP H06247954A
Authority
JP
Japan
Prior art keywords
lactone
dicarboxylic acid
hydrogen
acid diester
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5038351A
Other languages
Japanese (ja)
Other versions
JP3132532B2 (en
Inventor
Koichi Hirai
浩一 平井
Yasuo Nakamura
靖夫 中村
Yasunori Fukuda
康法 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP05038351A priority Critical patent/JP3132532B2/en
Publication of JPH06247954A publication Critical patent/JPH06247954A/en
Application granted granted Critical
Publication of JP3132532B2 publication Critical patent/JP3132532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce a lactone in high selectivity and yield by carrying out the hydrogenating reaction of a dicarboxylic acid diester with hydrogen in the vapor phase under mild reactional conditions using a new solid catalyst without containing chromium. CONSTITUTION:This method for producing a lactone is to subject a dicarboxylic acid diester expressed by the general formula Rn2.(COORn1)2 (Rn1 is 1-6C lower alkyl ester; Rn2 is 1-12C hydrocarbon) to hydrogenating reaction with hydrogen in the vapor phase in the presence of a solid catalyst containing at least copper metal and silver metal supported on a carrier and synthesize the lactone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な固体触媒を使用
して、ジカルボン酸ジエステルと水素との接触反応によ
り、高選択率、高収量でラクトンを製造する方法に関す
る。ジカルボン酸ジエステルから生成するラクトンは、
ポリエステルや香料の原料として、また、洗剤のビルダ
−や生分解性ポリマ−等の製造のための中間体として、
工業上非常に重要な化合物である。
TECHNICAL FIELD The present invention relates to a method for producing a lactone with a high selectivity and a high yield by a catalytic reaction of a dicarboxylic acid diester and hydrogen using a novel solid catalyst. The lactone produced from the dicarboxylic acid diester is
As a raw material for polyesters and fragrances, and as an intermediate for the production of detergent builders, biodegradable polymers, etc.
It is a very important compound in industry.

【0002】[0002]

【従来の技術】ラクトンの工業的製造法としては、環状
の酸無水物またはジカルボン酸ジエステルを水素により
水素化する方法が、米国特許第3,065,243号に
開示されている。しかしながら、この方法は、触媒活性
が低く、原料である環状の酸無水物またはジカルボン酸
ジエステルの反応層への供給速度も小さいため、反応速
度的には工業的製造法として満足できるものではない。
また、ラクトンの選択率を上げるには、環状の酸無水物
またはジカルボン酸ジエステルに対する水素のモル比を
50以上に上げる、反応温度を上げるなど、苛酷な反応
条件が必要であった。更に、触媒として銅−クロム系触
媒を使用しているため、使用後は廃触媒からクロムの回
収・処理を行うことが必要であるが、その工程でクロム
を効率良く回収して、排水等にクロムが同伴しないよう
にすることは極めて困難であり、環境衛生上からも、毒
性が極めて強いクロムを使用しない製造法が望まれてい
た。
2. Description of the Related Art As an industrial production method of lactone, a method of hydrogenating a cyclic acid anhydride or dicarboxylic acid diester with hydrogen is disclosed in US Pat. No. 3,065,243. However, this method is unsatisfactory in terms of reaction rate as an industrial production method because the catalyst activity is low and the feed rate of the cyclic acid anhydride or dicarboxylic acid diester as a raw material is small.
Further, in order to increase the selectivity of the lactone, harsh reaction conditions such as increasing the molar ratio of hydrogen to the cyclic acid anhydride or dicarboxylic acid diester to 50 or higher and raising the reaction temperature have been required. Furthermore, since a copper-chromium-based catalyst is used as a catalyst, it is necessary to recover and treat chromium from the waste catalyst after use, but in that process chromium can be efficiently recovered and used in wastewater, etc. It is extremely difficult to prevent chromium from accommodating, and from the viewpoint of environmental hygiene, a manufacturing method that does not use chromium, which is extremely toxic, has been desired.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、クロ
ム等の公害問題となりうる成分を含有しない新規な固体
触媒を使用して、温和な反応条件下でジカルボン酸ジエ
ステルの水素による気相水素化反応を行って、高選択
率、高収量でラクトンを製造しうる、工業的に好適なラ
クトンの製造法を提供することにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to use a novel solid catalyst containing no components such as chromium, which may cause pollution problems, under a mild reaction condition to produce hydrogen gas of dicarboxylic acid diester in a gas phase. The object of the present invention is to provide an industrially suitable method for producing a lactone, which is capable of producing a lactone with a high selectivity and a high yield by carrying out a chemical reaction.

