JP3201057B2 - Process for producing glycolic acid ester - Google Patents

Process for producing glycolic acid ester

Info

Publication number
JP3201057B2
JP3201057B2 JP05229893A JP5229893A JP3201057B2 JP 3201057 B2 JP3201057 B2 JP 3201057B2 JP 05229893 A JP05229893 A JP 05229893A JP 5229893 A JP5229893 A JP 5229893A JP 3201057 B2 JP3201057 B2 JP 3201057B2
Authority
JP
Japan
Prior art keywords
reaction
catalyst
hydrogen
acid ester
glycolic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05229893A
Other languages
Japanese (ja)
Other versions
JPH06135895A (en
Inventor
浩一 平井
靖夫 中村
康法 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP05229893A priority Critical patent/JP3201057B2/en
Publication of JPH06135895A publication Critical patent/JPH06135895A/en
Application granted granted Critical
Publication of JP3201057B2 publication Critical patent/JP3201057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、新規な固体触媒を使用
して、シュウ酸ジエステルと水素を気相接触反応させる
ことにより、高選択率、高収量でグリコ−ル酸エステル
を製造する方法に関する。グリコ−ル酸エステルは、ボ
イラ−等の洗浄剤、メッキ用添加剤、エッチング剤、皮
なめし剤として、また、洗剤のビルダ−や生分解性ポリ
マ−等の製造のための中間体として非常に有用な化合物
である。
The present invention relates to a process for producing a glycolic acid ester with high selectivity and high yield by reacting oxalic acid diester with hydrogen in a gas phase using a novel solid catalyst. About. Glycolic acid esters are very useful as detergents for boilers, plating additives, etching agents, tanning agents, and as intermediates for the production of detergent builders and biodegradable polymers. It is a useful compound.

【0002】[0002]

【従来の技術】グリコ−ル酸エステルの製造法として
は、特公昭55−42971号公報、アメリカ特許第
4,112,245号、ドイツ特許第459,603号
に開示されているように、炭酸第二銅とクロム酸から得
られた触媒の存在下で、シュウ酸ジエチルなどのシュウ
酸ジエステルを水素と接触反応させる方法が既に知られ
ている。しかしながら、これらの方法は、この反応が逐
次反応であるため、触媒の改良もしくは反応条件の最適
化を行わなければ、いずれも水素化反応が更に進行して
エチレングリコールが副生することにより、グリコ−ル
酸エステルの選択率が低下し、それに伴ってグリコ−ル
酸エステルの分離精製も煩雑になるという問題点を有し
ていた。
2. Description of the Related Art As a method for producing a glycolic acid ester, as disclosed in Japanese Patent Publication No. 55-42971, U.S. Pat. No. 4,112,245, and German Patent No. 459,603, carbonates are disclosed. A method is known in which an oxalic acid diester such as diethyl oxalate is contacted with hydrogen in the presence of a catalyst obtained from cupric acid and chromic acid. However, in these methods, since this reaction is a sequential reaction, unless the catalyst is improved or the reaction conditions are not optimized, the hydrogenation reaction further proceeds and ethylene glycol is produced as a by-product, resulting in glycosylation. However, the selectivity of the -ester was lowered, and the separation and purification of the glycolate was complicated.

【0003】また、これらの方法は、触媒として銅クロ
ム系触媒を使用しているため、使用後は廃触媒からクロ
ムの回収を行う必要があり、その工程でクロムを効率良
く回収して、廃棄する排水等にクロムが同伴しないよう
にすることは極めて困難であった。このため、環境衛生
上からも、毒性が極めて強いクロムを使用しない製造法
の開発が望まれていた。
[0003] In these methods, since a copper chromium-based catalyst is used as a catalyst, it is necessary to recover chromium from a spent catalyst after use. It was extremely difficult to prevent chrome from entraining wastewater and the like. Therefore, from the viewpoint of environmental hygiene, development of a production method that does not use extremely toxic chromium has been desired.

【0004】上記の問題点を解決するため、例えば、特
開昭55−40685号公報では、ルテニウム、ニッケ
ルおよびラネ−ニッケルの中から選定される触媒の存在
下で反応条件を変えてシュウ酸ジエステルと水素との接
触反応を行うことにより、エチレングリコ−ルまたはグ
リコ−ル酸エステルの一方が相対的に多量含まれる反応
生成物を得ているが、グリコ−ル酸エステルを工業的に
製造するためには、更に反応速度を上げて選択率を向上
させると共に、安価な触媒を使用して温和な反応条件で
反応を行うことが必要であった。また、特公昭60−4
5938号公報では、銅のアンミン錯体がシリカ担体に
担持された触媒を、特公昭62−37030号公報で
は、銀またはパラジウムが担持された触媒を用いて、同
様の接触反応を行う方法が開示されているが、これらの
触媒は活性やグリコ−ル酸エステルの選択率が低く、工
業的に使用するには十分ではなかった。
[0004] In order to solve the above problems, for example, Japanese Patent Application Laid-Open No. 55-40685 discloses that oxalic acid diester is prepared by changing the reaction conditions in the presence of a catalyst selected from ruthenium, nickel and Raney-nickel. A reaction product containing a relatively large amount of either ethylene glycol or a glycolic acid ester is obtained by performing a catalytic reaction between the glycolic acid and hydrogen, but the glycolic acid ester is industrially produced. For this purpose, it is necessary to further increase the reaction rate to improve the selectivity and to carry out the reaction under mild reaction conditions using an inexpensive catalyst. In addition, Japanese Patent Publication No. 60-4
No. 5938 discloses a method in which a similar catalytic reaction is carried out using a catalyst in which a copper ammine complex is supported on a silica carrier, and Japanese Patent Publication No. 62-37030 using a catalyst in which silver or palladium is supported. However, these catalysts had low activity and low selectivity for glycolic acid esters, and were not sufficient for industrial use.

