JPH06135895A - Production of glycolic acid ester - Google Patents

Production of glycolic acid ester

Info

Publication number
JPH06135895A
JPH06135895A JP5052298A JP5229893A JPH06135895A JP H06135895 A JPH06135895 A JP H06135895A JP 5052298 A JP5052298 A JP 5052298A JP 5229893 A JP5229893 A JP 5229893A JP H06135895 A JPH06135895 A JP H06135895A
Authority
JP
Japan
Prior art keywords
hydrogen
carrier
acid ester
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5052298A
Other languages
Japanese (ja)
Other versions
JP3201057B2 (en
Inventor
Koichi Hirai
浩一 平井
Yasuo Nakamura
靖夫 中村
Yasunori Fukuda
康法 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP05229893A priority Critical patent/JP3201057B2/en
Publication of JPH06135895A publication Critical patent/JPH06135895A/en
Application granted granted Critical
Publication of JP3201057B2 publication Critical patent/JP3201057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To efficiently obtain the subject compound useful as a boiler-cleansing agent, a plating additive, etc., under mild conditions by hydrogenating an oxalic acid diester with hydrogen in the presence of a solid catalyst produced by carrying copper metal and silver metal on a carrier in a gas phase. CONSTITUTION:The method for producing the glycolic acid ester comprises dissolving copper nitrate and silver nitrate in water, adding silica gel for a carrier to the solution, gradually dropping an preliminarily produced ammonium carbonate aqueous solution to the mixture, filtering out the produced precipitates, drying the separated precipitates at 40 deg.C for 12hr, reducing the dried precipitates in a hydrogen flow at 350 deg.C for 2hr, charging the produced solid catalyst comprising the copper metal and the silver metal carried on the carrier into a glass gas phase reaction tube, supplying hydrogen gas and an oxalic acid diester of formula: (COOR)2 (R is 1-6C lower alkyl) into the reaction tube, and simultaneously hydrogenating the oxalate diester at 237 deg.C under ordinary temperature in the gas phase, thus producing the objective glycolic acid ester in high selectively and in high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な固体触媒を使用
して、シュウ酸ジエステルと水素を気相接触反応させる
ことにより、高選択率、高収量でグリコ−ル酸エステル
を製造する方法に関する。グリコ−ル酸エステルは、ボ
イラ−等の洗浄剤、メッキ用添加剤、エッチング剤、皮
なめし剤として、また、洗剤のビルダ−や生分解性ポリ
マ−等の製造のための中間体として非常に有用な化合物
である。
FIELD OF THE INVENTION The present invention relates to a method for producing a glycolic acid ester with a high selectivity and a high yield by subjecting an oxalic acid diester and hydrogen to a gas phase catalytic reaction using a novel solid catalyst. Regarding Glycolic acid ester is extremely useful as a cleaning agent for boilers, an additive for plating, an etching agent, a skin tanning agent, and an intermediate for the production of detergent builders and biodegradable polymers. It is a useful compound.

【0002】[0002]

【従来の技術】グリコ−ル酸エステルの製造法として
は、特公昭55−42971号公報、アメリカ特許第
4,112,245号、ドイツ特許第459,603号
に開示されているように、炭酸第二銅とクロム酸から得
られた触媒の存在下で、シュウ酸ジエチルなどのシュウ
酸ジエステルを水素と接触反応させる方法が既に知られ
ている。しかしながら、これらの方法は、この反応が逐
次反応であるため、触媒の改良もしくは反応条件の最適
化を行わなければ、いずれも水素化反応が更に進行して
エチレングリコールが副生することにより、グリコ−ル
酸エステルの選択率が低下し、それに伴ってグリコ−ル
酸エステルの分離精製も煩雑になるという問題点を有し
ていた。
2. Description of the Related Art As a method for producing a glycolic acid ester, as disclosed in Japanese Patent Publication No. 55-29771, US Pat. No. 4,112,245 and German Patent No. 459,603, carbon dioxide is used. A method for catalytically reacting an oxalic acid diester such as diethyl oxalate with hydrogen in the presence of a catalyst obtained from cupric acid and chromic acid is already known. However, in these methods, since this reaction is a sequential reaction, unless the catalyst is improved or the reaction conditions are optimized, the hydrogenation reaction proceeds further and ethylene glycol is produced as a by-product. There is a problem that the selectivity of the acid ester decreases, and the separation and purification of the glyco acid ester becomes complicated accordingly.

【0003】また、これらの方法は、触媒として銅クロ
ム系触媒を使用しているため、使用後は廃触媒からクロ
ムの回収を行う必要があり、その工程でクロムを効率良
く回収して、廃棄する排水等にクロムが同伴しないよう
にすることは極めて困難であった。このため、環境衛生
上からも、毒性が極めて強いクロムを使用しない製造法
の開発が望まれていた。
Further, since these methods use a copper-chromium-based catalyst as a catalyst, it is necessary to recover chromium from the waste catalyst after use. In that process, chromium is efficiently recovered and discarded. It was extremely difficult to prevent chrome from accommodating sewage and the like. Therefore, from the viewpoint of environmental hygiene, it has been desired to develop a manufacturing method that does not use chromium, which is extremely toxic.

【0004】上記の問題点を解決するため、例えば、特
開昭55−40685号公報では、ルテニウム、ニッケ
ルおよびラネ−ニッケルの中から選定される触媒の存在
下で反応条件を変えてシュウ酸ジエステルと水素との接
触反応を行うことにより、エチレングリコ−ルまたはグ
リコ−ル酸エステルの一方が相対的に多量含まれる反応
生成物を得ているが、グリコ−ル酸エステルを工業的に
製造するためには、更に反応速度を上げて選択率を向上
させると共に、安価な触媒を使用して温和な反応条件で
反応を行うことが必要であった。また、特公昭60−4
5938号公報では、銅のアンミン錯体がシリカ担体に
担持された触媒を、特公昭62−37030号公報で
は、銀またはパラジウムが担持された触媒を用いて、同
様の接触反応を行う方法が開示されているが、これらの
触媒は活性やグリコ−ル酸エステルの選択率が低く、工
業的に使用するには十分ではなかった。
In order to solve the above-mentioned problems, for example, in JP-A-55-40685, reaction conditions are changed in the presence of a catalyst selected from ruthenium, nickel and Raney-nickel to change the oxalic acid diester. Although a reaction product containing a relatively large amount of either ethylene glycol or glycolic acid ester is obtained by carrying out a catalytic reaction of hydrogen glycol with hydrogen, the glycolic acid ester is industrially produced. In order to do so, it is necessary to further increase the reaction rate to improve the selectivity and to carry out the reaction under mild reaction conditions using an inexpensive catalyst. In addition, Japanese Examined Sho 60-4
Japanese Patent No. 5938 discloses a method of carrying out a similar catalytic reaction using a catalyst in which a copper ammine complex is supported on a silica carrier, and Japanese Patent Publication No. 62-37030 discloses a catalyst in which silver or palladium is supported. However, these catalysts have low activity and low selectivity of glyco-acid ester, and are not sufficient for industrial use.

