JPH0497942A - Production of mullite-zirconia composite ceramics - Google Patents

Production of mullite-zirconia composite ceramics

Info

Publication number
JPH0497942A
JPH0497942A JP2216726A JP21672690A JPH0497942A JP H0497942 A JPH0497942 A JP H0497942A JP 2216726 A JP2216726 A JP 2216726A JP 21672690 A JP21672690 A JP 21672690A JP H0497942 A JPH0497942 A JP H0497942A
Authority
JP
Japan
Prior art keywords
sol
mullite
zirconia
stabilizer
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2216726A
Other languages
Japanese (ja)
Inventor
Hiroshi Shiga
志賀 弘
Jii Emu Yuu Isumairu Emu
エム・ジー・エム・ユー・イスマイル
Keiichi Katayama
恵一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP2216726A priority Critical patent/JPH0497942A/en
Publication of JPH0497942A publication Critical patent/JPH0497942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve strength and toughness by mixing a mullite compsn. sol and a zirconia-stabilizer mixture sol to make a gel, calcining, molding and then sintering. CONSTITUTION:A boehmite sol and silica sol are mixed with the Al2O3/SiO2 molar ratio of 1.37-1.76, and 100 pts.wt. of this mixture is compounded with 0.05-1.5 pts.wt. of at least one sintering aid selected from MgO, Y2O3, TiO2, and Fe2O3 to obtain a mullite compsn. sol (A). And, 100 pts.wt. of zirconia sol and 0.05-2 pts.wt. of stabilizer selected from MgO, Y2O3, CaO, and CeO2 are mixed to obtain a zirconia-stabilizer mixture sol (B). Then, 90-65wt.% of the component (A) and 10-35wt.% of the component (B) are mixed and made into a gel. This gel is calcined, molded and then sintered.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、低温での焼結性に優れ、高強度 高靭性の焼
結体が得られるムライト・ジルコニア複合セラミックス
の製造方法に関するものである。
The present invention relates to a method for producing a mullite-zirconia composite ceramic that has excellent sinterability at low temperatures and can yield a sintered body with high strength and toughness.

【従来の技術】[Conventional technology]

ムライトは3Affi□0.・2S So□の化学組成
を有するケイ酸アルミニウムであり、化学工業磁器、耐
火物中に含まれる結晶相として知られていたが、その高
純度焼結体は裔温強度、耐クリープ抵抗性、低熱膨張率
等の熱的・機械特性に優れ、高温構造材料セラミックス
としての応用が進みつつある。 しかしながら、ムライトは窒化ケイ素(SisN4)、
炭化ケイ素(S i C) 、部分安定化ジルコニア(
psz)等の構造材料用セラミックスに比較して、室温
における抗折強度、破壊靭性が低く、これらの機械的特
性の改善が望まれている。 そして、これらの機械的特性の改善方法として、SiC
やSi、Naウィスカー(ひげ状単結晶)などとの複合
化やZrO□あるいはA1.Ohのような粒子を分散複
合強化する方法が提案されている。 尚、これらの技術のうち前者のものは、ムライト粉末と
ウィスカーとの乾式又は湿式混合によることが多く、そ
して後者のものは、乾式又は湿式混合の他、ゾル−ゲル
法とか共沈法などが採用される。
Mullite is 3Affi□0.・It is an aluminum silicate with a chemical composition of 2S So□, and was known as a crystalline phase contained in chemical industrial porcelain and refractories, but its high purity sintered body has high temperature strength, creep resistance, It has excellent thermal and mechanical properties such as a low coefficient of thermal expansion, and its application as a high-temperature structural ceramic material is progressing. However, mullite is silicon nitride (SisN4),
Silicon carbide (S i C), partially stabilized zirconia (
Compared to ceramics for structural materials such as PSZ), it has lower bending strength and fracture toughness at room temperature, and improvements in these mechanical properties are desired. As a method for improving these mechanical properties, SiC
, Si, Na whiskers (beard-like single crystals), ZrO□ or A1. A method of dispersing and composite reinforcement of particles such as Oh has been proposed. The former of these techniques is often based on dry or wet mixing of mullite powder and whiskers, and the latter involves dry or wet mixing, as well as the sol-gel method and coprecipitation method. Adopted.

