JPS60204667A - Thermal shock resistant ceramic sintered body and manufacture - Google Patents

Thermal shock resistant ceramic sintered body and manufacture

Info

Publication number
JPS60204667A
JPS60204667A JP59062504A JP6250484A JPS60204667A JP S60204667 A JPS60204667 A JP S60204667A JP 59062504 A JP59062504 A JP 59062504A JP 6250484 A JP6250484 A JP 6250484A JP S60204667 A JPS60204667 A JP S60204667A
Authority
JP
Japan
Prior art keywords
sintered body
ceramic sintered
zirconia
thermal shock
resistant ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59062504A
Other languages
Japanese (ja)
Inventor
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP59062504A priority Critical patent/JPS60204667A/en
Publication of JPS60204667A publication Critical patent/JPS60204667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はムライト(3A/203 ・2 S3.Op 
)磁器ヲ母利として強度及び靭性特性並びに耐熱衝撃性
を向上せしめた新規な耐熱衝撃性セラミック焼結体及び
その製法に関Aるものである。
[Detailed description of the invention] The present invention relates to mullite (3A/203 ・2 S3.Op
) This article relates to a novel thermal shock-resistant ceramic sintered body that has improved strength, toughness, and thermal shock resistance as compared to porcelain, and a method for producing the same.

従来周知の通り、ムライト磁器はAf+203と85−
02を含む鉱物(カオリンなど)を用いて合成しており
、この斬法によると焼成に伴って大きく粒成長するため
、焼結体の強度や靭性特性が優れながっノこ 。
As is well known, mullite porcelain has Af+203 and 85-
It is synthesized using minerals containing 02 (such as kaolin), and this method allows the grains to grow large during firing, resulting in a sintered body with excellent strength and toughness.

またムライト磁器は低ヤング率及び低熱膨張率という特
性を有しているため、理論I−耐熱衝撃性に優れている
はずであるが、大きな焼結体組織と共にムライト自体の
熱膨張率の異方性に起因して急11目こ伴い、粒界相に
大きな歪みが牛じ易くなり、これによる粒界亀多ンによ
って焼結体を破壊に至らしめていることが判っている。
In addition, since mullite porcelain has the characteristics of a low Young's modulus and a low coefficient of thermal expansion, it should have excellent thermal shock resistance (Theory I), but the anisotropy of the coefficient of thermal expansion of mullite itself is due to the large sintered body structure. It is known that due to the nature of the sintered material, large distortions tend to occur in the grain boundary phase, and the resulting grain boundary distortion causes the sintered body to break.

従って本発明の目的はムライト磁器を母相として強度及
び靭性特性並びに耐熱衝Qp性を向上げしめた新規な耐
熱衝撃性セラミック焼結体を提供することにある。
Therefore, an object of the present invention is to provide a novel thermal shock resistant ceramic sintered body that uses mullite porcelain as a matrix and has improved strength and toughness characteristics as well as thermal shock resistance Qp.

本発明の他の目的はムライト磁器を母相とした新規な耐
熱衝撃性セラミック焼結体の製法を提供することにある
Another object of the present invention is to provide a method for producing a novel thermal shock-resistant ceramic sintered body using mullite porcelain as a matrix.

本発明によれば、ムライトを母相としてジルコニア粒子
から成る分散相を形成したことを特徴とする耐熱衝撃性
セラミック焼結体が提供される。
According to the present invention, there is provided a thermal shock resistant ceramic sintered body characterized in that a dispersed phase consisting of zirconia particles is formed using mullite as a matrix phase.

更に本発明によれば、主原料たるジルコン及びアルミナ
にジルコニア安定化剤を加えたものを出発原料とし、こ
の原料を混合して所望形状に成形し、該成形体をノ、ラ
イトを母相とすると共にジルコニア粒子から成る分散相
が形成されるように焼結したことを特徴とする耐熱衝撃
性セラミック焼結体の製法が提供される。
Furthermore, according to the present invention, the starting material is a mixture of zircon and alumina as main raw materials with a zirconia stabilizer added, the raw materials are mixed and molded into a desired shape, and the molded body is molded into a matrix of zircon and alumina. There is also provided a method for producing a thermal shock resistant ceramic sintered body, characterized in that the ceramic sintered body is sintered so as to form a dispersed phase composed of zirconia particles.