【0004】[0004]

【課題を解決するための手段】本発明者らは、従来公知
のラクトンの製造法における前述したような問題点を克
服すべく、水素化触媒の存在下、ジカルボン酸ジエステ
ルと水素との気相水素化反応によってラクトンを製造す
る反応について鋭意検討した結果、新規な水素化触媒を
使用して、温和な反応条件下、気相でジカルボン酸ジエ
ステルの水素化反応を行うことにより、極めて高い選択
率および空時収量で目的生成物のラクトンが得られるこ
とを見出して本発明に到達した。
In order to overcome the above-mentioned problems in the conventionally known lactone production methods, the present inventors have investigated the gas phase of dicarboxylic acid diester and hydrogen in the presence of a hydrogenation catalyst. As a result of extensive studies on the reaction for producing a lactone by a hydrogenation reaction, an extremely high selectivity can be obtained by carrying out the hydrogenation reaction of a dicarboxylic acid diester in a gas phase under a mild reaction condition using a novel hydrogenation catalyst. The present invention has been accomplished by finding that the desired product lactone can be obtained with a space-time yield.

【0005】即ち、本発明は、ジカルボン酸ジエステル
を、水素により気相で水素化反応させてラクトンを製造
する方法において、一般式Rn2・(COORn12 (但
し、式中のRn1は炭素数1〜6の低級アルキル基を、R
n2は炭素数1〜12の炭化水素基を示す)で表されるジ
カルボン酸ジエステルを、少なくとも銅金属および銀金
属が担体に担持されている固体触媒の存在下、水素によ
り気相で水素化反応させてラクトンを合成することを特
徴とするラクトンの製造法に関する。
That is, the present invention provides a method for producing a lactone by hydrogenating a dicarboxylic acid diester with hydrogen in a gas phase, wherein R n2 · (COOR n1 ) 2 (where R n1 in the formula is A lower alkyl group having 1 to 6 carbon atoms is represented by R
(n2 represents a hydrocarbon group having 1 to 12 carbon atoms), a dicarboxylic acid diester represented by the formula (2) is used to hydrogenate a dicarboxylic acid diester in the gas phase with hydrogen in the presence of a solid catalyst in which at least copper metal and silver metal are supported on a carrier. The present invention relates to a method for producing a lactone, which comprises synthesizing a lactone.

【0006】以下に本発明の方法を詳しく説明する。本
発明で使用されるジカルボン酸ジエステルとしては、コ
ハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリ
ン酸、アゼライン酸、セバシン酸、ウンデカンジカルボ
ン酸、ドデカンジカルボン酸などの脂肪族飽和カルボン
酸、マレイン酸、フマール酸などの脂肪族不飽和カルボ
ン酸、シクロペンタンジカルボン酸、シクロヘキサンジ
カルボン酸などの脂環式カルボン酸、フタル酸、ナフタ
レンジカルボン酸などの芳香族カルボン酸と炭素数1〜
6の低級脂肪族アルコ−ルとのジエステルが挙げられる
が、これらのジカルボン酸ジエステルのうち、特に好適
に使用される化合物は、Rn2が炭素数2〜6の脂肪族炭
化水素基で示されるものである。なお、上記のジカルボ
ン酸ジエステルを使用した場合、反応生成物としては、
γ−ブチロラクトン、δ−バレロラクトン、ε−カプロ
ラクトン、7−ヘプタノリド、8−オクタノリド、9−
ノナノリド、10−デカノリド、11−ウンデカノリ
ド、12−ドデカノリドなどをそれぞれ得ることができ
る。
The method of the present invention will be described in detail below. Examples of the dicarboxylic acid diester used in the present invention include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and other saturated saturated carboxylic acids, and maleic acid. , Aliphatic unsaturated carboxylic acids such as fumaric acid, cyclopentanedicarboxylic acid, alicyclic carboxylic acids such as cyclohexanedicarboxylic acid, aromatic carboxylic acids such as phthalic acid and naphthalenedicarboxylic acid, and 1 to 1 carbon atoms
Examples thereof include diesters of 6 with lower aliphatic alcohols. Among these dicarboxylic acid diesters, the compounds that are particularly preferably used are those in which R n2 is an aliphatic hydrocarbon group having 2 to 6 carbon atoms. It is a thing. When the above dicarboxylic acid diester is used, as the reaction product,
γ-butyrolactone, δ-valerolactone, ε-caprolactone, 7-heptanolide, 8-octanolide, 9-
Nonanolide, 10-decanolide, 11-undecanolide, 12-dodecanolide and the like can be obtained, respectively.