【発明が解決しようとする!題] ところで、上記のような技術にあっては、次のような問
題点がある。 すなわち、前者の技術では、この系が難焼結性であるこ
とから、高い焼結温度(一般に1600°C以上)、特
殊な焼成雰囲気、熱間加圧焼結などの特殊な装置を必要
とする。 後者の技術では、比較的高い焼結温度が必要とされてお
り、特にZroz分散強化系では大きな問題がある。す
なわち、高温度での焼結は、分散されたZr○、の粒成
長を引き起こし、この為正方晶Zr○2の単斜晶化が起
こってしまい、応力誘起強靭化の寄与が小さくなり(こ
の寄与は正方晶ZrO□が多い程大きい)、強度向上は
あまり望めない。 −そこで、本発明の第1の目的は、易焼結性(すなわち
、大気中・常圧焼結・焼結温度の低下)を実現すること
である。 本発明の第2の目的は、Zroz分散強化系における準
安定正方晶Zr0zの比率を向上させ、高強度・高靭性
の焼結体を得ることである。 【課題を解決する為の手段】 上記本発明の目的は、ベーマイトゾルとシリカゾルとを
混合してムライト組成ゾルを調整するムライト組成ゾル
調整工程と、ジルコニアゾルに安定化剤を添加するジル
コニア−安定他剤混合ゾル調整工程と、前記ムライト組
成ゾルと前記ジルコニア−安定他剤混合ゾルとを混合し
てゲル化するゲル化工程と、このゲル化工程で得たもの
を仮焼する仮焼工程と、仮焼工程で得た仮焼物を成形し
て焼結する焼結工程とを具備することを特徴とするムラ
イト・ジルコニア複合セラミックスの製造方法によって
達成される。 尚、このムライト・ジルコニア複合セラミックスの製造
方法において、ムライト組成ゾル調整工程ではベーマイ
トゾルとシリカゾルと焼結助剤とが混合されてムライト
組成ゾルが調整されるものが好ましい。 焼結助剤としてはM g O,、Y203 、T i 
Oア、FezO5の群の中から選ばれる少なくとも一種
のものが用いられる。 又、このムライト・ジルコニア複合セラミックスの製造
方法において、ベーマイトゾルとシリカゾルのAj2z
 Ch /S i O□のモル比は約1.37〜1.7
6であることが望ましく、そしてMgO1Yz Os 
、T i Ox 、F e z O3の群の中から選ば
れる少なくとも一種の焼結助剤が用いられる場合には、
ベーマイトゾルとシリカゾルとの合計量100重量部に
対して焼結助剤は0.05〜1.5重量部であることが
好ましい。 ベーマイトゾルとしては反応活性の高いベーマイトゾル
を使用することが好ましく、これはガンマ−アルミナ(
T  Alz Os )やベーマイト(A!00H)の
水分散液を80°C以上に加熱しながら、硝酸、塩酸等
の無機酸や酢酸、ギ酸等の有i酸を通置加えて、解膠す
ることムこよって得られる。 シリカゾルとしては、シリカ微粒子、例えば湿式法で製
造されるホワイトカーボンや乾式法のヒユームドシリカ
を水中に分散させたコロイド水溶液が好ましい。 又、安定化剤としてはMgO,Yz Ch 、CaO1
Ce 02の群の中から選ばれる少なくとも一種のもの
が用いられる。 尚、このMgO,Y203 、Cab、CeCLの群の
中から選ばれる安定化剤は、ムライト100重量部に対
して0.05〜2重量部の程度である。これは、安定化
剤の添加量が多くなりすぎると、正方晶ZrO□の比率
が低下してしまう為である。 そして、ムライト組成ゾルとジルコニア−安定他剤混合
ゾルとの割合は重量比で90:10〜65:35である
ことが好ましい。 ジルコニアゾルは、例えばオキシ塩化ジルコニウム及び
オキシ硝酸ジルコニウムの群の中から選ばれる少なくと
も一種類のものをジルコニウム源(ジルコニウム源の濃
度は0.3〜2eaoe/l)とし、硝酸アンモニウム
、塩化アンモニウム及び硫酸アンモニウムの群の中から
選ばれる少なくとも一種類のアンモニウム塩(後述の尿
素に対してアンモニウム塩の総量は、モル比で0.5倍
以上)及び尿素(ジルコニウム源に対して尿素の量は、
モル比で1〜5倍)が添加され、尿素の分解により製造
される。 尚、ジルコニウムゾルの製造に際して、ジルコニウム源
と尿素の加水分解物との反応時のpHは2〜3であるこ
とが好ましい。 又、ジルコニウムゾルの製造に際して、ジルコニウム源
と尿素の加水分解物との反応生成物を濾過、洗浄した後
、酸で解膠することが好ましい。 特に、濾過・水洗時のpHは5〜7とすることが好まし
い。又、解膠処理時のPHは2.2以下が好ましい。 そして、前記のヘーマイトゾルとシリカゾルをA pg
 03 /S i oxのモル比が所定のものとなるよ
う、さらに必要に応してMgO,Y、O,、TiO□、
Fe、03の群の中から選ばれる少なくとも一種の焼結
助剤を加えて、ムライト組成ゾルを調整する。 又、一方、ジルコニアゾルにMgO1Y70゜、CaO
lCeOzO群の中から選ばれる少なくとも一種の安定
化剤を添加しジルコニア−安定他剤混合ゾルを調整する
。 次に、上記ムライトu成ヅルとノルコニアー安定他剤混
合ゾルとを所定の割合で混合してゲル化させる。 そして、このゲル化物を所定の温度で仮焼し、その後所
定の温度で焼結する。 この焼結温度は、従来のムライト・ジルコニア複合セラ
ミンクスの製造の場合よりも低い温度、例えば1450
°C程度の低い温度でも行え、正方晶1rC)2の比率
が高く、高強度・高靭性の焼結体が得られる。