【0005】[0005]

【発明が解決しようとする課題】公知のグリコ−ル酸エ
ステルの製造法は、前述したように、シュウ酸ジエステ
ルの水素化反応が逐次反応であり、更に反応が進むとエ
チレングリコ−ルが生成する副反応が起こることによ
り、グリコ−ル酸エステルの選択率が低下するなどの問
題点があった。本発明の目的は、反応生成物の分離・回
収が容易な気相法により、新規な固体触媒の存在下、温
和な反応条件下で水素によるシュウ酸ジエステルの水素
化反応を行って、グリコ−ル酸エステルを高選択率、高
収量で製造し得る工業的に好適なグリコ−ル酸エステル
の製造法を提供することにある。
In the known method for producing a glycolic acid ester, as described above, the hydrogenation reaction of oxalic acid diester is a sequential reaction, and when the reaction proceeds further, ethylene glycol is formed. When such a side reaction occurs, there is a problem that the selectivity of the glycolic acid ester is lowered. An object of the present invention is to carry out a hydrogenation reaction of oxalic acid diester with hydrogen under mild reaction conditions in the presence of a novel solid catalyst by a gas phase method in which the reaction product can be easily separated and recovered, and the glyco- It is an object of the present invention to provide an industrially suitable method for producing a glycolic acid ester which can produce a luic acid ester with a high selectivity and a high yield.

【0006】[0006]

【課題を解決するための手段】本発明者らは、従来公知
のグリコ−ル酸エステルの製造法における前述したよう
な問題点を克服すべく、シュウ酸ジエステルと水素との
気相接触反応について鋭意検討した結果、新規な水素化
触媒の存在下でシュウ酸ジエステルと水素との気相接触
反応を行うと、極めて高い活性および選択率で目的生成
物のグリコ−ル酸エステルが得られることを見出して本
発明に到達した。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned problems in the known method for producing a glycolic acid ester, the present inventors have proposed a gas phase catalytic reaction between oxalic acid diester and hydrogen. As a result of intensive studies, it has been found that when the gas phase catalytic reaction of oxalic acid diester and hydrogen is carried out in the presence of a novel hydrogenation catalyst, the desired product, glycolic acid ester, can be obtained with extremely high activity and selectivity. The inventors have found the present invention.

【0007】即ち、本発明は、シュウ酸ジエステルを水
素により気相で水素化反応させてグリコ−ル酸エステル
を製造する方法において、一般式(COOR)2 (但
し、式中のRは炭素数1〜6の低級アルキル基を示す)
で表されるシュウ酸ジエステルを、少なくとも銅金属お
よび銀金属が担体に担持されている固体触媒の存在下、
水素により気相で水素化反応させてグリコ−ル酸エステ
ルを合成することを特徴とするグリコ−ル酸エステルの
製造法に関する。
That is, the present invention relates to a method for producing a glycolic acid ester by subjecting an oxalic acid diester to hydrogenation reaction with hydrogen in the gas phase, the method comprising the general formula (COOR) 2 (where R is a carbon atom Represents 1 to 6 lower alkyl groups)
In the presence of a solid catalyst in which at least copper metal and silver metal are supported on a carrier,
The present invention relates to a process for producing a glycolic acid ester, comprising synthesizing a glycolic acid ester by performing a hydrogenation reaction in the gas phase with hydrogen.

【0008】以下に本発明の方法を詳しく説明する。本
発明で使用されるシュウ酸ジエステルとしては、シュウ
酸と炭素数1〜6の低級脂肪族一価アルコ−ルとのジエ
ステルを用いるのが好ましい。具体的には、シュウ酸ジ
メチル、シュウ酸ジエチル、シュウ酸ジプロピル、シュ
ウ酸ジブチル、シュウ酸ジアミルなどを好適に挙げるこ
とができるが、特に前記の炭素数1〜4個の低級脂肪族
一価アルコ−ルのシュウ酸ジエステルが好ましく、中で
もシュウ酸ジメチルおよびシュウ酸ジエチルが最も好ま
しい。
Hereinafter, the method of the present invention will be described in detail. As the oxalic acid diester used in the present invention, a diester of oxalic acid and a lower aliphatic monohydric alcohol having 1 to 6 carbon atoms is preferably used. Specifically, dimethyl oxalate, diethyl oxalate, dipropyl oxalate, dibutyl oxalate, diamyl oxalate, and the like can be preferably mentioned. In particular, the lower aliphatic monovalent alcohol having 1 to 4 carbon atoms is preferably used. Oxalic acid diesters of thiol are preferred, with dimethyl oxalate and diethyl oxalate being most preferred.

【0009】本発明で使用される触媒は、少なくとも銅
金属および銀金属がシリカ、アルミナ、チタニア、ジル
コニア、ケイソウ土、酸化亜鉛、酸化ランタン、活性炭
などの担体に担持されている固体触媒であり、更に、前
記銅金属および銀金属に加えて、銅化合物および/また
は銀化合物が担持されている固体触媒であってもよい。
銅金属および銀金属の担持量は、担体に対して、金属換
算で、銅が、好ましくは5〜50重量%、特に好ましく
は5〜30重量%であることが望ましく、銀が、好まし
くは0.01〜20重量%、特に好ましくは0.02〜
10重量%であることが望ましい。
The catalyst used in the present invention is a solid catalyst in which at least copper metal and silver metal are supported on a carrier such as silica, alumina, titania, zirconia, diatomaceous earth, zinc oxide, lanthanum oxide and activated carbon. Further, in addition to the copper metal and the silver metal, a solid catalyst supporting a copper compound and / or a silver compound may be used.
The loading amount of copper metal and silver metal is preferably 5 to 50% by weight, particularly preferably 5 to 30% by weight, and preferably silver is preferably 0 to 30% by weight in terms of metal relative to the carrier. 0.01 to 20% by weight, particularly preferably 0.02 to 20% by weight.
It is desirably 10% by weight.

【0010】また、上記の担体は、粉末、粒状のもの、
もしくは成型体が使用されるが、そのサイズについて
は、特に限定されるものではなく、粉末の場合は通常用
いられる20〜100μmのもの、粒状の場合は4〜2
00メッシュ程度のもの、成型体の場合は数mmのもの
が好適に用いられる。
The above-mentioned carrier may be in the form of powder, granules,
Alternatively, a molded body is used, but the size thereof is not particularly limited. In the case of a powder, the size is usually 20 to 100 μm, and in the case of a granular material, it is 4 to 2 μm.
Those having a size of about 00 mesh and those of several mm in the case of a molded body are suitably used.