【0007】本発明の水素化反応に使用される新規な固
体触媒は、少なくとも銅金属および銀金属がシリカ、ア
ルミナ、チタニア、ケイソウ土、酸化亜鉛、酸化ランタ
ン、活性炭などの担体に担持されている固体触媒であ
り、更に前記銅金属および銀金属に加えて、銅化合物お
よび/または銀化合物が担持されている固体触媒であっ
てもよい。銅金属および銀金属の担持量は、担体に対し
て、金属換算で、銅が5〜50重量%、特に5〜30重
量%であり、銀が0.01〜20重量%、特に0.02
〜10重量%であることが好ましい。
The novel solid catalyst used in the hydrogenation reaction of the present invention has at least copper metal and silver metal supported on a carrier such as silica, alumina, titania, diatomaceous earth, zinc oxide, lanthanum oxide and activated carbon. It may be a solid catalyst, and may be a solid catalyst supporting a copper compound and / or a silver compound in addition to the copper metal and the silver metal. The supported amounts of copper metal and silver metal are 5 to 50% by weight, particularly 5 to 30% by weight, and 0.01 to 20% by weight, particularly 0.02% of silver, in terms of metal, with respect to the carrier.
It is preferably from 10 to 10% by weight.

【0008】また、上記の担体は、粉末、粒状のもの、
もしくは成型体が使用されるが、そのサイズについて
は、特に限定されるものではなく、粉末の場合は通常用
いられる20〜100μmのもの、粒状の場合は4〜2
00メッシュ程度のもの、成型体の場合は数mmのもの
が好適に用いられる。
Further, the above-mentioned carrier is a powder, a granular one,
Alternatively, a molded product is used, but its size is not particularly limited, and a powder having a particle size of 20 to 100 μm which is usually used, and a granular product having a particle size of 4 to 2 are used.
Those having a mesh size of about 00 mesh and several mm in the case of a molded product are preferably used.

【0009】本発明で水素化反応に使用される固体触媒
は、銅および銀の硫酸塩,硝酸塩,塩化物、錯塩などの
水溶性化合物が溶解している銅化合物および銀化合物の
水溶液を調製して、これに上記の担体を添加して適当な
方法で銅化合物および銀化合物を担体に担持させた後、
水素ガスなどで担体に担持されている銅化合物および銀
化合物を還元することによって調製される。
The solid catalyst used in the hydrogenation reaction of the present invention is prepared by preparing an aqueous solution of a copper compound and a silver compound in which water-soluble compounds such as sulfates, nitrates, chlorides and complex salts of copper and silver are dissolved. Then, after adding the above carrier to this and supporting the copper compound and the silver compound on the carrier by a suitable method,
It is prepared by reducing a copper compound and a silver compound supported on a carrier with hydrogen gas or the like.

【0010】触媒成分を担体に担持する方法は、特別な
ものである必要はなく、通常実施される方法、即ち、含
浸法(浸漬吸着法)、混練法、沈着法、蒸発乾固法、共
沈法等でよいが、簡便であることから、共沈法、含浸法
または蒸発乾固法が望ましい。なお、上記の各成分の担
体への担持は、同時に行ってもまたは逐次に行ってもよ
い。
The method of loading the catalyst component on the carrier does not have to be special, and it is usually carried out, that is, impregnation method (immersion adsorption method), kneading method, deposition method, evaporation dryness method, Although a precipitation method or the like may be used, a coprecipitation method, an impregnation method or an evaporation-drying method is preferable because it is simple. The above components may be loaded on the carrier at the same time or sequentially.