[Invention tries to solve! [Problem] By the way, the above technology has the following problems. In other words, the former technology requires special equipment such as a high sintering temperature (generally 1600°C or higher), a special firing atmosphere, and hot pressure sintering because this system is difficult to sinter. do. The latter technique requires relatively high sintering temperatures, which is particularly problematic in Zroz dispersion strengthened systems. That is, sintering at high temperatures causes grain growth of dispersed Zr○, which causes monoclinic crystallization of tetragonal Zr○2, reducing the contribution of stress-induced toughening (this The contribution is larger as the amount of tetragonal ZrO□ increases), so it cannot be expected to improve the strength much. - Therefore, the first object of the present invention is to realize easy sinterability (that is, sintering in the atmosphere, normal pressure, and lowering the sintering temperature). A second object of the present invention is to improve the ratio of metastable tetragonal Zr0z in the Zroz dispersion-strengthened system to obtain a sintered body with high strength and high toughness. [Means for Solving the Problems] The object of the present invention is to provide a mullite composition sol adjustment step in which a mullite composition sol is prepared by mixing a boehmite sol and a silica sol, and a zirconia stabilizer in which a stabilizer is added to a zirconia sol. a step of preparing a sol mixed with other agents, a gelling step of mixing and gelling the mullite composition sol and the zirconia-stable mixed sol of other agents, and a calcination step of calcining the product obtained in this gelling step. This is achieved by a method for manufacturing mullite-zirconia composite ceramics, which is characterized by comprising a sintering step of shaping and sintering the calcined product obtained in the calcination step. In this method for producing mullite-zirconia composite ceramics, it is preferable that in the mullite composition sol adjustment step, boehmite sol, silica sol, and sintering aid are mixed to prepare a mullite composition sol. As sintering aids, M g O,, Y203, T i
At least one selected from the group consisting of Oa and FezO5 is used. In addition, in this method for producing mullite-zirconia composite ceramics, Aj2z of boehmite sol and silica sol
The molar ratio of Ch /S i O□ is about 1.37-1.7
6, and MgO1YzOs
When at least one sintering aid selected from the group consisting of , T i Ox , and F ez O3 is used,
The amount of the sintering aid is preferably 0.05 to 1.5 parts by weight based on 100 parts by weight of the total amount of boehmite sol and silica sol. As the boehmite sol, it is preferable to use a boehmite sol with high reaction activity, which is made of gamma-alumina (
While heating an aqueous dispersion of T Alz Os ) or boehmite (A!00H) to 80°C or higher, inorganic acids such as nitric acid or hydrochloric acid or organic acids such as acetic acid or formic acid are added to peptize the aqueous dispersion. You can get it by doing things. The silica sol is preferably a colloidal aqueous solution in which fine silica particles, such as white carbon produced by a wet method or fumed silica produced by a dry method, are dispersed in water. In addition, as stabilizers, MgO, Yz Ch, CaO1