【0005】[0005]

【発明が解決しようとする課題】公知のグリコ−ル酸エ
ステルの製造法は、前述したように、シュウ酸ジエステ
ルの水素化反応が逐次反応であり、更に反応が進むとエ
チレングリコ−ルが生成する副反応が起こることによ
り、グリコ−ル酸エステルの選択率が低下するなどの問
題点があった。本発明の目的は、反応生成物の分離・回
収が容易な気相法により、新規な固体触媒の存在下、温
和な反応条件下で水素によるシュウ酸ジエステルの水素
化反応を行って、グリコ−ル酸エステルを高選択率、高
収量で製造し得る工業的に好適なグリコ−ル酸エステル
の製造法を提供することにある。
As described above, in the known method for producing a glycolic acid ester, the hydrogenation reaction of oxalic acid diester is a sequential reaction, and when the reaction proceeds further, ethylene glycol is produced. However, there is a problem that the selectivity of the glyco-acid ester is lowered due to the side reaction. An object of the present invention is to carry out a hydrogenation reaction of oxalic acid diester with hydrogen under mild reaction conditions in the presence of a novel solid catalyst by a gas phase method which facilitates separation / recovery of a reaction product to give a glyco- An object of the present invention is to provide an industrially suitable method for producing a glycolic acid ester capable of producing a high-selectivity and high-yield acid ester.

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来公知
のグリコ−ル酸エステルの製造法における前述したよう
な問題点を克服すべく、シュウ酸ジエステルと水素との
気相接触反応について鋭意検討した結果、新規な水素化
触媒の存在下でシュウ酸ジエステルと水素との気相接触
反応を行うと、極めて高い活性および選択率で目的生成
物のグリコ−ル酸エステルが得られることを見出して本
発明に到達した。
In order to overcome the above-mentioned problems in the heretofore known methods for producing glycolic acid esters, the present inventors have investigated the gas phase catalytic reaction between oxalic acid diester and hydrogen. As a result of diligent study, it was found that when the gas phase catalytic reaction of oxalic acid diester and hydrogen in the presence of a novel hydrogenation catalyst is carried out, the desired product glyco-acid ester can be obtained with extremely high activity and selectivity. The present invention has been reached by finding out.

【0007】即ち、本発明は、シュウ酸ジエステルを水
素により気相で水素化反応させてグリコ−ル酸エステル
を製造する方法において、一般式(COOR)2 (但
し、式中のRは炭素数1〜6の低級アルキル基を示す)
で表されるシュウ酸ジエステルを、少なくとも銅金属お
よび銀金属が担体に担持されている固体触媒の存在下、
水素により気相で水素化反応させてグリコ−ル酸エステ
ルを合成することを特徴とするグリコ−ル酸エステルの
製造法に関する。
That is, the present invention provides a method for producing a glycolic acid ester by hydrogenating an oxalic acid diester with hydrogen in a gas phase, wherein a general formula (COOR) 2 (where R is a carbon number 1 to 6 represents a lower alkyl group)
In the presence of a solid catalyst in which at least copper metal and silver metal are supported on a carrier, oxalic acid diester represented by
The present invention relates to a method for producing a glycolic acid ester, which comprises synthesizing a glycolic acid ester by hydrogenating a gas phase with hydrogen.

【0008】以下に本発明の方法を詳しく説明する。本
発明で使用されるシュウ酸ジエステルとしては、シュウ
酸と炭素数1〜6の低級脂肪族一価アルコ−ルとのジエ
ステルを用いるのが好ましい。具体的には、シュウ酸ジ
メチル、シュウ酸ジエチル、シュウ酸ジプロピル、シュ
ウ酸ジブチル、シュウ酸ジアミルなどを好適に挙げるこ
とができるが、特に前記の炭素数1〜4個の低級脂肪族
一価アルコ−ルのシュウ酸ジエステルが好ましく、中で
もシュウ酸ジメチルおよびシュウ酸ジエチルが最も好ま
しい。
The method of the present invention will be described in detail below. As the oxalic acid diester used in the present invention, it is preferable to use a diester of oxalic acid and a lower aliphatic monovalent alcohol having 1 to 6 carbon atoms. Specific examples thereof include dimethyl oxalate, diethyl oxalate, dipropyl oxalate, dibutyl oxalate, and diamyl oxalate. Particularly, the lower aliphatic monovalent alcohol having 1 to 4 carbon atoms described above is preferable. Oxalic acid diesters of alkanol are preferred, with dimethyl oxalate and diethyl oxalate being most preferred.

【0009】本発明で使用される触媒は、少なくとも銅
金属および銀金属がシリカ、アルミナ、チタニア、ジル
コニア、ケイソウ土、酸化亜鉛、酸化ランタン、活性炭
などの担体に担持されている固体触媒であり、更に、前
記銅金属および銀金属に加えて、銅化合物および/また
は銀化合物が担持されている固体触媒であってもよい。
銅金属および銀金属の担持量は、担体に対して、金属換
算で、銅が、好ましくは5〜50重量%、特に好ましく
は5〜30重量%であることが望ましく、銀が、好まし
くは0.01〜20重量%、特に好ましくは0.02〜
10重量%であることが望ましい。
The catalyst used in the present invention is a solid catalyst in which at least copper metal and silver metal are supported on a carrier such as silica, alumina, titania, zirconia, diatomaceous earth, zinc oxide, lanthanum oxide, activated carbon, Further, in addition to the copper metal and the silver metal, a solid catalyst supporting a copper compound and / or a silver compound may be used.
The amount of copper metal and silver metal supported is preferably 5 to 50% by weight, and particularly preferably 5 to 30% by weight, in terms of metal, based on the carrier, and silver is preferably 0. 0.01 to 20% by weight, particularly preferably 0.02 to
It is preferably 10% by weight.