【0011】触媒成分が担持された担体の還元は、水素
ガスまたはヒドラジン等の一般的な還元剤を用いて行わ
れるが、水素ガスを用いる還元処理では、ジカルボン酸
ジエステルの水素化反応に先立って、150〜400℃
の温度で、還元時間を1〜20時間とする一般的な水素
ガスによる還元処理を行って、銅金属および銀金属が主
として担持されている固体触媒を製造することが好まし
い。
The reduction of the carrier carrying the catalyst component is carried out by using a general reducing agent such as hydrogen gas or hydrazine. In the reduction treatment using hydrogen gas, the hydrogenation reaction of the dicarboxylic acid diester is carried out prior to the hydrogenation reaction. , 150-400 ℃
It is preferable to carry out a reduction treatment with a general hydrogen gas at a temperature of 1 to 20 hours for a reduction time of 1 to 20 hours to produce a solid catalyst on which copper metal and silver metal are mainly supported.

【0012】なお、前記の還元処理を行った後の固体触
媒において、還元が充分にされなかった銅化合物および
/または銀化合物が、銅金属および銀金属と共に、少な
い割合(担体上に担持された金属および金属化合物成分
の全量に対する銅化合物および銀化合物の合計量の割合
で示す残留割合が20重量%以下、特に10重量%以下
である割合)で担持されていても、本発明のジカルボン
酸ジエステルの水素化反応には支障はなく、そのまま固
体触媒として使用できる。また、本発明の固体触媒は、
銅金属および銀金属と共に、銅金属および銀金属以外の
他の金属またはその化合物が触媒成分として担持されて
いてもよい。
In the solid catalyst after the above reduction treatment, the copper compound and / or the silver compound, which has not been sufficiently reduced, is contained in a small proportion together with the copper metal and the silver metal (supported on the carrier). The dicarboxylic acid diester of the present invention is supported even if the residual ratio shown by the ratio of the total amount of the copper compound and the silver compound to the total amount of the metal and the metal compound component is 20% by weight or less, particularly 10% by weight or less. There is no hindrance to the hydrogenation reaction, and it can be used as it is as a solid catalyst. Further, the solid catalyst of the present invention,
In addition to copper metal and silver metal, a metal other than copper metal and silver metal or a compound thereof may be supported as a catalyst component.

【0013】上述の方法などで調製された、少なくとも
銅金属および銀金属が担持されている固体触媒は、水素
化反応の活性(例えば、空時収量:STY)が高いレベ
ルで継続して維持され、触媒としての機械的強度も高く
崩壊がないため、長期間安定に使用することができ、本
発明のジカルボン酸ジエステルの水素化反応に好適な触
媒である。
The solid catalyst prepared by the above-mentioned method and loaded with at least copper metal and silver metal is continuously maintained at a high level for the activity of hydrogenation reaction (for example, space-time yield: STY). Since it has a high mechanical strength as a catalyst and does not collapse, it can be used stably for a long period of time and is a catalyst suitable for the hydrogenation reaction of the dicarboxylic acid diester of the present invention.

【0014】更に、この触媒を用いれば、反応を非常に
温和な条件下でも行うことができる。即ち、ジカルボン
酸ジエステルと水素との接触水素化反応は、反応温度が
100〜300℃、好ましくは100〜260℃であっ
て、反応圧が常圧〜約30kg/cm2 G程度の条件で
実施することができる。また、固体触媒の充填された反
応管に導入される水素とジカルボン酸ジエステルとのモ
ル比(水素/ジカルボン酸ジエステル)は、2〜10
0、特に4〜50であることが好ましく、固体触媒との
接触時間は、0.01〜20秒、特に0.2〜8秒程度
であることが好ましい。
Furthermore, by using this catalyst, the reaction can be carried out under extremely mild conditions. That is, the catalytic hydrogenation reaction of dicarboxylic acid diester and hydrogen is carried out at a reaction temperature of 100 to 300 ° C., preferably 100 to 260 ° C., and a reaction pressure of normal pressure to about 30 kg / cm 2 G. can do. Further, the molar ratio of hydrogen introduced into the reaction tube filled with the solid catalyst and dicarboxylic acid diester (hydrogen / dicarboxylic acid diester) is from 2 to 10
It is preferably 0, particularly 4 to 50, and the contact time with the solid catalyst is preferably 0.01 to 20 seconds, particularly preferably 0.2 to 8 seconds.