【0011】本発明で水素化反応に使用される固体触媒
は、銅および銀の硫酸塩、硝酸塩、塩化物、錯塩などの
水溶性化合物が溶解している銅化合物および銀化合物の
水溶液を調製し、これに上記の担体を添加して、適当な
方法で触媒成分を担体に担持させた後、水素ガスなどで
担体に担持されている銅化合物および銀化合物を還元す
ることによって調製される。
The solid catalyst used in the hydrogenation reaction of the present invention is prepared by preparing an aqueous solution of a copper compound and a silver compound in which a water-soluble compound such as copper, silver sulfate, nitrate, chloride and complex salt is dissolved. The catalyst is prepared by adding the above-mentioned carrier to the carrier and supporting the catalyst component on the carrier by an appropriate method, and then reducing the copper compound and the silver compound carried on the carrier with hydrogen gas or the like.

【0012】触媒成分を担体に担持させる方法は、特別
なものである必要はなく、通常実施される方法、即ち、
含浸法(浸漬吸着法)、混練法、沈着法、蒸発乾固法、
共沈法等でよいが、簡便であることから、共沈法、含浸
法または蒸発乾固法が望ましい。触媒成分の担持は、例
えば、上記の担体を懸濁した銅化合物および銀化合物の
水溶液に水酸化ナトリウム、炭酸ナトリウム、炭酸アン
モニウム、水酸化カリウム、アンモニア水などのアルカ
リ化剤を少しずつ添加して、銅化合物と銀化合物を含む
沈澱を担体上に析出させ、銅化合物と銀化合物が担体に
担持されている沈澱物を濾過または濃縮により分離する
ことによって行われる。なお、上記の触媒成分の担体へ
の担持は、同時に行ってもまたは逐次に行ってもよい。
The method of supporting the catalyst component on the carrier does not need to be special, and is usually carried out, that is,
Impregnation method (immersion adsorption method), kneading method, deposition method, evaporation to dryness method,
A coprecipitation method or the like may be used, but a coprecipitation method, an impregnation method or an evaporation to dryness method is preferable because of simplicity. The catalyst component is supported, for example, by gradually adding an alkalizing agent such as sodium hydroxide, sodium carbonate, ammonium carbonate, potassium hydroxide, aqueous ammonia to an aqueous solution of a copper compound and a silver compound in which the above carrier is suspended. The precipitation is performed by depositing a precipitate containing a copper compound and a silver compound on a carrier, and separating a precipitate in which the copper compound and the silver compound are carried on the carrier by filtration or concentration. The loading of the catalyst component on the carrier may be performed simultaneously or sequentially.

【0013】担持された触媒成分の還元は、前述の沈澱
物を充分に水洗して、空気中、例えば120℃付近の温
度で乾燥した後、水素ガスまたはヒドラジン等の一般的
な還元剤を用いて行われるが、水素ガスを用いる還元処
理では、シュウ酸ジエステルの水素化反応に先立って、
150〜400℃の温度で、還元時間を1〜2時間とす
る一般的な水素ガスによる還元処理を行って、銅金属お
よび銀金属が主として担持されている固体触媒を製造す
ることが好ましい。
The supported catalyst component is reduced by thoroughly washing the above-mentioned precipitate with water, drying it in air at a temperature of, for example, about 120 ° C., and then using a general reducing agent such as hydrogen gas or hydrazine. In the reduction treatment using hydrogen gas, prior to the hydrogenation reaction of oxalic acid diester,
It is preferable to carry out a reduction treatment with a general hydrogen gas at a temperature of 150 to 400 ° C. for a reduction time of 1 to 2 hours to produce a solid catalyst in which copper metal and silver metal are mainly supported.

【0014】なお、前記の還元処理を行った後の固体触
媒において、還元が充分にされなかった銅化合物および
/または銀化合物が、銅金属および銀金属と共に、少な
い割合(担体上に担持された金属および金属化合物成分
の全量に対する銅化合物および銀化合物の合計量の割合
で示す残留割合が20重量%以下、特に10重量%以下
である割合)で担持されていても、本発明のシュウ酸ジ
エステルの水素化反応には支障はなく、そのまま水素化
触媒として使用できる。また、本発明の固体触媒は、銅
金属および銀金属と共に、銅金属および銀金属以外の他
の金属または金属化合物が触媒成分として担持されてい
てもよい。
In the solid catalyst after the above-mentioned reduction treatment, the copper compound and / or the silver compound which were not sufficiently reduced together with the copper metal and the silver metal have a small ratio (the amount of the copper compound and / or the silver metal supported on the carrier). The oxalic acid diester of the present invention is supported even when the oxalic acid diester of the present invention is supported at a ratio of 20% by weight or less, particularly 10% by weight or less in the residual ratio represented by the ratio of the total amount of the copper compound and the silver compound to the total amount of the metal and the metal compound component. There is no hindrance to the hydrogenation reaction, and it can be used as it is as a hydrogenation catalyst. Further, in the solid catalyst of the present invention, a metal or metal compound other than copper metal and silver metal may be supported as a catalyst component together with copper metal and silver metal.

【0015】上記の方法などで調製された、少なくとも
銅金属および銀金属が担持されている固体触媒は、水素
化反応の活性(例えば、空時収量:STY)が高いレベ
ルで継続して維持され、触媒としての機械的強度も高く
崩壊がないため、長期間安定に使用することができ、本
発明のシュウ酸ジエステルの水素化反応に好適な触媒で
ある。
[0015] The solid catalyst prepared by the above-described method and supporting at least copper metal and silver metal has a high level of activity (eg, space-time yield: STY) of the hydrogenation reaction and is continuously maintained. Since the catalyst has high mechanical strength and does not collapse, it can be used stably for a long period of time, and is a catalyst suitable for the hydrogenation reaction of oxalic acid diester of the present invention.

【0016】本発明では、シュウ酸ジエステルと水素と
の接触反応は、反応温度が100〜300℃、好ましく
は100〜250℃の範囲であって、反応圧が常圧〜約
30kg/cm2 程度の条件で実施することができる。
また、固体触媒の充填された反応管に導入される水素と
シュウ酸ジエステルとのモル比(水素/シュウ酸ジエス
テル)は、2〜100、特に4〜50であることが好ま
しく、固体触媒との接触時間は、0.01〜20秒、特
に0.2〜8秒程度であることが好ましい。
In the present invention, the contact reaction between oxalic acid diester and hydrogen is carried out at a reaction temperature of 100 to 300 ° C., preferably 100 to 250 ° C., and a reaction pressure of normal pressure to about 30 kg / cm 2. It can be carried out under the following conditions.
Further, the molar ratio of hydrogen and oxalic acid diester (hydrogen / oxalic acid diester) introduced into the reaction tube filled with the solid catalyst is preferably 2 to 100, particularly preferably 4 to 50. The contact time is preferably about 0.01 to 20 seconds, particularly about 0.2 to 8 seconds.