【0010】また、上記の担体は、粉末、粒状のもの、
もしくは成型体が使用されるが、そのサイズについて
は、特に限定されるものではなく、粉末の場合は通常用
いられる20〜100μmのもの、粒状の場合は4〜2
00メッシュ程度のもの、成型体の場合は数mmのもの
が好適に用いられる。
Further, the above-mentioned carrier is powder, granular carrier,
Alternatively, a molded product is used, but its size is not particularly limited, and a powder having a particle size of 20 to 100 μm which is usually used, and a granular product having a particle size of 4 to 2 are used.
Those having a mesh size of about 00 mesh and several mm in the case of a molded product are preferably used.

【0011】本発明で水素化反応に使用される固体触媒
は、銅および銀の硫酸塩、硝酸塩、塩化物、錯塩などの
水溶性化合物が溶解している銅化合物および銀化合物の
水溶液を調製し、これに上記の担体を添加して、適当な
方法で触媒成分を担体に担持させた後、水素ガスなどで
担体に担持されている銅化合物および銀化合物を還元す
ることによって調製される。
The solid catalyst used in the hydrogenation reaction of the present invention is prepared by preparing an aqueous solution of a copper compound and a silver compound in which water-soluble compounds such as copper and silver sulfates, nitrates, chlorides and complex salts are dissolved. It is prepared by adding the above-mentioned carrier to this, supporting the catalyst component on the carrier by an appropriate method, and then reducing the copper compound and the silver compound supported on the carrier with hydrogen gas or the like.

【0012】触媒成分を担体に担持させる方法は、特別
なものである必要はなく、通常実施される方法、即ち、
含浸法(浸漬吸着法)、混練法、沈着法、蒸発乾固法、
共沈法等でよいが、簡便であることから、共沈法、含浸
法または蒸発乾固法が望ましい。触媒成分の担持は、例
えば、上記の担体を懸濁した銅化合物および銀化合物の
水溶液に水酸化ナトリウム、炭酸ナトリウム、炭酸アン
モニウム、水酸化カリウム、アンモニア水などのアルカ
リ化剤を少しずつ添加して、銅化合物と銀化合物を含む
沈澱を担体上に析出させ、銅化合物と銀化合物が担体に
担持されている沈澱物を濾過または濃縮により分離する
ことによって行われる。なお、上記の触媒成分の担体へ
の担持は、同時に行ってもまたは逐次に行ってもよい。
The method of loading the catalyst component on the carrier does not need to be special, and it is a commonly practiced method, that is,
Impregnation method (immersion adsorption method), kneading method, deposition method, evaporation-drying method,
A coprecipitation method or the like may be used, but a coprecipitation method, an impregnation method, or an evaporation-drying method is preferable because it is simple. The catalyst component is supported by, for example, gradually adding an alkalizing agent such as sodium hydroxide, sodium carbonate, ammonium carbonate, potassium hydroxide or aqueous ammonia to an aqueous solution of a copper compound and a silver compound in which the above carrier is suspended. A precipitation containing a copper compound and a silver compound is deposited on a carrier, and the precipitate in which the copper compound and the silver compound are carried on the carrier is separated by filtration or concentration. The catalyst component may be loaded on the carrier at the same time or sequentially.

【0013】担持された触媒成分の還元は、前述の沈澱
物を充分に水洗して、空気中、例えば120℃付近の温
度で乾燥した後、水素ガスまたはヒドラジン等の一般的
な還元剤を用いて行われるが、水素ガスを用いる還元処
理では、シュウ酸ジエステルの水素化反応に先立って、
150〜400℃の温度で、還元時間を1〜2時間とす
る一般的な水素ガスによる還元処理を行って、銅金属お
よび銀金属が主として担持されている固体触媒を製造す
ることが好ましい。
To reduce the supported catalyst component, the above-mentioned precipitate is thoroughly washed with water and dried in air at a temperature of, for example, about 120 ° C., and then a general reducing agent such as hydrogen gas or hydrazine is used. However, in the reduction treatment using hydrogen gas, prior to the hydrogenation reaction of the oxalic acid diester,
It is preferable to perform a reduction treatment with a general hydrogen gas at a temperature of 150 to 400 ° C. for a reduction time of 1 to 2 hours to produce a solid catalyst mainly supporting copper metal and silver metal.

【0014】なお、前記の還元処理を行った後の固体触
媒において、還元が充分にされなかった銅化合物および
/または銀化合物が、銅金属および銀金属と共に、少な
い割合(担体上に担持された金属および金属化合物成分
の全量に対する銅化合物および銀化合物の合計量の割合
で示す残留割合が20重量%以下、特に10重量%以下
である割合)で担持されていても、本発明のシュウ酸ジ
エステルの水素化反応には支障はなく、そのまま水素化
触媒として使用できる。また、本発明の固体触媒は、銅
金属および銀金属と共に、銅金属および銀金属以外の他
の金属または金属化合物が触媒成分として担持されてい
てもよい。
In the solid catalyst after the above reduction treatment, the copper compound and / or the silver compound, which has not been sufficiently reduced, together with the copper metal and the silver metal in a small proportion (supported on the carrier). The oxalic acid diester of the present invention is supported even if the residual ratio shown by the ratio of the total amount of the copper compound and the silver compound to the total amount of the metal and metal compound components is 20% by weight or less, particularly 10% by weight or less. There is no hindrance to the hydrogenation reaction, and it can be used as it is as a hydrogenation catalyst. In addition, the solid catalyst of the present invention may support a metal or a metal compound other than copper metal and silver metal as a catalyst component together with copper metal and silver metal.

【0015】上記の方法などで調製された、少なくとも
銅金属および銀金属が担持されている固体触媒は、水素
化反応の活性(例えば、空時収量:STY)が高いレベ
ルで継続して維持され、触媒としての機械的強度も高く
崩壊がないため、長期間安定に使用することができ、本
発明のシュウ酸ジエステルの水素化反応に好適な触媒で
ある。
The solid catalyst prepared by the above-mentioned method and carrying at least copper metal and silver metal is continuously maintained at a high level for the activity of hydrogenation reaction (for example, space-time yield: STY). Since the catalyst has high mechanical strength and does not disintegrate, it can be used stably for a long period of time and is a catalyst suitable for the hydrogenation reaction of the oxalic acid diester of the present invention.