【0015】原料ガスの水素およびジカルボン酸ジエス
テルは、メタノ−ル、エタノ−ルなどの低級アルコ−ル
蒸気または窒素ガス等の不活性ガスで希釈して前記の水
素化用の固体触媒にフィ−ドされることが望ましい。そ
の組成としては、反応上からは特に限定されるものでは
ないが、例えば、ジカルボン酸ジエステルは、濃度が1
0〜40重量%、特に15〜35%重量%であるジカル
ボン酸ジエステルのアルコ−ル溶液を蒸発させて、水素
ガスと共に固体触媒上へ供給されることが好ましい。な
お、このとき、アルコ−ルにはジカルボン酸ジエステル
のアルコキシ基と同じアルキル基を持つアルコ−ルを使
用することが望ましい。
Hydrogen as a raw material gas and dicarboxylic acid diester are diluted with a lower alcohol vapor such as methanol or ethanol or an inert gas such as nitrogen gas, and then fed to the above-mentioned solid catalyst for hydrogenation. It is desirable to be read. The composition thereof is not particularly limited from the viewpoint of reaction, but for example, dicarboxylic acid diester has a concentration of 1
It is preferred that the alcoholic solution of dicarboxylic acid diester, which is 0 to 40% by weight, in particular 15 to 35% by weight, is evaporated and fed with hydrogen gas onto the solid catalyst. At this time, it is preferable to use an alcohol having the same alkyl group as the alkoxy group of the dicarboxylic acid diester.

【0016】このようにしてラクトンの合成反応を行っ
て、反応器から、目的生成物のラクトンの他に、ヒドロ
キシカルボン酸エステル等の副生物、アルコール、未反
応の水素、不活性ガスなどを含む反応ガスが導出される
が、ラクトンはこの反応ガスを冷却した後、凝縮液から
蒸留等の常法により分離・精製することができる。な
お、副生物のヒドロキシカルボン酸エステルはラクトン
に誘導して利用することもできる。
By carrying out the lactone synthesis reaction in this manner, the reaction product contains by-products such as hydroxycarboxylic acid ester, alcohol, unreacted hydrogen, and inert gas, in addition to the desired product, lactone. Although the reaction gas is discharged, the lactone can be separated and purified from the condensate by a conventional method such as distillation after cooling the reaction gas. The by-product hydroxycarboxylic acid ester can also be used by derivatizing it into a lactone.

【0017】[0017]

【実施例】次に、実施例を挙げて、本発明の方法を具体
的に説明するが、これらは、本発明の方法を何ら限定す
るものではない。なお、各実施例における反応条件のう
ち、液空間速度(g/ml・hr):LHSV、空間速
度(hr-1):SVは、下記の式により求めた。
EXAMPLES Next, the method of the present invention will be specifically described with reference to examples, but these do not limit the method of the present invention in any way. The liquid space velocity (g / ml · hr): LHSV and the space velocity (hr −1 ): SV among the reaction conditions in each example were determined by the following formulas.

【0018】[0018]

【数1】 [Equation 1]

【0019】[0019]

【数2】 [Equation 2]

【0020】また、各実施例におけるジカルボン酸ジエ
ステルの転化率(%)、およびラクトン、ヒドロキシカ
ルボン酸エステル、ジオールの選択率(%)は、次式に
より求めた。
The conversion (%) of dicarboxylic acid diester and the selectivity (%) of lactone, hydroxycarboxylic acid ester and diol in each example were determined by the following equations.

【0021】[0021]

【数3】 [Equation 3]

【0022】[0022]

【数4】 [Equation 4]

【0023】[0023]

【数5】 [Equation 5]

【0024】[0024]

【数6】 [Equation 6]

【0025】更に、各実施例における空時収量(g/l
・hr):STYは、次式により求めた。
Further, the space-time yield (g / l) in each Example
* Hr): STY was calculated by the following equation.