【0017】また、本発明では、原料ガスの水素および
シュウ酸ジエステルは、メタノール、エタノールなどの
低級アルコール蒸気、または窒素ガス等の不活性ガスで
希釈して前記の水素化用の固体触媒にフィードされるこ
とが望ましい。その組成としては、反応上からは特に限
定されるものではないが、例えば、シュウ酸ジエステル
は、濃度が10〜40重量%、特に15〜35重量%で
あるシュウ酸ジエステルのアルコール溶液を蒸発させ
て、水素ガスと共に固体触媒上へ供給されることが好ま
しい。なお、このとき、アルコ−ルにはシュウ酸ジエス
テルのアルコキシ基と同じアルキル基を持つアルコ−ル
を使用することが好ましい。
In the present invention, hydrogen and oxalic acid diester of the raw material gas are diluted with a lower alcohol vapor such as methanol or ethanol or an inert gas such as nitrogen gas and fed to the above-mentioned solid catalyst for hydrogenation. It is desirable to be done. Although the composition is not particularly limited from the viewpoint of the reaction, for example, oxalic acid diester is obtained by evaporating an alcohol solution of oxalic acid diester having a concentration of 10 to 40% by weight, particularly 15 to 35% by weight. It is preferable that the hydrogen gas is supplied onto the solid catalyst together with the hydrogen gas. In this case, it is preferable to use an alcohol having the same alkyl group as the alkoxy group of the oxalic acid diester.

【0018】[0018]

【実施例】次に、実施例および比較例を挙げて、本発明
の方法を具体的に説明するが、これらは、本発明の方法
を何ら限定するものではない。なお、各実施例および比
較例における反応条件のうち、液空間速度:LHSV
(g/ml・hr)、空間速度:SV(hr-1)、接触
時間:CT(sec)は、それぞれ下記の式により求め
た。
EXAMPLES Next, the method of the present invention will be described specifically with reference to examples and comparative examples, but these do not limit the method of the present invention in any way. In addition, of the reaction conditions in each of the examples and comparative examples, the liquid hourly space velocity: LHSV
(G / ml · hr), space velocity: SV (hr −1 ), and contact time: CT (sec) were determined by the following equations.

【0019】[0019]

【数1】 (Equation 1)

【0020】[0020]

【数2】 (Equation 2)

【0021】[0021]

【数3】 (Equation 3)

【0022】また、各実施例および比較例におけるシュ
ウ酸ジエステルの転化率(%)、グリコ−ル酸エステル
の選択率(%)、エチレングリコ−ルの選択率(%)お
よびグリコール酸メチルのSTYは、次式により求め
た。
In each of Examples and Comparative Examples, the conversion of oxalic acid diester (%), the selectivity of glycolic acid ester (%), the selectivity of ethylene glycol (%), and the STY of methyl glycolate were determined. Was determined by the following equation.

【0023】[0023]

【数4】 (Equation 4)

【0024】[0024]

【数5】 (Equation 5)

【0025】[0025]

【数6】 (Equation 6)

【0026】[0026]

【数7】 (Equation 7)

【0027】実施例1〜4 〔触媒の調製〕硝酸銅(Cu(NO3 2 ・3H2 O)
39.2gと硝酸銀(AgNO3 )2.1gを水200
mlに溶解し、これに市販のシリカゾル(触媒化成製:
キャタロイドS30L)66.6gを加えて攪拌した。
この溶液に、予め炭酸アンモニウム14.4gを水85
mlに溶解した液を、攪拌しながら30分間でゆっくり
滴下した。滴下終了後、攪拌しながら反応物を1.5時
間熟成した後、生成した沈殿物を濾過して分離した。分
離した沈殿物は、約500mlの水で、水洗・濾過を3
回繰り返した。得られた青白色のケ−キを取り出し、1
40℃で12時間乾燥して、銅化合物および銀化合物が
担体に担持されている担持体(固体触媒の前駆体)を形
成し、更に、この担持体を、水素気流中、350℃で2
時間還元処理して、銅金属および銀金属が担持されてい
る固体触媒(平均粒子径:1〜2mm)を調製した。
Examples 1 to 4 [Preparation of catalyst] Copper nitrate (Cu (NO 3 ) 2 .3H 2 O)
39.2 g and 2.1 g of silver nitrate (AgNO 3 ) were added to 200 parts of water.
and dissolved in a commercially available silica sol (catalyst chemical:
(Cataloid S30L) was added and stirred.
To this solution, 14.4 g of ammonium carbonate was previously added with 85 of water.
The solution dissolved in ml was slowly dropped over 30 minutes while stirring. After completion of the dropwise addition, the reaction product was aged for 1.5 hours while stirring, and the formed precipitate was separated by filtration. The separated precipitate is washed with about 500 ml of water and filtered for 3 times.
Repeated times. Take out the obtained bluish white cake,
After drying at 40 ° C. for 12 hours, a support (a precursor of a solid catalyst) in which a copper compound and a silver compound are supported on a support is formed. The support is further dried at 350 ° C. for 2 hours in a stream of hydrogen.
After a time reduction treatment, a solid catalyst carrying copper metal and silver metal (average particle diameter: 1 to 2 mm) was prepared.