【0016】本発明では、シュウ酸ジエステルと水素と
の接触反応は、反応温度が100〜300℃、好ましく
は100〜250℃の範囲であって、反応圧が常圧〜約
30kg/cm2 程度の条件で実施することができる。
また、固体触媒の充填された反応管に導入される水素と
シュウ酸ジエステルとのモル比(水素/シュウ酸ジエス
テル)は、2〜100、特に4〜50であることが好ま
しく、固体触媒との接触時間は、0.01〜20秒、特
に0.2〜8秒程度であることが好ましい。
In the present invention, the catalytic reaction between oxalic acid diester and hydrogen is carried out at a reaction temperature of 100 to 300 ° C., preferably 100 to 250 ° C., and a reaction pressure of atmospheric pressure to about 30 kg / cm 2. It can be carried out under the conditions of.
The molar ratio of hydrogen and oxalic acid diester (hydrogen / oxalic acid diester) introduced into the reaction tube filled with the solid catalyst is preferably 2 to 100, particularly preferably 4 to 50. The contact time is preferably 0.01 to 20 seconds, and more preferably 0.2 to 8 seconds.

【0017】また、本発明では、原料ガスの水素および
シュウ酸ジエステルは、メタノール、エタノールなどの
低級アルコール蒸気、または窒素ガス等の不活性ガスで
希釈して前記の水素化用の固体触媒にフィードされるこ
とが望ましい。その組成としては、反応上からは特に限
定されるものではないが、例えば、シュウ酸ジエステル
は、濃度が10〜40重量%、特に15〜35重量%で
あるシュウ酸ジエステルのアルコール溶液を蒸発させ
て、水素ガスと共に固体触媒上へ供給されることが好ま
しい。なお、このとき、アルコ−ルにはシュウ酸ジエス
テルのアルコキシ基と同じアルキル基を持つアルコ−ル
を使用することが好ましい。
Further, in the present invention, hydrogen as a raw material gas and oxalic acid diester are fed to the solid catalyst for hydrogenation after being diluted with a lower alcohol vapor such as methanol or ethanol or an inert gas such as nitrogen gas. It is desirable to be done. Although its composition is not particularly limited from the viewpoint of reaction, for example, oxalic acid diester is obtained by evaporating an alcohol solution of oxalic acid diester having a concentration of 10 to 40% by weight, particularly 15 to 35% by weight. It is preferable that the hydrogen gas is supplied onto the solid catalyst together with the hydrogen gas. At this time, it is preferable to use an alcohol having the same alkyl group as the alkoxy group of the oxalic acid diester.

【0018】[0018]

【実施例】次に、実施例および比較例を挙げて、本発明
の方法を具体的に説明するが、これらは、本発明の方法
を何ら限定するものではない。なお、各実施例および比
較例における反応条件のうち、液空間速度:LHSV
(g/ml・hr)、空間速度:SV(hr-1)、接触
時間:CT(sec)は、それぞれ下記の式により求め
た。
EXAMPLES Next, the method of the present invention will be specifically described with reference to examples and comparative examples, but these do not limit the method of the present invention in any way. Among the reaction conditions in each of the examples and comparative examples, liquid hourly space velocity: LHSV
(G / ml · hr), space velocity: SV (hr −1 ) and contact time: CT (sec) were calculated by the following formulas, respectively.

【0019】[0019]

【数1】 [Equation 1]

【0020】[0020]

【数2】 [Equation 2]

【0021】[0021]

【数3】 [Equation 3]

【0022】また、各実施例および比較例におけるシュ
ウ酸ジエステルの転化率(%)、グリコ−ル酸エステル
の選択率(%)、エチレングリコ−ルの選択率(%)お
よびグリコール酸メチルのSTYは、次式により求め
た。
In each of the examples and comparative examples, the conversion rate (%) of oxalic acid diester, the selectivity rate (%) of glycolic acid ester, the selectivity rate (%) of ethylene glycol, and the STY of methyl glycolate. Was calculated by the following equation.

【0023】[0023]

【数4】 [Equation 4]

【0024】[0024]

【数5】 [Equation 5]

【0025】[0025]

【数6】 [Equation 6]

【0026】[0026]

【数7】 [Equation 7]

【0027】実施例1〜4 〔触媒の調製〕硝酸銅(Cu(NO3 2 ・3H2 O)
39.2gと硝酸銀(AgNO3 )2.1gを水200
mlに溶解し、これに市販のシリカゾル(触媒化成製:
キャタロイドS30L)66.6gを加えて攪拌した。
この溶液に、予め炭酸アンモニウム14.4gを水85
mlに溶解した液を、攪拌しながら30分間でゆっくり
滴下した。滴下終了後、攪拌しながら反応物を1.5時
間熟成した後、生成した沈殿物を濾過して分離した。分
離した沈殿物は、約500mlの水で、水洗・濾過を3
回繰り返した。得られた青白色のケ−キを取り出し、1
40℃で12時間乾燥して、銅化合物および銀化合物が
担体に担持されている担持体(固体触媒の前駆体)を形
成し、更に、この担持体を、水素気流中、350℃で2
時間還元処理して、銅金属および銀金属が担持されてい
る固体触媒(平均粒子径:1〜2mm)を調製した。
Examples 1 to 4 [Preparation of catalyst] Copper nitrate (Cu (NO 3 ) 2 .3H 2 O)
39.2 g and 2.1 g of silver nitrate (AgNO 3 ) were added to 200 parts of water.
It is dissolved in ml and commercial silica sol (manufactured by Catalyst Kasei:
(Cataroid S30L) 66.6 g was added and stirred.
To this solution, 14.4 g of ammonium carbonate was previously added to 85 parts of water.
The liquid dissolved in ml was slowly added dropwise over 30 minutes while stirring. After completion of dropping, the reaction product was aged for 1.5 hours with stirring, and then the generated precipitate was filtered and separated. The separated precipitate is washed with water and filtered with about 500 ml of water.
Repeated times. Take out the obtained blue-white cake and
It is dried at 40 ° C. for 12 hours to form a carrier (a precursor of a solid catalyst) in which a copper compound and a silver compound are supported on a carrier, and the carrier is further dried at 350 ° C. in a hydrogen stream at 2 ° C. for 2 hours.
After reduction treatment for a period of time, a solid catalyst (average particle diameter: 1 to 2 mm) supporting copper metal and silver metal was prepared.