【0026】[0026]

【数7】 [Equation 7]

【0027】実施例1〜4 〔触媒の調製〕硝酸銅〔Cu(NO3 2 ・3H2 O〕
39.2gと、硝酸銀(AgNO3 )2.1gを水20
0mlに溶解し、これに市販のシリカゾル(触媒化成
製;キャタロイドS30L)66.6gを加えて攪拌し
た。この溶液に、予め炭酸アンモニウム14.4gを水
85mlに溶解した液を、30分間で攪拌しながらゆっ
くり滴下した。滴下終了後、攪拌しながら反応物を1.
5時間熟成した後、生成した沈殿物を濾過し分離した。
分離した沈殿物は、約500mlの水で、水洗・濾過を
3回繰り返した。得られた青白色のケ−キを取り出し、
140℃で12時間乾燥して、銅化合物および銀化合物
が担体に担持されている担持体(固体触媒の前駆体)を
形成し、更に、この担持体を、水素気流中、350℃で
2時間還元処理して、銅金属および銀金属が担持されて
いる固体触媒(平均粒子径:1〜2mm)を調製した。
[0027] Examples 1-4 [Preparation of Catalyst] copper nitrate [Cu (NO 3) 2 · 3H 2 O ]
39.2 g and 2.1 g of silver nitrate (AgNO 3 ) in water 20
It was dissolved in 0 ml, and 66.6 g of commercially available silica sol (manufactured by Catalysts &Chemicals; Cataloid S30L) was added and stirred. A solution prepared by previously dissolving 14.4 g of ammonium carbonate in 85 ml of water was slowly added dropwise to this solution while stirring for 30 minutes. After completion of dropping, the reaction product was stirred with stirring.
After aging for 5 hours, the formed precipitate was filtered and separated.
The separated precipitate was washed with water and filtered three times with about 500 ml of water. Take out the obtained pale white cake,
It is dried at 140 ° C. for 12 hours to form a carrier (a precursor of a solid catalyst) in which a copper compound and a silver compound are supported on a carrier, and the carrier is further heated in a hydrogen stream at 350 ° C. for 2 hours. Reduction treatment was carried out to prepare a solid catalyst (average particle diameter: 1 to 2 mm) supporting copper metal and silver metal.

【0028】〔ラクトンの合成〕上記で得られた固体触
媒10mlを、内径20mm、長さ700mmのガラス
製気相反応管に充填した後、この反応管を電気炉中に垂
直に設置して固体触媒層内の温度が表1に示す温度にな
るようにそれぞれ加熱制御した。これらの反応管の上部
から、表1に示す液空間速度(LHSV)および空間速
度(SV)で、水素とコハク酸ジメチルとのモル比が2
0〜40となるように、水素、およびコハク酸ジメチル
とメタノ−ルとの溶液(25重量%コハク酸ジメチルの
メタノ−ル溶液)を供給しながら、前記固体触媒層内の
温度で、常圧下、コハク酸ジメチルの水素化反応を行っ
て、これらの反応管を通過した反応生成物を氷冷したト
ラップ中に捕集した。得られた捕集液をガスクロマトグ
ラフィ−によって分析した結果から、コハク酸ジメチル
の転化率、γ−ブチロラクトンの選択率および空時収量
(STY)、1,4−ブタンジオ−ルの選択率を求め
て、表1にそれぞれ示した。
[Synthesis of Lactone] 10 ml of the solid catalyst obtained above was filled in a glass vapor phase reaction tube having an inner diameter of 20 mm and a length of 700 mm, and the reaction tube was placed vertically in an electric furnace to prepare a solid. The heating was controlled so that the temperature in the catalyst layer became the temperature shown in Table 1. From the top of these reaction tubes, the molar ratio of hydrogen to dimethyl succinate was 2 at the liquid hourly space velocity (LHSV) and the hourly space velocity (SV) shown in Table 1.
While supplying hydrogen and a solution of dimethyl succinate and methanol (25 wt% dimethyl succinate solution in methanol) so as to be 0 to 40, the temperature in the solid catalyst layer under normal pressure Hydrogenation reaction of dimethyl succinate was carried out, and the reaction products passing through these reaction tubes were collected in an ice-cooled trap. From the analysis results of the obtained collected liquid by gas chromatography, the conversion of dimethyl succinate, the selectivity of γ-butyrolactone and the space-time yield (STY), and the selectivity of 1,4-butanediol were determined. , And shown in Table 1, respectively.