At least one selected from the group of Ce 02 is used. The amount of the stabilizer selected from the group consisting of MgO, Y203, Cab, and CeCL is about 0.05 to 2 parts by weight per 100 parts by weight of mullite. This is because if the amount of stabilizer added is too large, the ratio of tetragonal ZrO□ will decrease. The weight ratio of the mullite composition sol and the zirconia-stabilizing agent mixed sol is preferably 90:10 to 65:35. Zirconia sol uses, for example, at least one kind selected from the group of zirconium oxychloride and zirconium oxynitrate as a zirconium source (the concentration of the zirconium source is 0.3 to 2 eaoe/l), and contains ammonium nitrate, ammonium chloride, and ammonium sulfate. At least one type of ammonium salt selected from the group (total amount of ammonium salt to urea described below is 0.5 times or more in molar ratio) and urea (the amount of urea to zirconium source is
(1 to 5 times the molar ratio) is added and produced by decomposition of urea. In the production of zirconium sol, the pH during the reaction between the zirconium source and the urea hydrolyzate is preferably 2 to 3. Further, in producing the zirconium sol, it is preferable to filter and wash the reaction product of the zirconium source and the urea hydrolyzate, and then peptize it with an acid. In particular, the pH during filtration and washing with water is preferably 5 to 7. Further, the pH during peptization treatment is preferably 2.2 or less. Then, the hemite sol and silica sol were added to A pg
03/S i ox to a predetermined molar ratio, MgO, Y, O, TiO□,
At least one sintering aid selected from the group consisting of Fe and 03 is added to adjust the mullite composition sol. On the other hand, MgO1Y70° and CaO are added to the zirconia sol.
At least one type of stabilizer selected from the group 1CeOzO is added to prepare a zirconia-stabilized and other agent mixed sol. Next, the mullite u-single and Norconia stabilizer mixed sol are mixed in a predetermined ratio to form a gel. Then, this gelled product is calcined at a predetermined temperature, and then sintered at a predetermined temperature. This sintering temperature is lower than that in the production of conventional mullite-zirconia composite ceramics, for example 1450
It can be carried out even at temperatures as low as °C, and a sintered body with a high ratio of tetragonal 1rC)2 and high strength and high toughness can be obtained.