【0028】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒20mlを、内径20mm、長さ700m
mのガラス製気相反応管に充填した後、この反応管を電
気炉中に垂直に設置して反応温度が表1に示す温度にな
るように触媒層内温度をそれぞれ加熱制御した。これら
の反応管の上部から、表1に示す液空間速度(LHS
V)、空間速度(SV)および接触時間(CT)で、水
素とシュウ酸ジメチルのモル比が12.0〜12.3と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、前記反応温度で、常圧
下、シュウ酸ジメチルの水素化反応を行って、反応管を
通過した反応生成物を氷冷したトラップ中に捕集した。
得られた捕集液をガスクロマトグラフィ−によって分析
した結果から、シュウ酸ジメチルの転化率、グリコール
酸エステルの選択率および空時収量(STY)、エチレ
ングリコールの選択率を求めて、表1にそれぞれ示し
た。
[Synthesis of Methyl Glycolate] 20 ml of the solid catalyst obtained above was used, and the inner diameter was 20 mm and the length was 700 m.
After being filled in a glass gas-phase reaction tube of m, the reaction tube was installed vertically in an electric furnace and the temperature in the catalyst layer was controlled by heating so that the reaction temperature became the temperature shown in Table 1. From the top of these reaction tubes, the liquid hourly space velocity (LHS
V), space velocity (SV) and contact time (CT) so that the molar ratio of hydrogen and dimethyl oxalate is 12.0 to 12.3 (25) and the solution of dimethyl oxalate and methanol (25 (% By weight dimethyl oxalate in methanol) was fed to the reaction system at the reaction temperature under normal pressure to carry out hydrogenation reaction of dimethyl oxalate, and the reaction product passing through the reaction tube was cooled with ice. Collected in a trap.
From the results of analyzing the obtained collected liquid by gas chromatography, the conversion rate of dimethyl oxalate, the selectivity of glycolic acid ester and the space-time yield (STY), and the selectivity of ethylene glycol were determined, and Table 1 shows the results. Indicated.

【0029】比較例1 〔触媒の調製〕特公昭60−45938号公報記載の実
施例8〜11と同様にして、銅のアンミン錯体がシリカ
担体に担持された触媒を調製した。硝酸銅(Cu(NO
3 2 ・3H2 O)38.0gを水200mlに溶解
し、これに濃アンモニア水60mlを加えてpHを約1
1〜12として、銅アンミン錯体を含む深青色の溶液を
得た。この深青色の溶液に、30重量%コロイド状シリ
カゾル66.6gを加えて室温で数時間攪拌した後、温
度を上げて大部分の水を蒸発させ、更に120℃で12
時間乾燥した。次いで、乾燥物を充分に水洗し、空気
中,140℃で14時間乾燥した後、水素気流中、35
0℃で2時間還元処理して、固体触媒を調製した。
Comparative Example 1 [Preparation of catalyst] A catalyst in which a copper ammine complex was supported on a silica carrier was prepared in the same manner as in Examples 8 to 11 described in JP-B-60-45938. Copper nitrate (Cu (NO
The 3) 2 · 3H 2 O) 38.0g was dissolved in water 200 ml, the pH about by adding concentrated aqueous ammonia 60ml to 1
As 1 to 12, a deep blue solution containing a copper ammine complex was obtained. To this deep blue solution, 66.6 g of 30 wt% colloidal silica sol was added and stirred at room temperature for several hours, then the temperature was raised to evaporate most of the water, and further at 120 ° C. for 12 hours.
Dried for hours. Then, the dried product was thoroughly washed with water, dried in air at 140 ° C. for 14 hours, and then dried in a hydrogen stream for 35 hours.
Reduction treatment was performed at 0 ° C. for 2 hours to prepare a solid catalyst.

【0030】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が25.0と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度220℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of Methyl Glycolate] Using 10 ml of the solid catalyst obtained above, the liquid hourly space velocity (LHSV), the hourly space velocity (SV) and the contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight dimethyl oxalate methanol solution) were supplied to the reaction system so that the molar ratio of hydrogen and dimethyl oxalate was 25.0. While at a reaction temperature of 220 ° C,
The hydrogenation reaction of dimethyl oxalate was carried out under the normal pressure in the same manner as in Example 1. The results obtained are shown in Table 1.

【0031】比較例2 〔触媒の調製〕特公昭62−37030号公報記載の実
施例1と同様にして、銀がシリカ担体に担持された触媒
を調製した。硝酸銀(AgNO3 )5gを水20mlに
溶解し、これに33%のコロイド性シリカ145gを加
えた。このシリカ懸濁液に水酸化ナトリウム水溶液(水
100mlにNaOH1.24gを溶解したもの)を徐
々に加え、添加終了後、1時間の熟成を行って、生じた
沈澱を濾過して集めた。濾別した、実質的にAgOH−
SiO2 からなる固形物を2回水洗し、次に140℃で
一夜乾燥して担持体を形成した。こうして得られた担持
体2gに3%ヒドラジン水溶液40mlを加えて一夜放
置した後、固形物を濾過により集めて、水洗し、次い
で、真空下、室温で乾燥し、その後、更に150〜20
0℃で乾燥して、触媒を調製した。
Comparative Example 2 [Preparation of catalyst] A catalyst in which silver was supported on a silica carrier was prepared in the same manner as in Example 1 described in JP-B-62-37030. 5 g of silver nitrate (AgNO 3 ) was dissolved in 20 ml of water, and 145 g of 33% colloidal silica was added thereto. Aqueous sodium hydroxide solution (1.24 g of NaOH dissolved in 100 ml of water) was gradually added to this silica suspension, and aging was carried out for 1 hour after completion of the addition, and the resulting precipitate was collected by filtration. Filtered off, substantially AgOH-
The solid consisting of SiO 2 was washed twice with water and then dried overnight at 140 ° C. to form a support. To 2 g of the thus obtained support, 40 ml of a 3% hydrazine aqueous solution was added, and the mixture was allowed to stand overnight, then the solid matter was collected by filtration, washed with water, and then dried under vacuum at room temperature, and then further 150 to 20.
The catalyst was prepared by drying at 0 ° C.

【0032】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が25.0と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度249℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of Methyl Glycolate] Using 10 ml of the solid catalyst obtained above, the liquid hourly space velocity (LHSV), the hourly space velocity (SV) and the contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight dimethyl oxalate methanol solution) were supplied to the reaction system so that the molar ratio of hydrogen and dimethyl oxalate was 25.0. While at a reaction temperature of 249 ° C,
The hydrogenation reaction of dimethyl oxalate was carried out under the normal pressure in the same manner as in Example 1. The results obtained are shown in Table 1.