【0028】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒20mlを、内径20mm、長さ700m
mのガラス製気相反応管に充填した後、この反応管を電
気炉中に垂直に設置して反応温度が表1に示す温度にな
るように触媒層内温度をそれぞれ加熱制御した。これら
の反応管の上部から、表1に示す液空間速度(LHS
V)、空間速度(SV)および接触時間(CT)で、水
素とシュウ酸ジメチルのモル比が12.0〜12.3と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、前記反応温度で、常圧
下、シュウ酸ジメチルの水素化反応を行って、反応管を
通過した反応生成物を氷冷したトラップ中に捕集した。
得られた捕集液をガスクロマトグラフィ−によって分析
した結果から、シュウ酸ジメチルの転化率、グリコール
酸エステルの選択率および空時収量(STY)、エチレ
ングリコールの選択率を求めて、表1にそれぞれ示し
た。
[Synthesis of Methyl Glycolate] 20 ml of the solid catalyst obtained above was used to prepare an inner diameter of 20 mm and a length of 700 m.
After filling into a glass gas-phase reaction tube of m, the reaction tube was vertically installed in an electric furnace, and the temperature in the catalyst layer was controlled so that the reaction temperature was as shown in Table 1. From the top of these reaction tubes, the liquid hourly space velocity (LHS
V), space velocity (SV) and contact time (CT) such that the molar ratio of hydrogen to dimethyl oxalate is 12.0 to 12.3, and a solution of hydrogen and dimethyl oxalate and methanol (25 (% Methanol solution of dimethyl oxalate by weight) was supplied to the reaction system while the hydrogenation reaction of dimethyl oxalate was carried out at the reaction temperature under normal pressure, and the reaction product passed through the reaction tube was cooled with ice. Collected in trap.
The conversion of dimethyl oxalate, the selectivity of glycolic acid ester and the space-time yield (STY), and the selectivity of ethylene glycol were determined from the results of analyzing the obtained collected liquid by gas chromatography, and the results are shown in Table 1. Indicated.

【0029】比較例1 〔触媒の調製〕特公昭60−45938号公報記載の実
施例8〜11と同様にして、銅のアンミン錯体がシリカ
担体に担持された触媒を調製した。硝酸銅(Cu(NO
3 2 ・3H2 O)38.0gを水200mlに溶解
し、これに濃アンモニア水60mlを加えてpHを約1
1〜12として、銅アンミン錯体を含む深青色の溶液を
得た。この深青色の溶液に、30重量%コロイド状シリ
カゾル66.6gを加えて室温で数時間攪拌した後、温
度を上げて大部分の水を蒸発させ、更に120℃で12
時間乾燥した。次いで、乾燥物を充分に水洗し、空気
中,140℃で14時間乾燥した後、水素気流中、35
0℃で2時間還元処理して、固体触媒を調製した。
Comparative Example 1 [Preparation of Catalyst] A catalyst in which a copper ammine complex was supported on a silica carrier was prepared in the same manner as in Examples 8 to 11 described in JP-B-60-45938. Copper nitrate (Cu (NO
The 3) 2 · 3H 2 O) 38.0g was dissolved in water 200 ml, the pH about by adding concentrated aqueous ammonia 60ml to 1
As Nos. 1 to 12, deep blue solutions containing a copper ammine complex were obtained. 66.6 g of 30% by weight colloidal silica sol was added to this deep blue solution and stirred at room temperature for several hours, then the temperature was raised to evaporate most of the water.
Dried for hours. Then, the dried product is thoroughly washed with water, dried in air at 140 ° C. for 14 hours, and then dried in a stream of hydrogen for 35 hours.
A reduction treatment was performed at 0 ° C. for 2 hours to prepare a solid catalyst.

【0030】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が25.0と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度220℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of methyl glycolate] Using 10 ml of the solid catalyst obtained above, the liquid hourly space velocity (LHSV), the hourly space velocity (SV) and the contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight of dimethyl oxalate in methanol) are supplied to the reaction system such that the molar ratio of hydrogen to dimethyl oxalate becomes 25.0. At a reaction temperature of 220 ° C.,
The hydrogenation reaction of dimethyl oxalate was performed in the same manner as in Example 1 under normal pressure. Table 1 shows the obtained results.

【0031】比較例2 〔触媒の調製〕特公昭62−37030号公報記載の実
施例1と同様にして、銀がシリカ担体に担持された触媒
を調製した。硝酸銀(AgNO3 )5gを水20mlに
溶解し、これに33%のコロイド性シリカ145gを加
えた。このシリカ懸濁液に水酸化ナトリウム水溶液(水
100mlにNaOH1.24gを溶解したもの)を徐
々に加え、添加終了後、1時間の熟成を行って、生じた
沈澱を濾過して集めた。濾別した、実質的にAgOH−
SiO2 からなる固形物を2回水洗し、次に140℃で
一夜乾燥して担持体を形成した。こうして得られた担持
体2gに3%ヒドラジン水溶液40mlを加えて一夜放
置した後、固形物を濾過により集めて、水洗し、次い
で、真空下、室温で乾燥し、その後、更に150〜20
0℃で乾燥して、触媒を調製した。
Comparative Example 2 [Preparation of Catalyst] A catalyst having silver supported on a silica carrier was prepared in the same manner as in Example 1 described in JP-B-62-37030. 5 g of silver nitrate (AgNO 3 ) was dissolved in 20 ml of water, and 145 g of 33% colloidal silica was added thereto. An aqueous solution of sodium hydroxide (a solution of 1.24 g of NaOH in 100 ml of water) was gradually added to the silica suspension, and after completion of the addition, the mixture was aged for 1 hour, and the resulting precipitate was collected by filtration. Filtrated, substantially AgOH-
The SiO 2 solid was washed twice with water and then dried at 140 ° C. overnight to form a support. After adding 40 ml of a 3% hydrazine aqueous solution to 2 g of the thus obtained support and leaving the mixture to stand overnight, the solid matter was collected by filtration, washed with water, dried at room temperature under vacuum, and then further dried at 150 to 20 ml.
The catalyst was prepared by drying at 0 ° C.

【0032】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が25.0と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度249℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of methyl glycolate] Using 10 ml of the solid catalyst obtained above, the liquid hourly space velocity (LHSV), the hourly space velocity (SV) and the contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight of dimethyl oxalate in methanol) are supplied to the reaction system such that the molar ratio of hydrogen to dimethyl oxalate becomes 25.0. At a reaction temperature of 249 ° C.,
The hydrogenation reaction of dimethyl oxalate was performed in the same manner as in Example 1 under normal pressure. Table 1 shows the obtained results.