【実施例】【Example】

■ 1.0moffi/F!のZr0Cez溶液にモル
比で2.08倍の尿素、及び尿素の1/10量(モル比
)のNH,No、を加え、3.5時間JJlll熱還流
してジルコニアゾルを得た。 ■ このジルコニアゾルを希アンモニア水でゲル化させ
た後、濾過、水洗し、C1−イオンを除去■ こうして
得られたジルコニアゲルをINの希硝酸中に再懸濁して
ゾル化し、それにムライト相に対して0.05〜1.5
重量%のMgOとなるM g NO1+  6Hz O
(又は007〜2,0重量%のY2O3となるY (N
OI )z  6Hz o)を加えて溶解した。この混
液を3時間加熱還流し、ZrO,−MgO混合ゾルを得
た。 ■ ヘーマイトゾルとシリカゾルをAi 203 /S
in、のモル比が3/2となるよう、さらに0.05〜
1.5重蓋%のMgOとなるMg (NOl)2 ・6
H70を加えて、ムライト組成ゾルを得た。 ■ 前記ZrO□−Mg○混合プルに対して上記のムラ
イト組成ゾルを加え、高速分散機で混合攪拌し、反応さ
せた。その後、120 ”Cで20時間乾燥する。 ■ このようにして得た乾燥ゲルをボールミルで粉砕し
た後、100メソンユの篩にかけ、これを電気炉(14
00°Cで15時間)中で仮焼する。 ■ 仮焼粉を湿式スラリー粉砕し、平均粒径が1゜3t
Imのものにする。この後、スラリーは120℃で30
時間乾燥し、乾燥後150メツシユの篩にかけてパスし
た粉末を得る。 ■ このようにして得た粉末を2ton/cm”で静水
圧成形した後、300℃/hrの昇温速度で昇温させ、
所定の温度で焼結した。 このようにして得たムライト・ジルコニア複合セラミッ
クスの特性を調べたので、その結果を表に示す。
■ 1.0moffi/F! To the Zr0Cez solution, urea in a molar ratio of 2.08 times and NH, No in a 1/10 amount (molar ratio) of urea were added, and the mixture was heated under reflux for 3.5 hours to obtain a zirconia sol. ■ After gelling this zirconia sol with dilute ammonia water, it is filtered and washed with water to remove C1- ions ■ The zirconia gel thus obtained is resuspended in IN dilute nitric acid to form a sol, and then added to the mullite phase. 0.05 to 1.5
Mg NO1+ 6Hz O to become MgO in weight%
(or Y (N
OI)z 6Hz o) was added and dissolved. This mixed solution was heated under reflux for 3 hours to obtain a ZrO, -MgO mixed sol. ■ Hemite sol and silica sol Ai 203/S
In, further 0.05~ so that the molar ratio of in is 3/2.
Mg (NOl)2 ・6 which becomes 1.5% MgO
H70 was added to obtain a mullite composition sol. (2) The above mullite composition sol was added to the ZrO□-Mg◯ mixed pull, mixed and stirred using a high-speed disperser, and reacted. Thereafter, it is dried at 120"C for 20 hours. ■ The dry gel thus obtained is ground in a ball mill, passed through a 100-Mesonyu sieve, and then heated in an electric furnace (14
00°C for 15 hours). ■ The calcined powder is wet slurry pulverized and the average particle size is 1°3t.
Make it mine. After this, the slurry was heated to 120°C for 30°C.
After drying, pass through a 150-mesh sieve to obtain a powder. ■ The powder thus obtained was subjected to isostatic pressing at a pressure of 2 tons/cm, and then heated at a rate of 300°C/hr.
Sintered at a specified temperature. The properties of the mullite-zirconia composite ceramic thus obtained were investigated, and the results are shown in the table.