ムライト磁器は3 A420g・25i09の化学量論
比から成るムライト結晶粒の集合体であり、主にシリカ
(S’xf)++ )から成るがラス質粒界相でムライ
ト粒子を結合させている。
Mullite porcelain is an aggregate of mullite crystal grains with a stoichiometric ratio of 3A420g/25i09, and is mainly composed of silica (S'xf)++), with the mullite grains bound together by a lath grain boundary phase.

本発明の耐熱衝撃性セラミック焼結体は後述の製法に従
ってムライト磁器にジルコニア粒子を分肢させることに
特徴があり、かかるセラミック焼結体は従来のムライト
磁器に比べて強度、靭性特性及び耐熱N M性が督しく
優れたものとなることが判った。
The thermal shock-resistant ceramic sintered body of the present invention is characterized by adding zirconia particles to mullite porcelain according to the manufacturing method described below, and this ceramic sintered body has higher strength, toughness, and heat resistance than conventional mullite porcelain. It was found that the M property was excellent.

斯様に特性が向上するにつIいてはジルコニア粒子の粒
径及びその粒子から成る分散相の焼結体中での体積比率
などによって影響を受けるが、本発明者か実験を繰り返
し行なったところ、ジルコニア粒子の平均粒径が20μ
m以下であると強度、靭性特性及びITi′を熱面撃性
がw4著に向上することが判つ lこ 。
Such improvement in properties is influenced by the particle size of the zirconia particles and the volume ratio of the dispersed phase made of the particles in the sintered body, but the inventor has repeatedly conducted experiments and found that , the average particle size of zirconia particles is 20μ
It is found that the strength, toughness properties, and thermal impact resistance of ITi' are significantly improved when it is less than m.

また本発明においてはジルコニア粒子に部分安定化ジル
コニア焼結体が含まれるようにするのが望ましく、その
ためにジルコニア安定化剤(例えば、+AgO、Ca、
0、第111a族元累酸化物)を焼結1コより生成する
ジルコニア粒P中にZr021モルに対して0.01乃
至0.3モルの混合比率になるようにするとよい1.こ
れによると、衝撃に対してこのジルコニア粒子中の正方
晶ZrOe相が単結晶Zr0z相に相転移し、その結果
、靭性特性が著しく向上することが判明した。
Further, in the present invention, it is desirable that the zirconia particles contain a partially stabilized zirconia sintered body, and for this purpose, a zirconia stabilizer (for example, +AgO, Ca,
0.0, group 111a element accumulated oxide) is preferably mixed in the zirconia grains P produced by sintering at a mixing ratio of 0.01 to 0.3 moles per mole of Zr0.1. According to this, it was found that the tetragonal ZrOe phase in the zirconia particles undergoes a phase transition to the single crystal ZrOz phase upon impact, and as a result, the toughness properties are significantly improved.

本発明の製法は焼成と同時に2 ZrSiO4÷3AI
11103→2 ZrO2+ 3Δep03−25iO
zの反応を起こして耐熱衝撃性セラミック焼結体をつく
ることに特徴がある。
The manufacturing method of the present invention is that 2 ZrSiO4÷3AI
11103→2 ZrO2+ 3Δep03-25iO
It is characterized by producing a thermal shock-resistant ceramic sintered body by causing the reaction z.

即ち、シフ1/ :17 (Zr5iO4)及びアルミ
−1−(A(lpo3)を主原料とし、これに公知のジ
ルコニア安定化剤(例えば、MgO、Cao、第■a族
元素酸化物)を少なくとも一種加える。この出発原料を
均一に混合して所望形状にプレス成形し、この成形体を
焼成すると同時に、上記の反応を起こし、ムライトを母
相とすると共にジルコニア粒子から成る分散相が形成さ
れた耐熱rttI撃性セラミック焼結体をつく る 、
That is, Schiff 1/:17 (Zr5iO4) and aluminum-1-(A(lpo3)) are used as the main raw materials, and at least a known zirconia stabilizer (for example, MgO, Cao, Group A element oxide) is added thereto. The starting materials were mixed uniformly and press-molded into the desired shape, and at the same time as this molded body was fired, the above reaction occurred, forming a dispersed phase consisting of zirconia particles with mullite as the matrix. Creating a heat-resistant rttI shock-resistant ceramic sintered body,
.