【0033】実施例5 〔触媒の調製〕硝酸銅(Cu(NO3 2 ・3H2 O)
19gと、硝酸銀(AgNO3 )2.3gを水200m
lに溶解して、75〜80℃に加温し,これに市販のシ
リカゾル(触媒化成製:キャタロイドS30L)66.
5gを加えて攪拌した。この溶液に、予め水酸化ナトリ
ウム7gを水200mlに溶解した液を、30分間で攪
拌しながらゆっくり滴下した。滴下終了後、攪拌しなが
ら反応物を2時間熟成して、生成した沈殿物を濾過によ
り分離した。分離した沈殿物は、約500mlの水で、
水洗・濾過を2回繰り返した。得られたケ−キを取り出
し、140℃で12時間乾燥して、銅化合物および銀化
合物が担体に担持されている担持体(固体触媒の前駆
体)を形成し、更に、この担持体を、水素気流中、35
0℃で2時間還元処理して、銅金属および銀金属が担持
されている固体触媒(平均粒子径:1〜2mm)を調製
した。
Example 5 [Preparation of catalyst] Copper nitrate (Cu (NO 3 ) 2 .3H 2 O)
19 g and 2.3 g of silver nitrate (AgNO 3 ) in 200 m of water
and heated to 75-80 ° C., and a commercially available silica sol (Cataloid S30L, manufactured by Catalyst Chemicals Co., Ltd.)
5 g was added and stirred. A solution in which 7 g of sodium hydroxide was previously dissolved in 200 ml of water was slowly added dropwise to this solution with stirring for 30 minutes. After completion of the dropwise addition, the reaction product was aged for 2 hours while stirring, and the generated precipitate was separated by filtration. The separated precipitate is about 500 ml of water,
Washing and filtration were repeated twice. The obtained cake is taken out and dried at 140 ° C. for 12 hours to form a support (a precursor of a solid catalyst) in which a copper compound and a silver compound are supported on a support. 35 in a stream of hydrogen
A reduction treatment was performed at 0 ° C. for 2 hours to prepare a solid catalyst (average particle diameter: 1 to 2 mm) supporting copper metal and silver metal.

【0034】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が22.1と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度237℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of methyl glycolate] Using 10 ml of the solid catalyst obtained above, the liquid space velocity (LHSV), space velocity (SV) and contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight of dimethyl oxalate in methanol) are supplied to the reaction system such that the molar ratio of hydrogen to dimethyl oxalate becomes 22.1. While the reaction temperature is 237 ° C,
The hydrogenation reaction of dimethyl oxalate was performed in the same manner as in Example 1 under normal pressure. Table 1 shows the obtained results.

【0035】実施例6 〔触媒の調製〕硝酸銅(Cu(NO3 2 ・3H2 O)
19gと、硝酸銀(AgNO3 )2.1gを水200m
lに溶解し、25重量%アンモニア水60mlを添加し
た後、これに市販のシリカゾル(触媒化成製:キャタロ
イドS30L)66.5gを加えて攪拌した。この溶液
を攪拌しながら反応物を1時間熟成した後、80〜90
℃の温浴で濃縮し、生じた沈殿物を約200mlの水で
4回水洗・濾過した。得られたケ−キを取り出し、12
0℃で12時間乾燥し,更に500℃で3時間焼成し
て、銅化合物および銀化合物が担体に担持されている担
持体(固体触媒の前駆体)を形成した後、この担持体
を、水素気流中、350℃で2時間還元処理して、銅金
属および銀金属が担持されている固体触媒(平均粒子
径:1〜2mm)を調製した。
Example 6 [Preparation of catalyst] Copper nitrate (Cu (NO 3 ) 2 .3H 2 O)
19 g and 2.1 g of silver nitrate (AgNO 3 ) in 200 m of water
Then, after adding 60 ml of 25% by weight ammonia water, 66.5 g of a commercially available silica sol (Cataloid S30L, manufactured by Catalyst Chemicals Co., Ltd.) was added thereto, followed by stirring. After the reaction was aged for 1 hour while stirring the solution,
The mixture was concentrated in a warm bath at ℃ C, and the resulting precipitate was washed with about 200 ml of water four times and filtered. The cake obtained is taken out and 12
After drying at 0 ° C. for 12 hours and further firing at 500 ° C. for 3 hours to form a support (a precursor of a solid catalyst) in which a copper compound and a silver compound are supported on a support, the support is hydrogenated. In a gas stream, reduction treatment was performed at 350 ° C. for 2 hours to prepare a solid catalyst (average particle diameter: 1 to 2 mm) supporting copper metal and silver metal.

【0036】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒10mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が5.65と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度225℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of methyl glycolate] Using 10 ml of the solid catalyst obtained above, the liquid space velocity (LHSV), space velocity (SV) and contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight of dimethyl oxalate in methanol) are supplied to the reaction system so that the molar ratio of hydrogen to dimethyl oxalate becomes 5.65. Meanwhile, at a reaction temperature of 225 ° C,
The hydrogenation reaction of dimethyl oxalate was performed in the same manner as in Example 1 under normal pressure. Table 1 shows the obtained results.

【0037】実施例7 〔触媒の調製〕実施例5における硝酸銀(AgNO3
の使用量を0.0633gとしたことの他は、実施例5
と同様に触媒を調製した。この触媒には、銅が約20重
量%、銀が約0.16重量担持されていた。
Example 7 [Preparation of catalyst] Silver nitrate (AgNO 3 ) in Example 5
Example 5 except that the amount of used was 0.0633 g.
A catalyst was prepared in the same manner as described above. The catalyst supported about 20% by weight of copper and about 0.16% by weight of silver.

【0038】〔グリコ−ル酸メチルの合成〕上記で得ら
れた固体触媒20mlを使用して、表1に示す液空間速
度(LHSV)、空間速度(SV)および接触時間(C
T)で、水素とシュウ酸ジメチルのモル比が12.3と
なるように、水素、およびシュウ酸ジメチルとメタノー
ルとの溶液(25重量%シュウ酸ジメチルのメタノ−ル
溶液)を反応系に供給しながら、反応温度230℃で、
常圧下、シュウ酸ジメチルの水素化反応を実施例1と同
様に行った。得られた結果を表1に示す。
[Synthesis of methyl glycolate] Using 20 ml of the solid catalyst obtained above, the liquid hourly space velocity (LHSV), the hourly space velocity (SV) and the contact time (C
In T), hydrogen and a solution of dimethyl oxalate and methanol (25% by weight of dimethyl oxalate in methanol) are supplied to the reaction system so that the molar ratio of hydrogen to dimethyl oxalate becomes 12.3. At a reaction temperature of 230 ° C.,
The hydrogenation reaction of dimethyl oxalate was performed in the same manner as in Example 1 under normal pressure. Table 1 shows the obtained results.