【効果】【effect】

本発明に係るムライト・ジルコニア複合セラミックスの
製造方法は、ヘーマイトゾルとシリカゾルとを混合して
ムライト組成ゾルを調整するムライト組成ゾル調整工程
と、ジルコニアゾルに安定化剤を添加するジルコニア−
安定化側混合ゾル調整工程と、前記ムライト組成ゾルと
前記ジルコニア−安定他剤混合ゾルとを混合してゲル化
するゲル化工程と、このゲル化工程で得たものを仮焼す
る仮焼工程と、仮焼工程で得た仮焼物を成形して焼結す
る焼結工程とを具備するので、焼結工程での焼成温度が
例えば1450°Cといった低い温度でも良く、そして
曲げ強度及び破壊靭性に優れたものであり、畜強度なセ
ラミックスが簡単に得られる特長を有する。 特許出願人 秩父セメント株式会社
The method for manufacturing mullite-zirconia composite ceramics according to the present invention includes a mullite composition sol adjustment step of mixing hemite sol and silica sol to prepare a mullite composition sol, and a zirconia composition sol adjustment step of adding a stabilizer to the zirconia sol.
A stabilizing side mixed sol preparation step, a gelling step of mixing and gelling the mullite composition sol and the zirconia-stabilizing agent mixed sol, and a calcination step of calcining the product obtained in this gelling step. and a sintering step of shaping and sintering the calcined product obtained in the calcination step, the firing temperature in the sintering step can be as low as 1450°C, and the bending strength and fracture toughness can be improved. It has the advantage of being able to easily produce durable ceramics. Patent applicant Chichibu Cement Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)ベーマイトゾルとシリカゾルとを混合してムライ
ト組成ゾルを調整するムライト組成ゾル調整工程と、ジ
ルコニアゾルに安定化剤を添加するジルコニア−安定化
剤混合ゾル調整工程と、前記ムライト組成ゾルと前記ジ
ルコニア−安定化剤混合ゾルとを混合してゲル化するゲ
ル化工程と、このゲル化工程で得たものを仮焼する仮焼
工程と、仮焼工程で得た仮焼物を成形して焼結する焼結
工程とを具備することを特徴とするムライト・ジルコニ
ア複合セラミックスの製造方法。
(1) A mullite composition sol preparation step of mixing boehmite sol and silica sol to prepare a mullite composition sol, a zirconia-stabilizer mixed sol preparation step of adding a stabilizer to the zirconia sol, and the mullite composition sol. A gelling step of mixing and gelling the zirconia-stabilizer mixed sol, a calcination step of calcining the product obtained in this gelling step, and a molding of the calcined product obtained in the calcination step. 1. A method for producing mullite-zirconia composite ceramics, comprising the step of sintering.
(2)ムライト組成ゾル調整工程はベーマイトゾルとシ
リカゾルと焼結助剤とが混合されてムライト組成ゾルが
調整されるものである特許請求の範囲第1項記載のムラ
イト・ジルコニア複合セラミックスの製造方法。
(2) The method for producing a mullite-zirconia composite ceramic according to claim 1, wherein in the mullite composition sol adjustment step, a mullite composition sol is prepared by mixing boehmite sol, silica sol, and a sintering aid. .
(3)焼結助剤が、MgO、Y_2O_3、TiO_2
、Fe_2O_3の群の中から選ばれる少なくとも一種
のものである特許請求の範囲第1項記載のムライト・ジ
ルコニア複合セラミックスの製造方法。
(3) Sintering aids are MgO, Y_2O_3, TiO_2
The method for producing a mullite-zirconia composite ceramic according to claim 1, wherein the mullite-zirconia composite ceramic is at least one selected from the group of , Fe_2O_3.
(4)安定化剤が、MgO、Y_2O_3、CaO、C
eO_2の群の中から選ばれる少なくとも一種のもので
ある特許請求の範囲第1項記載のムライト・ジルコニア
複合セラミックスの製造方法。
(4) The stabilizer is MgO, Y_2O_3, CaO, C
The method for producing a mullite-zirconia composite ceramic according to claim 1, wherein the ceramic is at least one selected from the group of eO_2.
(5)ムライト組成ゾルとジルコニア−安定化剤混合ゾ
ルとの割合が重量比で90:10〜65:35である特
許請求の範囲第1項記載のムライト・ジルコニア複合セ
ラミックスの製造方法。
(5) The method for producing a mullite-zirconia composite ceramic according to claim 1, wherein the weight ratio of the mullite composition sol and the zirconia-stabilizer mixed sol is 90:10 to 65:35.
JP2216726A 1990-08-17 1990-08-17 Production of mullite-zirconia composite ceramics Pending JPH0497942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2216726A JPH0497942A (en) 1990-08-17 1990-08-17 Production of mullite-zirconia composite ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2216726A JPH0497942A (en) 1990-08-17 1990-08-17 Production of mullite-zirconia composite ceramics

Publications (1)

Publication Number Publication Date
JPH0497942A true JPH0497942A (en) 1992-03-30

Family

ID=16692964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2216726A Pending JPH0497942A (en) 1990-08-17 1990-08-17 Production of mullite-zirconia composite ceramics

Country Status (1)