更喜こ本発明の製法によれば、この反応焼結に伴ってジ
ルコニア粒子が部分安定化ジルコニア焼結体が含まれる
ようにジルコニア安定化剤が出発原料中に配合されてい
ることに特徴がある。従って、ジルコニア安定化剤は反
応によって生成したZr0pと混合しながらZr02粒
子が生長し、本発明者は¥験によって確かめたところ、
 そのZr(,12粒子中にジルコニア安定化剤がZr
(1+ 1モルに対して0.01乃至03モルの混合比
率になるように添加されていると部分安定化ジルコニア
焼結体を含むジルコニア粒子が形成されることが判り、
かかる粒子から成る分散相をもつ耐熱衝撃性セラミック
焼結体は最も顕著に靭性特性が向上することが認められ
た。。
Sarakiko According to the production method of the present invention, a zirconia stabilizer is blended into the starting materials so that the zirconia particles contain partially stabilized zirconia sintered bodies during this reaction sintering. be. Therefore, the Zr02 particles grow while the zirconia stabilizer is mixed with the Zr0p generated by the reaction, and the inventor confirmed through experiment that
The zirconia stabilizer is Zr in the Zr (, 12 particles)
(It has been found that zirconia particles containing partially stabilized zirconia sintered bodies are formed when it is added at a mixing ratio of 0.01 to 0.03 moles to 1+1 mole,
It has been found that the thermal shock resistant ceramic sintered body having a dispersed phase composed of such particles has the most remarkable improvement in toughness. .

本発明によれば、ジルコン、アルミナ、ジルコニア安定
化剤のいり゛れの出発原料も平均粒径を5μm以下好ま
しくはl Bm以下に設定するのがよく、511mを越
えると焼結体中のジルコニア粒子が平均粒径20μmを
越え易くなり、強度、靭性特性及び1坩熱衝撃性の顕著
な向上が認められなくなる。
According to the present invention, the average particle size of the starting materials for zircon, alumina, and zirconia stabilizers is preferably set to 5 μm or less, preferably 1 Bm or less, and if it exceeds 511 m, the zirconia in the sintered body The average particle size of the particles tends to exceed 20 μm, and no significant improvement in strength, toughness, and thermal shock resistance is observed.

また前記出発原料中、ジルコンとアルミナの配合モル比
率をL2:1乃至1:2の範囲に設定することが重要で
あり、この範囲から外れると上記の反応が十分に進行せ
ず、未反応のA710aが残り、本発明の耐熱衝撃性セ
ラミック焼結体が得られない、。
In addition, it is important to set the blending molar ratio of zircon and alumina in the starting materials in the range of L2:1 to 1:2; if it deviates from this range, the above reaction will not proceed sufficiently, and unreacted A710a remains and the thermal shock resistant ceramic sintered body of the present invention cannot be obtained.

更に本発明の製法においては、加圧焼結、無加圧焼結の
いずれでもよく、加圧焼結を用いると微粒且つ緻密質な
焼結体2:なるため、強度及び靭性特性が一段と向上す
る。また、この焼成温度は1500乃至1650℃の範
囲に設定するのが望ましく150v某満の温度であると
、20時間以上の焼成時間を要し、かかる焼結体は上記
の反応が十分に進行せず、本発明の耐熱衝撃性セラミッ
ク焼結体が得られない。逆に1650℃を越えるとムラ
イトやジルコニアの粒成長が著しく大きくなって本発明
の顕著な効果が見い出されない。
Furthermore, in the manufacturing method of the present invention, either pressure sintering or non-pressure sintering may be used; if pressure sintering is used, a fine-grained and dense sintered body 2: is formed, so the strength and toughness properties are further improved. do. Further, it is desirable to set the firing temperature in the range of 1500 to 1650°C. If the temperature is a certain amount of 150V, the firing time will be more than 20 hours, and the above reaction will not proceed sufficiently in such a sintered body. First, the thermal shock-resistant ceramic sintered body of the present invention cannot be obtained. On the other hand, if the temperature exceeds 1,650°C, the grain growth of mullite and zirconia increases significantly, and the remarkable effect of the present invention is not found.