【0039】実施例8 〔グリコ−ル酸エチルの合成〕実施例1と同様に調製し
た触媒20mlを使用し、実施例1におけるシュウ酸ジ
メチルをシュウ酸ジエチルに変えて、表1に示す液空間
速度(LHSV)、空間速度(SV)および接触時間
(CT)で、水素とシュウ酸ジエチルのモル比が12.
0となるように、水素、およびシュウ酸ジエチルとエタ
ノールとの溶液(25重量%シュウ酸ジエチルのエタノ
−ル溶液)を反応系に供給しながら、反応温度220℃
で、常圧下、シュウ酸ジエチルの水素化反応を実施例1
と同様に行った。得られた結果を表1に示す。
Example 8 [Synthesis of Ethyl Glycolate] Using 20 ml of the catalyst prepared in the same manner as in Example 1, the dimethyl oxalate in Example 1 was changed to diethyl oxalate, and the liquid space shown in Table 1 was used. At a velocity (LHSV), space velocity (SV) and contact time (CT), the molar ratio of hydrogen to diethyl oxalate is 12.
While supplying hydrogen and a solution of diethyl oxalate and ethanol (ethanol solution of 25% by weight of diethyl oxalate) to the reaction system so as to be 0, the reaction temperature was 220 ° C.
In Example 1, the hydrogenation reaction of diethyl oxalate under normal pressure was performed.
The same was done. Table 1 shows the obtained results.

【0040】実施例9 〔グリコ−ル酸ブチルの合成〕実施例1と同様に調製し
た触媒20mlを使用し、実施例1におけるシュウ酸ジ
メチルをシュウ酸ジブチルに変えて、表1に示す液空間
速度(LHSV)、空間速度(SV)および接触時間
(CT)で、水素とシュウ酸ジブチルのモル比が12.
0となるように、水素、およびシュウ酸ジブチルとブタ
ノールとの溶液(25重量%シュウ酸ジブチルのブタノ
−ル溶液)を反応系に供給しながら、反応温度220℃
で、常圧下、シュウ酸ジブチルの水素化反応を実施例1
と同様に行った。得られた結果を表1に示す。
Example 9 [Synthesis of Butyl Glycolate] Using 20 ml of the catalyst prepared in the same manner as in Example 1, dimethyl oxalate in Example 1 was changed to dibutyl oxalate, and the liquid space shown in Table 1 was used. At a velocity (LHSV), space velocity (SV) and contact time (CT), the molar ratio of hydrogen to dibutyl oxalate is 12.
While supplying hydrogen and a solution of dibutyl oxalate and butanol (25% by weight of dibutyl oxalate in butanol) to the reaction system, the reaction temperature was set to 220 ° C.
In Example 1, the hydrogenation reaction of dibutyl oxalate under normal pressure was performed.
The same was done. Table 1 shows the obtained results.

【0041】実施例10 〔グリコ−ル酸メチルの合成〕実施例1と同様に調製し
た触媒20mlを使用し、表2に示す液空間速度(LH
SV)、空間速度(SV)および接触時間(CT)で、
水素とシュウ酸ジメチルのモル比が12.0となるよう
に、水素、窒素、およびシュウ酸ジメチル(メタノ−ル
を含まないシュウ酸ジメチル)を反応系に供給しなが
ら、反応温度216℃で、常圧下、シュウ酸ジメチルの
水素化反応を実施例1と同様に行った。得られた結果を
表2に示す。
Example 10 [Synthesis of methyl glycolate] Using 20 ml of the catalyst prepared in the same manner as in Example 1, the liquid hourly space velocity (LH
SV), space velocity (SV) and contact time (CT)
While supplying hydrogen, nitrogen, and dimethyl oxalate (dimethyl oxalate containing no methanol) to the reaction system so that the molar ratio of hydrogen to dimethyl oxalate becomes 12.0, at a reaction temperature of 216 ° C, The hydrogenation reaction of dimethyl oxalate was performed in the same manner as in Example 1 under normal pressure. Table 2 shows the obtained results.

【0042】比較例3 〔グリコ−ル酸メチルの合成〕比較例1と同様に調製し
た触媒10mlを使用し、表2に示す液空間速度(LH
SV)、空間速度(SV)および接触時間(CT)で、
水素とシュウ酸ジメチルのモル比が25.0となるよう
に、水素、窒素、およびシュウ酸ジメチル(メタノ−ル
を含まないシュウ酸ジメチル)を反応系に供給しなが
ら、反応温度220℃で、常圧下、シュウ酸ジメチルの
水素化反応を実施例1と同様に行った。得られた結果を
表2に示す。
Comparative Example 3 [Synthesis of methyl glycolate] Using 10 ml of the catalyst prepared in the same manner as in Comparative Example 1, the liquid hourly space velocity (LH
SV), space velocity (SV) and contact time (CT)
While supplying hydrogen, nitrogen, and dimethyl oxalate (dimethyl oxalate containing no methanol) to the reaction system so that the molar ratio of hydrogen to dimethyl oxalate becomes 25.0, at a reaction temperature of 220 ° C, The hydrogenation reaction of dimethyl oxalate was performed in the same manner as in Example 1 under normal pressure. Table 2 shows the obtained results.