Country Link
JP (1) JPH0497942A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007969A1 (en) * 1992-09-25 1994-04-14 Minnesota Mining And Manufacturing Company Abrasive grain including rare earth oxide therein
US5429647A (en) * 1992-09-25 1995-07-04 Minnesota Mining And Manufacturing Company Method for making abrasive grain containing alumina and ceria
US5551963A (en) * 1992-09-25 1996-09-03 Minnesota Mining And Manufacturing Co. Abrasive grain containing alumina and zirconia
CN109437959A (en) * 2018-12-20 2019-03-08 东北大学 A kind of method that environment-friendly type gel injection-moulding prepares mullite fiber base porous ceramics
CN116003159A (en) * 2022-12-15 2023-04-25 西北工业大学 Mullite-zirconia porous ceramic and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204667A (en) * 1984-03-29 1985-10-16 京セラ株式会社 Thermal shock resistant ceramic sintered body and manufacture
JPS61132510A (en) * 1984-11-30 1986-06-20 Agency Of Ind Science & Technol Production of heat-resistant conjugated oxide powder
JPS62202813A (en) * 1986-02-27 1987-09-07 Chichibu Cement Co Ltd Production of mullite fine powder containing uniformly dispersed zirconia
JPH0274560A (en) * 1988-09-09 1990-03-14 Chichibu Cement Co Ltd Mullite-zirconia compound ceramics having high strength and toughness and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204667A (en) * 1984-03-29 1985-10-16 京セラ株式会社 Thermal shock resistant ceramic sintered body and manufacture
JPS61132510A (en) * 1984-11-30 1986-06-20 Agency Of Ind Science & Technol Production of heat-resistant conjugated oxide powder
JPS62202813A (en) * 1986-02-27 1987-09-07 Chichibu Cement Co Ltd Production of mullite fine powder containing uniformly dispersed zirconia
JPH0274560A (en) * 1988-09-09 1990-03-14 Chichibu Cement Co Ltd Mullite-zirconia compound ceramics having high strength and toughness and production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007969A1 (en) * 1992-09-25 1994-04-14 Minnesota Mining And Manufacturing Company Abrasive grain including rare earth oxide therein
US5429647A (en) * 1992-09-25 1995-07-04 Minnesota Mining And Manufacturing Company Method for making abrasive grain containing alumina and ceria
US5498269A (en) * 1992-09-25 1996-03-12 Minnesota Mining And Manufacturing Company Abrasive grain having rare earth oxide therein
US5551963A (en) * 1992-09-25 1996-09-03 Minnesota Mining And Manufacturing Co. Abrasive grain containing alumina and zirconia
CN109437959A (en) * 2018-12-20 2019-03-08 东北大学 A kind of method that environment-friendly type gel injection-moulding prepares mullite fiber base porous ceramics
CN116003159A (en) * 2022-12-15 2023-04-25 西北工业大学 Mullite-zirconia porous ceramic and preparation method and application thereof
CN116003159B (en) * 2022-12-15 2024-03-12 西北工业大学 Mullite-zirconia porous ceramic and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN109704731B (en) Preparation method of nano yttrium-stabilized zirconia-alumina composite powder
EP0232094B1 (en) Chemical preparation of zirconium-aluminum-magnesium oxide composites
CN109704403A (en) A kind of high tenacity oxidation zirconium base composite powder and preparation method thereof
CN109704759A (en) A kind of compound rare-earth modified zirconia ceramic powder and preparation method thereof
JPH0497942A (en) Production of mullite-zirconia composite ceramics
JPS627667A (en) Alumina-containing partially stabilized zirconia sintered body and manufacture
JP2645826B2 (en) High-strength zirconia-alumina ceramics with heat resistance and method for producing the same
JPH04231374A (en) Composition for preparation of ceramic
JPH0339967B2 (en)
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
JP3190060B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
JP3265344B2 (en) Synthesis method of zircon powder
JPS62202813A (en) Production of mullite fine powder containing uniformly dispersed zirconia
JPH0230663A (en) Sintered material of zirconia and production thereof
JPS6357383B2 (en)
RU2292320C1 (en) Method for preparing ceramic composition material powder
JPH05124810A (en) Starting material for mullite sintered compact, mullite sintered compact and its production
JPH05147924A (en) Production of alumina-silica powder
Zhien et al. The effects of additives on the properties and structure of hot-pressed aluminium titanate ceramics
JPH06219828A (en) Production of mullite-silicon carbide combined ceramics
JPH0274560A (en) Mullite-zirconia compound ceramics having high strength and toughness and production thereof
JP2968608B2 (en) Method for producing fine ceria solid solution tetragonal zirconia powder
KR960006247B1 (en) Process for the preparation of aluminium titanate ceramics
HWANG et al. Preparation and sinterability of zirconia-toughened-alumina composite powder
JPH03265600A (en) Production of mullite whisker