かくして本発明によれば、ジルコンとアルミナとジルコ
ニア安定化剤を出発原料とし、焼成と同時に反応をおこ
させ、ムライトを母相としてジルコニア粒子から成る分
散相を形成した新規なセラミック焼結体を得られる。こ
の焼結体は強度及び靭性特性に優れると共に、ムライト
磁器が元来有している耐熱衝撃性を大幅に向上せしめた
耐熱衝撃性セラミック焼結体が提供される。。
Thus, according to the present invention, a novel ceramic sintered body is obtained in which zircon, alumina, and a zirconia stabilizer are used as starting materials, and a reaction is caused simultaneously with firing to form a dispersed phase consisting of zirconia particles with mullite as a matrix. It will be done. This sintered body has excellent strength and toughness characteristics, and provides a thermal shock resistant ceramic sintered body that greatly improves the thermal shock resistance originally possessed by mullite porcelain. .

次に本発明の実施例を述べる。Next, examples of the present invention will be described.

〔実施例〕〔Example〕

第1表に示す通り、所定の配合比率に【7たジルコンと
アルミナの混合粉末に、所定の添加比率になるようにジ
ルコエフ1.%l定化j111を加え、これを出発原料
とした1、この原料を均一になるように十分に混合し、
プレス成形後、第1表に示ずす1℃成条件で無加圧焼結
した1、但[7、試料番号17はホットプレスを行なっ
た。。
As shown in Table 1, Zircoef 1. %l constant j111 was added and this was used as the starting material 1. This raw material was thoroughly mixed so that it was homogeneous,
After press forming, 1 was pressure-free sintered under the 1° C. forming conditions shown in Table 1, except for sample No. 17, which was hot pressed. .

かくして111られだ焼結体については)、ライト母相
とジルコニアれ”f子の分散拝1をX線回折により確か
め、反応焼結か行なわれていることが判った。
Thus, regarding the sintered body 111), the dispersion of the light matrix and the zirconia particles was confirmed by X-ray diffraction, and it was found that reactive sintering had been performed.

川に、ジルコニア粒子の平均粒径、並びに強度、Mv性
時特性び1llit熱術撃性を試eしたところ、第1表
に示す通りの結果を得た。。
When the average particle size, strength, Mv properties and 1llit heat attack property of the zirconia particles were tested, the results shown in Table 1 were obtained. .

強度の測定はJ+、81月6(’11の3点!110y
試駒法に、靭性の測定は焼結体がマイクロクランクの成
長により破壊する際の臨屏応力拡大係数を焼結体の靭性
牛¥性としてS、 E、 N、 R(Sing土e m
idge NOt;chedBea、m )法に、耐熱
衝撃性の測定は所定の温度に加熱した試料を水中(20
℃)に投ドし、 クラックの発生する臨界温度を耐熱衝
撃性の指標とする方第1表より明らかなように、本発明
の試料番号1乃至7並ひに試料番号14乃至17は強度
及び靭性特性に悟れ、印つ耐熱衝墜性が300乃至40
0’Cという著しく白土した値を得ている1、また試料
番号17においてはホットプレスを用いているため、強
度に優れている。尚、本発明の範囲に入るすべての実施
例においては、ジルコニア粒子に部分安定化ジルコニア
焼結体が含まれていることを確認し ノこ 2゜ 因に、従来のムライト磁器の耐熱PrfP−性は本実施
例と同じ測定法によると200乃至250℃という値で
ある。
Measurement of strength is J+, 81/6 ('11 3 points! 110y
In the test piece method, the toughness is measured using S, E, N, R (Sing soil e m
idgeNOt;chedBea,m) method, the thermal shock resistance is measured by dipping the sample heated to a predetermined temperature in water (20
As is clear from Table 1, sample numbers 1 to 7 and sample numbers 14 to 17 of the present invention have high strength and Understand the toughness properties and have a heat impact resistance of 300 to 40.
Sample No. 1, which has a significantly dull value of 0'C, and Sample No. 17 have excellent strength because hot pressing is used. It should be noted that in all Examples falling within the scope of the present invention, it was confirmed that the zirconia particles contained partially stabilized zirconia sintered bodies. is a value of 200 to 250° C. according to the same measuring method as in this example.