【0033】実施例5 〔触媒の調製〕硝酸銅(Cu(NO3 2 ・3H2 O)
19gと、硝酸銀(AgNO3 )2.3gを水200m
lに溶解して、75〜80℃に加温し,これに市販のシ
リカゾル(触媒化成製:キャタロイドS30L)66.
5gを加えて攪拌した。この溶液に、予め水酸化ナトリ
ウム7gを水200mlに溶解した液を、30分間で攪
拌しながらゆっくり滴下した。滴下終了後、攪拌しなが
ら反応物を2時間熟成して、生成した沈殿物を濾過によ
り分離した。分離した沈殿物は、約500mlの水で、
水洗・濾過を2回繰り返した。得られたケ−キを取り出
し、140℃で12時間乾燥して、銅化合物および銀化
合物が担体に担持されている担持体(固体触媒の前駆
体)を形成し、更に、この担持体を、水素気流中、35
0℃で2時間還元処理して、銅金属および銀金属が担持
されている固体触媒(平均粒子径:1〜2mm)を調製
した。
Example 5 [Preparation of catalyst] Copper nitrate (Cu (NO 3 ) 2 .3H 2 O)
19 g and 2.3 g of silver nitrate (AgNO 3 ) in 200 m of water
1 and then heated to 75 to 80 ° C., and a commercially available silica sol (manufactured by Catalysis Kasei: Cataloid S30L) 66.
5 g was added and stirred. A solution prepared by previously dissolving 7 g of sodium hydroxide in 200 ml of water was slowly added dropwise to this solution while stirring for 30 minutes. After completion of dropping, the reaction product was aged for 2 hours while stirring, and the generated precipitate was separated by filtration. The separated precipitate is about 500 ml of water,
Washing with water and filtration were repeated twice. The cake thus obtained is taken out and dried at 140 ° C. for 12 hours to form a carrier (a precursor of a solid catalyst) in which a copper compound and a silver compound are supported on a carrier, and further, this carrier is 35 in a hydrogen stream
A reduction treatment was performed at 0 ° C. for 2 hours to prepare a solid catalyst (average particle diameter: 1 to 2 mm) carrying copper metal and silver metal.

【0034】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が22.1と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度237℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of Methyl Glycolate] Using 10 ml of the solid catalyst obtained above, liquid hourly space velocity (LHSV), hourly space velocity (SV) and contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight dimethyl oxalate methanol solution) were supplied to the reaction system so that the molar ratio of hydrogen and dimethyl oxalate was 22.1. While at a reaction temperature of 237 ° C,
The hydrogenation reaction of dimethyl oxalate was carried out under the normal pressure in the same manner as in Example 1. The results obtained are shown in Table 1.

【0035】実施例6 〔触媒の調製〕硝酸銅(Cu(NO3 2 ・3H2 O)
19gと、硝酸銀(AgNO3 )2.1gを水200m
lに溶解し、25重量%アンモニア水60mlを添加し
た後、これに市販のシリカゾル(触媒化成製:キャタロ
イドS30L)66.5gを加えて攪拌した。この溶液
を攪拌しながら反応物を1時間熟成した後、80〜90
℃の温浴で濃縮し、生じた沈殿物を約200mlの水で
4回水洗・濾過した。得られたケ−キを取り出し、12
0℃で12時間乾燥し,更に500℃で3時間焼成し
て、銅化合物および銀化合物が担体に担持されている担
持体(固体触媒の前駆体)を形成した後、この担持体
を、水素気流中、350℃で2時間還元処理して、銅金
属および銀金属が担持されている固体触媒(平均粒子
径:1〜2mm)を調製した。
Example 6 [Preparation of catalyst] Copper nitrate (Cu (NO 3 ) 2 .3H 2 O)
19 g and 2.1 g of silver nitrate (AgNO 3 ) in 200 m of water
After dissolving in 1 and adding 60 ml of 25 wt% ammonia water, 66.5 g of commercially available silica sol (Catalyst Kasei: Cataloid S30L) was added and stirred. The reaction was aged for 1 hour while stirring the solution, then 80-90.
The solution was concentrated in a warm bath at ℃, and the resulting precipitate was washed with about 200 ml of water four times and filtered. The cake obtained is taken out, and 12
After drying at 0 ° C. for 12 hours and further baking at 500 ° C. for 3 hours to form a carrier (a precursor of a solid catalyst) in which a copper compound and a silver compound are supported on a carrier, the carrier is treated with hydrogen. A solid catalyst (average particle diameter: 1 to 2 mm) carrying a copper metal and a silver metal was prepared by reduction treatment at 350 ° C. for 2 hours in an air stream.

【0036】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が5.65と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度225℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of Methyl Glycolate] Using 10 ml of the solid catalyst obtained above, the liquid hourly space velocity (LHSV), the hourly space velocity (SV) and the contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight dimethyl oxalate methanol solution) were supplied to the reaction system so that the molar ratio of hydrogen and dimethyl oxalate was 5.65. However, at a reaction temperature of 225 ° C,
The hydrogenation reaction of dimethyl oxalate was carried out under the normal pressure in the same manner as in Example 1. The results obtained are shown in Table 1.

【0037】実施例7 〔触媒の調製〕実施例5における硝酸銀(AgNO3
の使用量を0.0633gとしたことの他は、実施例5
と同様に触媒を調製した。この触媒には、銅が約20重
量%、銀が約0.16重量担持されていた。
Example 7 [Preparation of catalyst] Silver nitrate (AgNO 3 ) in Example 5
Example 5 except that the amount used of 0.0633 g
A catalyst was prepared in the same manner as in. The catalyst supported about 20% by weight of copper and about 0.16% by weight of silver.

【0038】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒20mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が12.3と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度230℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of Methyl Glycolate] Using 20 ml of the solid catalyst obtained above, the liquid hourly space velocity (LHSV), the hourly space velocity (SV) and the contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight dimethyl oxalate methanol solution) were supplied to the reaction system so that the molar ratio of hydrogen and dimethyl oxalate was 12.3. However, at a reaction temperature of 230 ° C,
The hydrogenation reaction of dimethyl oxalate was carried out under the normal pressure in the same manner as in Example 1. The results obtained are shown in Table 1.