【0043】比較例4 〔グリコ−ル酸メチルの合成〕比較例2と同様に調製し
た触媒10mlを使用し、表2に示す液空間速度(LH
SV)、空間速度(SV)および接触時間(CT)で、
水素とシュウ酸ジメチルのモル比が25.0となるよう
に、水素、窒素、およびシュウ酸ジメチル溶液(メタノ
−ルを含まないシュウ酸ジメチルのみの溶液)を反応系
に供給しながら、反応温度249℃で、常圧下、シュウ
酸ジメチルの水素化反応を実施例1と同様に行った。得
られた結果を表2に示す。
Comparative Example 4 [Synthesis of methyl glycolate] Using 10 ml of the catalyst prepared in the same manner as in Comparative Example 2, the liquid hourly space velocity (LH
SV), space velocity (SV) and contact time (CT)
While supplying hydrogen, nitrogen, and a dimethyl oxalate solution (a solution of dimethyl oxalate only without methanol) to the reaction system so that the molar ratio of hydrogen to dimethyl oxalate becomes 25.0, the reaction temperature is increased. A hydrogenation reaction of dimethyl oxalate was carried out at 249 ° C. under normal pressure in the same manner as in Example 1. Table 2 shows the obtained results.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の作用効果】本発明の、新規な固体触媒である
「少なくとも銅金属および銀金属が担体に担持されてい
る固体触媒」を使用する方法により、逐次反応によるエ
チレングリコールの副生および目的生成物であるグリコ
−ル酸エステルの選択率の低下など、従来公知のグリコ
−ル酸エステルの製造法が有する課題を解決して、温和
な反応条件下で、反応生成物の分離・回収が容易な気相
法により水素によるシュウ酸ジエステルの水素化反応を
行って、グリコ−ル酸エステルを高選択率、高収量で製
造することができる。
According to the method of the present invention using the novel solid catalyst "a solid catalyst in which at least copper metal and silver metal are supported on a carrier", the by-product of ethylene glycol and the desired production by sequential reaction are obtained. It solves the problems of the conventionally known method for producing a glycolic acid ester, such as a decrease in the selectivity of a glycolic acid ester as a product, and facilitates separation and recovery of a reaction product under mild reaction conditions. By performing a hydrogenation reaction of oxalic acid diester with hydrogen by a simple gas phase method, a glycolic acid ester can be produced with high selectivity and high yield.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−180432(JP,A) 特開 昭57−123143(JP,A) 特開 昭57−122938(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 69/675 C07C 67/31 C07C 27/04 CA(STN) CASREACT(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-180432 (JP, A) JP-A-57-123143 (JP, A) JP-A-57-122938 (JP, A) (58) Field (Int.Cl. 7 , DB name) C07C 69/675 C07C 67/31 C07C 27/04 CA (STN) CASREAT (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シュウ酸ジエステルを水素により気相で
水素化反応させてグリコ−ル酸エステルを製造する方法
において、一般式(COOR)2 (但し、式中のRは炭
素数1〜6の低級アルキル基を示す)で表されるシュウ
酸ジエステルを、少なくとも銅金属および銀金属が担体
に担持されている固体触媒の存在下、水素により気相で
水素化反応させてグリコ−ル酸エステルを合成すること
を特徴とするグリコ−ル酸エステルの製造法。
1. A method for producing a glycolic acid ester by subjecting an oxalic acid diester to hydrogenation reaction with hydrogen in the gas phase, wherein a compound represented by the general formula (COOR) 2 (wherein R represents 1 to 6 carbon atoms). Oxalic acid diester represented by a lower alkyl group) is subjected to hydrogenation reaction in the gas phase with hydrogen in the presence of a solid catalyst in which at least copper metal and silver metal are supported on a carrier to form a glycolic acid ester. A method for producing a glycolic acid ester, which is characterized by being synthesized.
JP05229893A 1992-09-11 1993-03-12 Process for producing glycolic acid ester Expired - Lifetime JP3201057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05229893A JP3201057B2 (en) 1992-09-11 1993-03-12 Process for producing glycolic acid ester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-243730 1992-09-11
JP24373092 1992-09-11
JP05229893A JP3201057B2 (en) 1992-09-11 1993-03-12 Process for producing glycolic acid ester

Publications (2)

Publication Number Publication Date
JPH06135895A JPH06135895A (en) 1994-05-17
JP3201057B2 true JP3201057B2 (en) 2001-08-20

Family

ID=26392910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05229893A Expired - Lifetime JP3201057B2 (en) 1992-09-11 1993-03-12 Process for producing glycolic acid ester

Country Status (1)

Country Link
JP (1) JP3201057B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157899B2 (en) 2008-12-25 2015-10-13 Ehime University Purifying agent for oily liquid containing polychlorinated biphenyls
CN104109093B (en) * 2013-04-16 2016-04-13 中国石油化工股份有限公司 The method of oxalic ester hydrogenation synthesizing of glycolate
CN105582915A (en) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 Catalyst for preparing glycolate through hydrogenating oxalate, preparation method for catalyst and use of catalyst
CN108236955B (en) * 2016-12-26 2021-05-18 高化学株式会社 Preparation method of catalyst for synthesizing ethanol by dimethyl oxalate hydrogenation, catalyst obtained by preparation method and application of catalyst
CN112156731A (en) * 2020-09-08 2021-01-01 南京延长反应技术研究院有限公司 Reinforced micro-interface preparation system and method for polyglycolic acid

Also Published As

Publication number Publication date
JPH06135895A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
JPS6045938B2 (en) Method for producing oxalic acid diester hydrogenation catalyst
EP0056993B1 (en) Process for preparing oxalic acid diesters
JP3201057B2 (en) Process for producing glycolic acid ester
US4874888A (en) Process for the preparation of a diester of oxalic acid
CA1207788A (en) Process for the production of a diester of oxalic acid
JP3132532B2 (en) Lactone production method
EP0108359B1 (en) Process for the preparation of a diester of oxalic acid
JPH0543517A (en) Production of carbonic acid diester
JP4916612B2 (en) Method for producing compound having carboxyl group and / or carbonyl group
JPH06263692A (en) Production of glycolic acid ester
JP3125355B2 (en) Method for producing allyl chloride
JP3089023B2 (en) Regeneration method of Raney copper catalyst
JP2003093876A (en) Catalyst for synthesizing carboxylate and manufacturing method for carboxylate
JPH0216736B2 (en)
JP3129547B2 (en) Method for producing glycolate
JP2003192632A (en) Method for producing mixture of unsaturated carboxylic acid ester with unsaturated carboxylic acid
JP3089020B2 (en) Catalyst regeneration method
JP3652105B2 (en) Copper catalyst for nitrile hydration and preparation method thereof
JP4099630B2 (en) Method for producing perfluoroalkyl compound
JPH09221453A (en) Production of carboxylate
JPH06157416A (en) Production of glyoxylic acid ester
JP2549799B2 (en) Catalyst for producing carbonic acid diester and method for producing carbonic acid diester using the same
JPH0987233A (en) Production of glycolic ester
JPS6038177B2 (en) Production method for hydrogenation catalyst of oxalic acid diester
JPH09253489A (en) Method for regeneration of catalyst for preparing carboxylate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

EXPY Cancellation because of completion of term