然るに、第1表によれば、ジルコニア安定化剤の添加さ
れていない試料番号8、ジルコン配合成の少/jい試料
番号9、アルミナ配合Prtの少ない試料番号10、焼
成温度の高い試料番511、イントリア添加し1の多い
試料番号12、イツトリア添加量の少ない試料番号13
においては、いずれも本発明の範囲外であるため、強度
、靭性特性及び耐熱衝撃性の向上が認められず、特に試
料番号11ては強度が、また試料番号8ては靭性が最も
劣化していた。尚、本発明の範囲外のこれら試料につい
ては、いずれもジルコニア粒子に部分安定化ジルコニア
焼結体が含まれていなかった。
However, according to Table 1, sample number 8 has no zirconia stabilizer added, sample number 9 has a low zircon content, sample number 10 has a low alumina content, and sample number 511 has a high firing temperature. , sample number 12 with a large amount of intria added and sample number 13 with a small amount of ittria added.
Since all of these samples are outside the scope of the present invention, no improvement in strength, toughness properties, or thermal shock resistance was observed.In particular, sample number 11 showed the most deteriorated strength, and sample number 8 showed the most deterioration in toughness. Ta. Note that in all of these samples outside the scope of the present invention, the partially stabilized zirconia sintered body was not included in the zirconia particles.

更に本発明者が実験によって確かめたところ、ジルコン
とアルミナの配合モル比率がそれぞれ40%、60%の
第1混合粉末に、マグネシア(MgO)とアルミナから
成る第2の混合粉末を0,3モル%の添加量となるよう
に配合し、この出発原料を用いて1500℃の焼成温度
で2時間無加圧焼結したものをX線回折により1lll
l定したところ、ジルコニアやムライトの存在が確認で
きたが、その他にアルミナやガラス相が顕著に存在する
と共にそのジルコニア粒子には全く部分安定化ジルコニ
ア焼結体の存在が認められなかった。
Further, the present inventor confirmed through experiments that 0.3 mol of a second mixed powder consisting of magnesia (MgO) and alumina was added to the first mixed powder in which the molar ratio of zircon and alumina was 40% and 60%, respectively. % and sintered without pressure at a firing temperature of 1500°C for 2 hours using this starting material.
When the particles were analyzed, the presence of zirconia and mullite was confirmed, but alumina and glass phases were also significantly present, and no partially stabilized zirconia sintered bodies were observed in the zirconia particles.

従って本発明者は試料番号15と同様にM/JOジルコ
ニア安定化剤を用いても、また上記の試料番号8乃至1
3から明らかなように、 ジルコニア安定化剤の種類や
その添加量、焼成条件など、種々の要因によって部分安
定化ジルコニア焼結体がてきなくなることが判った。
Therefore, the present inventor found that even if the M/JO zirconia stabilizer was used in the same way as in Sample No. 15,
As is clear from 3, it was found that the partially stabilized zirconia sintered body could not be produced depending on various factors such as the type of zirconia stabilizer, its additive amount, and firing conditions.

以上の実施例が示す通り、本発明の製法によって生成し
たムライ+−+’を相及びジルコニア粒子分散相から形
成されるセラミック焼結体は強度及び靭性特性に優れる
ばかりか、従来のムライト磁器が元来有している耐熱衝
撃性が著しく向上することが判った。
As shown in the above examples, the ceramic sintered body formed from the mullite +-+' phase and the zirconia particle dispersed phase produced by the manufacturing method of the present invention not only has excellent strength and toughness properties, but also has superior strength and toughness. It was found that the inherent thermal shock resistance was significantly improved.

更に本発明の■熱衝撃性セラミック焼結体はジルコニア
粒子中に部分安定化ジルコニア焼結体を含むため、靭性
特性にも優れている。。
Furthermore, the thermal shock ceramic sintered body of the present invention (1) contains partially stabilized zirconia sintered bodies in the zirconia particles, and therefore has excellent toughness characteristics. .