【0039】実施例8 〔グリコ−ル酸エチルの合成〕実施例1と同様に調製し
た触媒20mlを使用し、実施例1におけるシュウ酸ジ
メチルをシュウ酸ジエチルに変えて、表1に示す液空間
速度(LHSV)、空間速度(SV)および接触時間
(CT)で、水素とシュウ酸ジエチルのモル比が12.
0となるように、水素、およびシュウ酸ジエチルとエタ
ノールとの溶液(25重量%シュウ酸ジエチルのエタノ
−ル溶液)を反応系に供給しながら、反応温度220℃
で、常圧下、シュウ酸ジエチルの水素化反応を実施例1
と同様に行った。得られた結果を表1に示す。
Example 8 [Synthesis of Ethyl Glycolate] Using 20 ml of the catalyst prepared in the same manner as in Example 1, the dimethyl oxalate in Example 1 was changed to diethyl oxalate, and the liquid space shown in Table 1 was used. Velocity (LHSV), space velocity (SV) and contact time (CT), the molar ratio of hydrogen to diethyl oxalate is 12.
While supplying hydrogen and a solution of diethyl oxalate and ethanol (25 wt% diethyl oxalate in ethanol) to the reaction system at a reaction temperature of 220 ° C.
In Example 1, the hydrogenation reaction of diethyl oxalate is carried out under normal pressure.
I went the same way. The results obtained are shown in Table 1.

【0040】実施例9 〔グリコ−ル酸ブチルの合成〕実施例1と同様に調製し
た触媒20mlを使用し、実施例1におけるシュウ酸ジ
メチルをシュウ酸ジブチルに変えて、表1に示す液空間
速度(LHSV)、空間速度(SV)および接触時間
(CT)で、水素とシュウ酸ジブチルのモル比が12.
0となるように、水素、およびシュウ酸ジブチルとブタ
ノールとの溶液(25重量%シュウ酸ジブチルのブタノ
−ル溶液)を反応系に供給しながら、反応温度220℃
で、常圧下、シュウ酸ジブチルの水素化反応を実施例1
と同様に行った。得られた結果を表1に示す。
Example 9 [Synthesis of butyl glycolate] Using 20 ml of the catalyst prepared in the same manner as in Example 1, the dimethyl oxalate in Example 1 was changed to dibutyl oxalate, and the liquid space shown in Table 1 was used. Velocity (LHSV), space velocity (SV) and contact time (CT), the molar ratio of hydrogen to dibutyl oxalate is 12.
While supplying hydrogen and a solution of dibutyl oxalate and butanol (25 wt% dibutyl oxalate butanol solution) to the reaction system at a reaction temperature of 220 ° C.
In Example 1, the hydrogenation reaction of dibutyl oxalate is carried out under normal pressure.
I went the same way. The results obtained are shown in Table 1.

【0041】実施例10 〔グリコ−ル酸メチルの合成〕実施例1と同様に調製し
た触媒20mlを使用し、表2に示す液空間速度(LH
SV)、空間速度(SV)および接触時間(CT)で、
水素とシュウ酸ジメチルのモル比が12.0となるよう
に、水素、窒素、およびシュウ酸ジメチル(メタノ−ル
を含まないシュウ酸ジメチル)を反応系に供給しなが
ら、反応温度216℃で、常圧下、シュウ酸ジメチルの
水素化反応を実施例1と同様に行った。得られた結果を
表2に示す。
Example 10 [Synthesis of Methyl Glycolate] Using 20 ml of the catalyst prepared in the same manner as in Example 1, the liquid hourly space velocity (LH
SV), space velocity (SV) and contact time (CT),
While supplying hydrogen, nitrogen, and dimethyl oxalate (dimethyl oxalate containing no methanol) to the reaction system so that the molar ratio of hydrogen and dimethyl oxalate is 12.0, at a reaction temperature of 216 ° C., The hydrogenation reaction of dimethyl oxalate was carried out under the normal pressure in the same manner as in Example 1. The obtained results are shown in Table 2.

【0042】比較例3 〔グリコ−ル酸メチルの合成〕比較例1と同様に調製し
た触媒10mlを使用し、表2に示す液空間速度(LH
SV)、空間速度(SV)および接触時間(CT)で、
水素とシュウ酸ジメチルのモル比が25.0となるよう
に、水素、窒素、およびシュウ酸ジメチル(メタノ−ル
を含まないシュウ酸ジメチル)を反応系に供給しなが
ら、反応温度220℃で、常圧下、シュウ酸ジメチルの
水素化反応を実施例1と同様に行った。得られた結果を
表2に示す。
Comparative Example 3 [Synthesis of Methyl Glycolate] Using 10 ml of the catalyst prepared in the same manner as in Comparative Example 1, the liquid hourly space velocity (LH
SV), space velocity (SV) and contact time (CT),
While supplying hydrogen, nitrogen, and dimethyl oxalate (dimethyl oxalate containing no methanol) to the reaction system so that the molar ratio of hydrogen and dimethyl oxalate is 25.0, at a reaction temperature of 220 ° C., The hydrogenation reaction of dimethyl oxalate was carried out under the normal pressure in the same manner as in Example 1. The obtained results are shown in Table 2.