【0029】実施例5〜7 〔ラクトンの合成〕実施例1〜4と同様に調製した触媒
を使用して、実施例1〜4におけるコハク酸ジメチルを
アジピン酸ジメチルに、水素とアジピン酸ジメチルとの
モル比を46.9に、温度、液空間速度(LHSV)、
空間速度(SV)を表2に示す条件に変えたことの他
は、実施例1〜4と同様にしてアジピン酸ジメチルの水
素化反応を行った。得られた各捕集液をガスクロマトグ
ラフィ−によって分析した結果から、アジピン酸ジメチ
ルの転化率、ε−カプロラクトンの選択率および空時収
量(STY)、1,6−ヘキサンジオ−ルの選択率、ヒ
ドロキシカプロン酸メチルの選択率を求めて、表2にそ
れぞれ示した。
Examples 5 to 7 [Synthesis of lactone] Using the catalysts prepared in the same manner as in Examples 1 to 4, dimethyl succinate in Examples 1 to 4 was converted to dimethyl adipate, hydrogen and dimethyl adipate. To a molar ratio of 46.9, temperature, liquid hourly space velocity (LHSV),
The hydrogenation reaction of dimethyl adipate was performed in the same manner as in Examples 1 to 4 except that the space velocity (SV) was changed to the conditions shown in Table 2. The obtained collected liquids were analyzed by gas chromatography, and as a result, conversion of dimethyl adipate, selectivity of ε-caprolactone and space-time yield (STY), selectivity of 1,6-hexanediol, hydroxy The selectivity of methyl caproate was calculated and shown in Table 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の作用効果】本発明の方法により、クロムを含有
しない新規な固体触媒を使用して、温和な反応条件下
で、水素により気相でジカルボン酸ジエステルの水素化
反応を行って、従来公知のラクトンの製造法における、
ラクトンの選択率および収量が低い、触媒にクロム等の
公害問題となりうる成分を含有している、という工業的
に望ましくない点を克服して、高選択率、高収量でラク
トンを製造することができる。
According to the method of the present invention, a novel solid catalyst containing no chromium is used to carry out a hydrogenation reaction of a dicarboxylic acid diester with hydrogen in a gas phase under mild reaction conditions, and the conventional method is known. In the lactone production method of
It is possible to manufacture lactones with high selectivity and high yield by overcoming the industrially undesirable point that the selectivity and yield of lactone are low, and that the catalyst contains components that may cause pollution problems such as chromium. it can.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07D 313/18 9360−4C 315/00 9360−4C // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C07D 313/18 9360-4C 315/00 9360-4C // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジカルボン酸ジエステルを水素により気
相で水素化反応させてラクトンを製造する方法におい
て、一般式Rn2・(COORn12 (但し、式中のRn1
は炭素数1〜6の低級アルキル基を、Rn2は炭素数1〜
12の炭化水素基を示す)で表されるジカルボン酸ジエ
ステルを、少なくとも銅金属および銀金属が担体に担持
されている固体触媒の存在下、水素により気相で水素化
反応させてラクトンを合成することを特徴とするラクト
ンの製造法。
1. A method for producing a lactone by subjecting a dicarboxylic acid diester to hydrogenation reaction with hydrogen in a gas phase, wherein a compound represented by the general formula R n2. (COOR n1 ) 2 (where R n1
Is a lower alkyl group having 1 to 6 carbon atoms, and R n2 is 1 to 6 carbon atoms.
A dicarboxylic acid diester represented by 12), which is a hydrocarbon group of 12), is subjected to a hydrogenation reaction in the gas phase with hydrogen in the presence of a solid catalyst in which at least copper metal and silver metal are supported on a carrier to synthesize a lactone. A method for producing a lactone characterized by the following:
JP05038351A 1993-02-26 1993-02-26 Lactone production method Expired - Fee Related JP3132532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05038351A JP3132532B2 (en) 1993-02-26 1993-02-26 Lactone production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05038351A JP3132532B2 (en) 1993-02-26 1993-02-26 Lactone production method