特許出1頓人京セラ株式会社 手続補正前(自発) 昭和59年弓月1日 鍮 特許庁長官 若 杉 和 夫 殿 ■、小事件表示 昭和59年特許願第62SO牛号2、
発明の名称 耐熱衝撃性セラミンク焼結体及びその製法3、補正をす
る者 事件との関係 特許出願人 住所 京都市山科区東野北井ノ上町5番地の224 補
正命令の日付 自発 5、補正の対象 −・ 、′ +1 6、補正の内容 (1) 明細書中第6頁第1行目の「単結晶ZrO2相
」ヲ「単斜晶zro 2相」とii 、iF、リーる。
Patent No. 1 Kyocera Co., Ltd. Before procedural amendment (voluntary) Yuzuki 1, 1980 Mr. Kazuo Wakasugi, Commissioner of the Brass Patent Office■, Small case indication 1988 Patent Application No. 62 SO Ushi No. 2,
Name of the invention Thermal shock-resistant ceramic sintered body and its manufacturing method 3, Relationship with the case of the person making the amendment Patent applicant address 224, 5-5 Higashino Kitainoue-cho, Yamashina-ku, Kyoto City Date of amendment order Spontaneous 5, subject of amendment -・ , ' +1 6. Contents of the amendment (1) "Single crystal ZrO2 phase" in the first line of page 6 of the specification is read as "monoclinic Zro 2 phase" ii, iF.

。 以上. that's all

Claims (9)

【特許請求の範囲】[Claims] (1) ムライト(3A#p03・25iO2)を母相
としてジルコニア(ZrO2) ll子から成る分散相
を形成したことを特徴とする耐熱衝撃性セラミック焼結
体。
(1) A thermal shock-resistant ceramic sintered body characterized in that a dispersed phase consisting of zirconia (ZrO2) particles is formed using mullite (3A#p03.25iO2) as a parent phase.
(2) 前記ジルコニア粒子の平均粒径か20μm以下
であることを特徴とする特許請求の範囲第1項記載の耐
熱何字性セラミック焼結体、。
(2) The heat-resistant cross-shaped ceramic sintered body according to claim 1, wherein the average particle diameter of the zirconia particles is 20 μm or less.
(3) 前記ジルコニア粒子が部分安定化ジルコニア焼
結体を含むことを特徴とする特許請求の範囲第1項記載
の耐熱衝撃性セラミック焼結体、。
(3) The thermal shock resistant ceramic sintered body according to claim 1, wherein the zirconia particles include a partially stabilized zirconia sintered body.
(4)主原料たるジルコン(ZrOg・5102)及び
ア/l/ ミf (AIHI03)にジルコニア安定化
剤を加えたものを出発1m料とし、この原料を混合して
所望形状に成形し、該成形体をムライト(3Al0a・
2Sj−0+)を母相とすると共に、ジルコニア(Zr
O+)粒子から成る分散相が形成されるように焼結した
ことを特徴とする+1itt熱術撃性セラミック焼結体
の製法。
(4) A 1m starting material is prepared by adding a zirconia stabilizer to the main raw materials zircon (ZrOg・5102) and A/L/Mif (AIHI03), and the raw materials are mixed and molded into the desired shape. The molded body is made of mullite (3Al0a・
2Sj-0+) as the matrix, and zirconia (Zr
1. A method for producing a +1itt heat-attackable ceramic sintered body, characterized in that the sintering is performed so that a dispersed phase consisting of O+) particles is formed.
(5)前記出発原料中、ジルコンとアルミナの配合モル
比率を1.2:1乃至1:2の範囲に設定したことを特
徴とする特許請求の範囲第4項記載の耐熱衝撃性セラミ
ック焼結体の製法。
(5) Thermal shock-resistant ceramic sintered according to claim 4, characterized in that the molar ratio of zircon and alumina in the starting materials is set in the range of 1.2:1 to 1:2. How the body is made.
(6) 前記ジルコニア安定化剤がMR:O、Ca、0
 、第ff1a族元素酸化物の少なくとも一種から成る
ことを特徴とする特許請求の範囲第4項記載の耐熱衝撃
性セラミック焼結体の製法。
(6) The zirconia stabilizer has MR:O, Ca, 0
5. The method for producing a thermal shock-resistant ceramic sintered body according to claim 4, characterized in that the ceramic sintered body is made of at least one type of oxide of a group ff1a element.
(7) 前記ジルコニア安定化剤を焼結により生成する
前記ジルコニア粒子か部分安定化ジルコニア焼結体が含
まれるように出発原料中に添加したことを特徴とする特
許請求の範囲第4項記載の1耐熱衝撃性セラミック焼結
体の製法。
(7) The zirconia stabilizer is added to the starting material so that the zirconia particles or partially stabilized zirconia sintered body produced by sintering are included. 1. Manufacturing method of thermal shock-resistant ceramic sintered body.
(8) 前記焼結の温度を1500乃至1.650’C
の範囲に設定したことを特徴とする特許請求の範囲第4
項記載の耐熱衝撃性セラミック焼結体の製法。
(8) The sintering temperature is 1500 to 1.650'C.
Claim 4 is characterized in that it is set within the scope of
A method for producing a thermal shock-resistant ceramic sintered body as described in .
(9)前記ジルコニア粒子の平均粒径が2o11mJ)
J、Fであることを特徴とする特許請求の範囲第4項記
載の耐熱衝撃性セラミック焼結体の製法。 α1 前記出発原料の平均粒径か5μm以下であること
を特徴とする特許請求の範囲第4項記載の1#熱W’J
3 ’W性セラミック焼結体の製法4.
(9) The average particle size of the zirconia particles is 2o11 mJ)
J, F, the method for producing a thermal shock resistant ceramic sintered body according to claim 4. α1 1# heat W'J according to claim 4, characterized in that the average particle diameter of the starting material is 5 μm or less
3' Manufacturing method of W ceramic sintered body 4.
JP59062504A 1984-03-29 1984-03-29 Thermal shock resistant ceramic sintered body and manufacture Pending JPS60204667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062504A JPS60204667A (en) 1984-03-29 1984-03-29 Thermal shock resistant ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062504A JPS60204667A (en) 1984-03-29 1984-03-29 Thermal shock resistant ceramic sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS60204667A true JPS60204667A (en) 1985-10-16

Family

ID=13202064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062504A Pending JPS60204667A (en) 1984-03-29 1984-03-29 Thermal shock resistant ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS60204667A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148747A (en) * 1987-12-03 1989-06-12 Hitachi Zosen Corp Sintered body of ceramic
JPH0497942A (en) * 1990-08-17 1992-03-30 Chichibu Cement Co Ltd Production of mullite-zirconia composite ceramics
US8074472B2 (en) 2007-07-31 2011-12-13 Zircoa Inc. Grinding beads and method of producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897913A (en) * 1972-03-27 1973-12-13
JPS5614473A (en) * 1979-07-17 1981-02-12 Ngk Spark Plug Co Ceramic sintered body for cutting tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897913A (en) * 1972-03-27 1973-12-13
JPS5614473A (en) * 1979-07-17 1981-02-12 Ngk Spark Plug Co Ceramic sintered body for cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148747A (en) * 1987-12-03 1989-06-12 Hitachi Zosen Corp Sintered body of ceramic
JPH0497942A (en) * 1990-08-17 1992-03-30 Chichibu Cement Co Ltd Production of mullite-zirconia composite ceramics
US8074472B2 (en) 2007-07-31 2011-12-13 Zircoa Inc. Grinding beads and method of producing the same

Similar Documents

Publication Publication Date Title
JPS61500313A (en) ceramic composition
US4939107A (en) Transformation toughened ceramic alloys
JPS59152266A (en) Zirconia refractories
JPS60204667A (en) Thermal shock resistant ceramic sintered body and manufacture
JPS6077174A (en) Manufacture of silicon nitride sintered body
JPS6340762A (en) Ceramic material for electronic circuit package
JP2549976B2 (en) Heat-resistant mullite sintered body
JPS6046059B2 (en) Alumina porcelain for chemical industrial synthesis
JPH0450269B2 (en)
JPS598669A (en) Silicon nitride composite sintered body and manufacture
JPH09278521A (en) Ceramic composite
JPS63139049A (en) Zirconia ceramics
KR940007224B1 (en) Process for producing composite of oxides substance
JPS63260869A (en) Silicon carbide whisker reinforced composite material
JPS61291458A (en) Zirconia sintered body and manufacture
JPS61236653A (en) Chromium nitride-zirconia base ceramics and manufacture
JPS6081061A (en) Manufacture of zirconia ceramic
JPS62230667A (en) Manufacture of ceramics
JPS63107858A (en) Ceramic composite body
JPS60161373A (en) Zro2 ceramics
JPS638264A (en) Silicon carbide base composite material
JP2602192B2 (en) Thermal shock resistant zirconia ceramics
JPS59107968A (en) Manufacture of zirconia ceramics
JPS63134551A (en) Alumina base sintered body and manufacture
JPS63112467A (en) Electroconductive silicon carbide base sintered body and manufacture