【0043】比較例4 〔グリコ−ル酸メチルの合成〕比較例2と同様に調製し
た触媒10mlを使用し、表2に示す液空間速度(LH
SV)、空間速度(SV)および接触時間(CT)で、
水素とシュウ酸ジメチルのモル比が25.0となるよう
に、水素、窒素、およびシュウ酸ジメチル溶液(メタノ
−ルを含まないシュウ酸ジメチルのみの溶液)を反応系
に供給しながら、反応温度249℃で、常圧下、シュウ
酸ジメチルの水素化反応を実施例1と同様に行った。得
られた結果を表2に示す。
Comparative Example 4 [Synthesis of Methyl Glycolate] Using 10 ml of the catalyst prepared in the same manner as in Comparative Example 2, the liquid hourly space velocity (LH
SV), space velocity (SV) and contact time (CT),
While supplying hydrogen, nitrogen, and a dimethyl oxalate solution (a solution of only dimethyl oxalate containing no methanol) to the reaction system so that the molar ratio of hydrogen to dimethyl oxalate is 25.0, The hydrogenation reaction of dimethyl oxalate was carried out at 249 ° C. under normal pressure in the same manner as in Example 1. The obtained results are shown in Table 2.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の作用効果】本発明の、新規な固体触媒である
「少なくとも銅金属および銀金属が担体に担持されてい
る固体触媒」を使用する方法により、逐次反応によるエ
チレングリコールの副生および目的生成物であるグリコ
−ル酸エステルの選択率の低下など、従来公知のグリコ
−ル酸エステルの製造法が有する課題を解決して、温和
な反応条件下で、反応生成物の分離・回収が容易な気相
法により水素によるシュウ酸ジエステルの水素化反応を
行って、グリコ−ル酸エステルを高選択率、高収量で製
造することができる。
The method of using the novel solid catalyst "solid catalyst in which at least copper metal and silver metal are supported on the carrier" of the present invention is used to produce ethylene glycol as a by-product and a target product by sequential reaction. It is easy to separate and collect reaction products under mild reaction conditions by solving the problems of conventionally known methods for producing glycolic acid ester, such as lowering the selectivity of glycolic acid ester. The hydrogenation reaction of oxalic acid diester with hydrogen can be carried out by a simple gas phase method to produce a glycolic acid ester with high selectivity and high yield.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シュウ酸ジエステルを水素により気相で
水素化反応させてグリコ−ル酸エステルを製造する方法
において、一般式(COOR)2 (但し、式中のRは炭
素数1〜6の低級アルキル基を示す)で表されるシュウ
酸ジエステルを、少なくとも銅金属および銀金属が担体
に担持されている固体触媒の存在下、水素により気相で
水素化反応させてグリコ−ル酸エステルを合成すること
を特徴とするグリコ−ル酸エステルの製造法。
1. A method for producing a glycolic acid ester by hydrogenating an oxalic acid diester with hydrogen in a gas phase, wherein a compound represented by the general formula (COOR) 2 (wherein R in the formula has 1 to 6 carbon atoms): An oxalic acid diester represented by a lower alkyl group) is subjected to a hydrogenation reaction in the gas phase with hydrogen in the presence of a solid catalyst in which at least copper metal and silver metal are supported on a carrier to give a glycolic acid ester. A method for producing a glycolic acid ester, which comprises synthesizing.
JP05229893A 1992-09-11 1993-03-12 Process for producing glycolic acid ester Expired - Lifetime JP3201057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05229893A JP3201057B2 (en) 1992-09-11 1993-03-12 Process for producing glycolic acid ester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24373092 1992-09-11
JP4-243730 1992-09-11
JP05229893A JP3201057B2 (en) 1992-09-11 1993-03-12 Process for producing glycolic acid ester

Publications (2)

Publication Number Publication Date
JPH06135895A true JPH06135895A (en) 1994-05-17
JP3201057B2 JP3201057B2 (en) 2001-08-20

Family

ID=26392910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05229893A Expired - Lifetime JP3201057B2 (en) 1992-09-11 1993-03-12 Process for producing glycolic acid ester

Country Status (1)

Country Link
JP (1) JP3201057B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345883A1 (en) * 2008-12-25 2011-07-20 Ehime University Purifying agent for oily liquid containing polybiphenyl chloride
CN104109093A (en) * 2013-04-16 2014-10-22 中国石油化工股份有限公司 Method for synthesizing glycolate through hydrogenating oxalate
CN105582915A (en) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 Catalyst for preparing glycolate through hydrogenating oxalate, preparation method for catalyst and use of catalyst
CN108236955A (en) * 2016-12-26 2018-07-03 高化学技术株式会社 A kind of preparation method of Hydrogenation of Dimethyl Oxalate synthesizing alcohol catalyst and thus obtained catalyst and its application
CN112156731A (en) * 2020-09-08 2021-01-01 南京延长反应技术研究院有限公司 Reinforced micro-interface preparation system and method for polyglycolic acid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345883A1 (en) * 2008-12-25 2011-07-20 Ehime University Purifying agent for oily liquid containing polybiphenyl chloride
EP2345883A4 (en) * 2008-12-25 2012-09-05 Univ Ehime Purifying agent for oily liquid containing polybiphenyl chloride
TWI425983B (en) * 2008-12-25 2014-02-11 Univ Ehime Purified preparation of oily liquid containing a poly biphenyl chloride group compound
US9157899B2 (en) 2008-12-25 2015-10-13 Ehime University Purifying agent for oily liquid containing polychlorinated biphenyls
CN104109093A (en) * 2013-04-16 2014-10-22 中国石油化工股份有限公司 Method for synthesizing glycolate through hydrogenating oxalate
CN105582915A (en) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 Catalyst for preparing glycolate through hydrogenating oxalate, preparation method for catalyst and use of catalyst
CN108236955A (en) * 2016-12-26 2018-07-03 高化学技术株式会社 A kind of preparation method of Hydrogenation of Dimethyl Oxalate synthesizing alcohol catalyst and thus obtained catalyst and its application
CN108236955B (en) * 2016-12-26 2021-05-18 高化学株式会社 Preparation method of catalyst for synthesizing ethanol by dimethyl oxalate hydrogenation, catalyst obtained by preparation method and application of catalyst
CN112156731A (en) * 2020-09-08 2021-01-01 南京延长反应技术研究院有限公司 Reinforced micro-interface preparation system and method for polyglycolic acid

Also Published As

Publication number Publication date
JP3201057B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
EP0057007B1 (en) Process for the production of glycollic acid esters
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
JP2738945B2 (en) Low pressure catalytic hydrogenation of carbonyl-containing compounds and catalyst for the hydrogenation
US4874888A (en) Process for the preparation of a diester of oxalic acid
JP3201057B2 (en) Process for producing glycolic acid ester
JPH0920742A (en) Production of nitrile
US20100069681A1 (en) Process for preparing 3-alkoxypropan-1-ols
EP0086370A1 (en) Process for the production of a diester of oxalic acid
JP3132532B2 (en) Lactone production method
JPS5941974B2 (en) Hydrogenation method for α,β-unsaturated aldehydes
JP3129547B2 (en) Method for producing glycolate
JPH06263692A (en) Production of glycolic acid ester
NZ206086A (en) Catalytic production of diesters of oxalic acid
US20100234639A1 (en) Method for producing palladium-containing catalyst
US4319054A (en) Process for producing pyrogallol
JP2003192632A (en) Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid
JPH07232069A (en) Preparation of hydrogenation catalyst for preparing alcohol
JP3915153B2 (en) Method for producing 3-hydroxymethyl-1,6-hexanediol
JPH06157416A (en) Production of glyoxylic acid ester
JP3754464B2 (en) Carboxylic acid hydrogenation process
JPH09221453A (en) Production of carboxylate
JPH0665125A (en) Production of alcohol
JP2004137180A (en) Method for producing carboxylate
JP4014287B2 (en) Method for producing 3-acyloxycyclohexene
JP2000281623A (en) Production of phenyl ester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

EXPY Cancellation because of completion of term