Publications (2)

Publication Number Publication Date
JPH06247954A true JPH06247954A (en) 1994-09-06
JP3132532B2 JP3132532B2 (en) 2001-02-05

Family

ID=12522866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05038351A Expired - Fee Related JP3132532B2 (en) 1993-02-26 1993-02-26 Lactone production method

Country Status (1)

Country Link
JP (1) JP3132532B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495706B2 (en) 2000-06-07 2002-12-17 Kao Corporation Process for producing hydroxycarboxylic acid ester
KR100457067B1 (en) * 2002-04-23 2004-11-12 애경유화 주식회사 Complicated metal oxide catalyst, preparation thereof, and method for the preparation of phthalide from phthalic ester using the catalyst
KR100910165B1 (en) * 2008-09-18 2009-07-30 (주) 제노텍 Purification method of lactone compounds containing unsaturated alkyl group by extraction with silver ion solution
JP2010227893A (en) * 2009-03-30 2010-10-14 Yamaguchi Univ Silver-supporting catalyst used for reduction of carboxylic acid ester to aldehyde

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495706B2 (en) 2000-06-07 2002-12-17 Kao Corporation Process for producing hydroxycarboxylic acid ester
KR100457067B1 (en) * 2002-04-23 2004-11-12 애경유화 주식회사 Complicated metal oxide catalyst, preparation thereof, and method for the preparation of phthalide from phthalic ester using the catalyst
KR100910165B1 (en) * 2008-09-18 2009-07-30 (주) 제노텍 Purification method of lactone compounds containing unsaturated alkyl group by extraction with silver ion solution
WO2010032919A1 (en) * 2008-09-18 2010-03-25 제노텍 Method for purifying lactone compound having unsaturated alkyl group by extraction with silver ion solution
US8193345B2 (en) 2008-09-18 2012-06-05 Genotech Corp. Purification method of lactone compounds containing unsaturated alkyl group by extraction with silver ion solution
JP2010227893A (en) * 2009-03-30 2010-10-14 Yamaguchi Univ Silver-supporting catalyst used for reduction of carboxylic acid ester to aldehyde

Also Published As

Publication number Publication date
JP3132532B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US4249019A (en) Process for producing carboxylic esters
JP4741073B2 (en) Process for producing 1,6-hexanediol and 6-hydroxycaproic acid or ester thereof
KR100798548B1 (en) Method for the Production of Alcohols on Rhenium-Containing Activated Charcoal Supported Catalysts
JP3132532B2 (en) Lactone production method
KR100874535B1 (en) Hydrogenation of Maleic Anhydride and Related Compounds in Two Continuous Reaction Zones
RU2138491C1 (en) γ-BUTYROLACTONE PRODUCTION PROCESS
JP2004538134A (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride.
JPH0673042A (en) Production 0f gamma-butyrolactone
JPH01193246A (en) Production of 2,3-dichloropyridine
JPS6052136B2 (en) Alcohol manufacturing method
JPH08291158A (en) Production of new 3-methyltetrahydrofuran
JP4237500B2 (en) One-step preparation method of toluene derivatives
JPH06135895A (en) Production of glycolic acid ester
JP2008280300A (en) Method for producing annular alkylene imine
JPS5980630A (en) Preparation of oxalic acid diester
JPH08301815A (en) Production of glyoxylic acid ester
JP3132141B2 (en) Method for producing γ-butyrolactone
JP2868023B2 (en) Method for producing ω-hydroxy fatty acid ester
JPH06329567A (en) Production of 1,6-hexanediol
JPH05140030A (en) Production of glyoxylic acids
JPS5817446B2 (en) Alpha Beta - Fuhouwa Aldehydono Suisokahouhou
JPH08259487A (en) Production of unsaturated aldehyde
JPH04297443A (en) Production of carbonic acid diester
JPH04139152A (en) Production of carbonate diester
JPS6136818B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees