JPH0274560A - Mullite-zirconia compound ceramics having high strength and toughness and production thereof - Google Patents

Mullite-zirconia compound ceramics having high strength and toughness and production thereof

Info

Publication number
JPH0274560A
JPH0274560A JP63224478A JP22447888A JPH0274560A JP H0274560 A JPH0274560 A JP H0274560A JP 63224478 A JP63224478 A JP 63224478A JP 22447888 A JP22447888 A JP 22447888A JP H0274560 A JPH0274560 A JP H0274560A
Authority
JP
Japan
Prior art keywords
mullite
zirconia
crystalline
sol
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63224478A
Other languages
Japanese (ja)
Inventor
Jii Emu Yuu Isumaeru Emu
エム・ジー・エム・ユー・イスマエル
Zenjiro Nakai
中井 善治郎
Hiroshi Shiga
志賀 弘
Hideo Tsunatori
綱取 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Cement Co Ltd filed Critical Chichibu Cement Co Ltd
Priority to JP63224478A priority Critical patent/JPH0274560A/en
Publication of JPH0274560A publication Critical patent/JPH0274560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain mullite-zirconia compound ceramics having excellent high- temperature characteristics and chemical endurance and simultaneously further improving mechanical characteristics by calcining a mullite-zirconia compound powder consisting of a compound material of crystalline delta-Al2O3, crystalline t-ZrO2 and amorphous silica. CONSTITUTION:A zirconia sol is added to the mixture of a boehmite sol with a silica sol and the blend is gelled and then calcined at about 1150-1250 deg.C to provide a mullite-zirconia compound powder consisting of a compound material of a crystalline delta-Al2O3, crystalline t-ZrO2 and amorphous silica. Then the compound powder is heated up to about 1200 deg.C in conditions of about 300 deg.C/hr and then heated to about 1550-1650 deg.C in conditions of about 100 deg.C/hr to sinter the compound powder. Molar ratio of Al/Si of the boehmite sol and silica sol is preferably about 1.5-2.87. An amount of zirconia sol added is preferably <=about 30vol.% expressed in terms of ZrO2.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野] 本発明は高強度・高靭性ムライト−ジルコニア複合セラミックス及びその製造方法、特に高温特性及び化学的耐久性に優れるムライト質セラミックスの機械的特性をさらに向上させたムライト−ジルコニア複合セラミックス及びその製造方法に関するものである。 【発明の背景】[Industrial application field] The present invention relates to a high-strength and high-toughness mullite-zirconia composite ceramic and a method for producing the same, and particularly to a mullite-zirconia composite ceramic that further improves the mechanical properties of mullite ceramics with excellent high-temperature properties and chemical durability, and a method for producing the same. It is something. [Background of the invention]

ムライトは3Al2O.・2SiO,の化学組成を有す
るケイ酸アルミニウムであり、その高純度焼結体は高温
強度、耐高温クリープ抵抗性、低熱膨張率等の熱的・R
賊的特性に優れていることから、高温構造材用セラミッ
クスとしての応用が進みつつある。 しかしながら、ムライトは窒化ケイ素(Si3N<)、
炭化ケイ素(SiC)、部分安定化ジルコニア(psz
)等の構造材料用セラミックスに比較して、室温におけ
る抗折強度、破壊靭性が低く、これらの機械的特性の改
善が望まれている。 そして、これらの機械的特性の改善方法として、ウィス
カー(ひげ状単結晶)やジルコニア(ZrOt)微粒子
をセラミックスマトリックス中に分散強化する方法が提
案されている。 これらの提案のうち前者の方法は、ウィスカーによる補
強効果が大きい特徴を有しているものの、その均一分散
が難しく、かつ、緻密な焼結体を得るには特殊な熱間加
熱焼結装置を必要とし、さらにはウィスカー自体高価な
材料である為、実用化の域に達するには多くの問題が未
解決のまま残されている。 これに対して、ジルコニアの添加によりムライトの焼結
性や機械的特性が向上することの報告がN、 C1au
ssen ancl J、 Jahn(J、 or L
heAmerieanCeram、 Soe、 Vol
、63.No、3−4,228〜229)番こよってな
されて以来、ムライト−ジルコニア系複合セラミックス
の研究が盛んに行なわれてきている。 そして、このような研究開発によって、天然産のジルコ
ン(ZrSiO<)とアルミナを、あるいはムライトと
ジルコニアを機械的に混合粉砕して粉末を得、この粉末
の成型体を焼成することによりムライト−ジルコニア系
複合セラミックスを得る技術が提案されてきた。 しかし、これらの方法では、原料の均一混合や微粉砕に
長時間を要する為、混合粉砕工程による不純物混入は避
けられず、又、高温焼成時に多大なエネルギーを消費す
る為、高品質のムライト−ジルコニア複合粉末の工業的
製法としては適当でない上、ジルコニアが均一に分散さ
れた原料粉末を得ることは困難であり、従って焼結体の
微細構造を制御することが難しい。 特に、ムライトとジルコニアはその熱膨張係数に大きな
差があるため、ジルユニアの分散が不均一な場合、焼結
後室温まで冷却する間に局部的な熱応力が発生し、この
為焼結体中に多数の微細なりラックが生じ、高強度焼結
体を製造する上でこれが大きな問題となっていた。 又、従来の方法では正方品ジルコニア比率が低いことか
ら、強度等の特性向上効果が大きく得られていないこと
も判ってきた。
Mullite is 3Al2O.・It is an aluminum silicate with a chemical composition of 2SiO, and its high-purity sintered body has excellent thermal and R properties such as high-temperature strength, high-temperature creep resistance, and low coefficient of thermal expansion.
Due to its excellent thermal properties, its application as ceramics for high-temperature structural materials is progressing. However, mullite is silicon nitride (Si3N<),
Silicon carbide (SiC), partially stabilized zirconia (psz
) have lower bending strength and fracture toughness at room temperature, and improvements in these mechanical properties are desired. As a method for improving these mechanical properties, a method has been proposed in which whiskers (beard-like single crystals) or zirconia (ZrOt) fine particles are dispersed and strengthened in a ceramic matrix. Of these proposals, the former method has the feature of a large reinforcing effect due to the whiskers, but it is difficult to uniformly disperse them, and special hot heating sintering equipment is required to obtain a dense sintered body. Furthermore, since the whisker itself is an expensive material, many problems remain unresolved before it can be put into practical use. On the other hand, it has been reported that the addition of zirconia improves the sinterability and mechanical properties of mullite.
ssen ancl J, Jahn(J, or L
heAmerianCeram, Soe, Vol.
, 63. No. 3-4, 228-229) Since their discovery, research on mullite-zirconia composite ceramics has been actively conducted. Through such research and development, we obtained powder by mechanically mixing and pulverizing naturally occurring zircon (ZrSiO<) and alumina, or mullite and zirconia, and by firing a molded body of this powder, we produced mullite-zirconia. Techniques for obtaining composite ceramics have been proposed. However, with these methods, it takes a long time to uniformly mix and pulverize the raw materials, so it is inevitable that impurities are mixed in during the mixing and pulverizing process.Also, a large amount of energy is consumed during high-temperature firing, so high quality mullite cannot be obtained. In addition to being unsuitable as an industrial method for producing zirconia composite powder, it is difficult to obtain a raw material powder in which zirconia is uniformly dispersed, and therefore it is difficult to control the fine structure of the sintered body. In particular, since mullite and zirconia have a large difference in their coefficients of thermal expansion, if the dispersion of zirconia is uneven, local thermal stress will occur during cooling to room temperature after sintering, and this will cause A large number of fine racks are generated in the sintered body, which poses a major problem in producing high-strength sintered bodies. It has also been found that the conventional method does not significantly improve properties such as strength because the proportion of square zirconia is low.

【発明の開示】[Disclosure of the invention]

本発明の目的は、高温特性及び化学的耐久性に潰れるム
ライト質セラミックスの機械的特性をさらに向上させた
ムライト−ジルコニア複合セラミックス及びゾル−ゲル
法という化学的合成法を用いたムライト−ジルコニア複
合セラミックスの製造方法を提供することにある。 上記の目的は、結晶性のδ−Al2O.と、結晶性のt
−ZrO2と、アモルファスシリカとの複合物からなる
ムライト−ジルコニア複合粉末を焼結してなる高強度・
高靭性ムライト−ジルコニア複合セラミックスによって
達成される。 尚、上記の高強度・高靭性ムライト−ジルコニア複合セ
ラミックスにおいて、ムライト−ジルコニア複合粉末に
おける結晶性のδ−Al2O,100モルに対して結晶
性のt−Zr0□が約94モル以下であり、この結晶性
のδ−Al2O.と結晶性のL−Zr02の合計110
0体積部に対してアモルファスシリカが約24体積部以
上、そして好ましくは約62体積部以下であるものが望
ましく、又、結晶性のδ−Al2O.はその径が約10
on−以下、より好ましくは約20〜50nmであり、
そして結晶性のt−Zr0□はその径が約5On−以下
、より好ましくは約10〜20n輪であるものが望まし
く、又、この複合粉末はその比表面積が約20〜55+
m”/Hであるものが望ましく、又、この複合粉末の凝
集物の凝集粒径は約1〜1.3μであるものが望ましく
、叉、鐙−Zr02が複合粉末中にt−ZrJ100モ
ルに対して150モル以下含有されていても良い 又、ベーマイトゾルとシリカゾルとの混合物にジルコニ
アゾルを加えてゲル化させ、その後約1150〜125
0℃で仮焼して得られる複合粉末を約り00℃/hr以
下、より好ましくは約200〜300℃/hrの条件で
約1200℃まで昇温させ、その後は約り00℃/hr
以下、より好ましくは約80〜100℃/hrの条件で
約1550〜1650℃に昇温させて焼結する高強度・
高靭性ムライト−ジルコニア複合セラミックスの製造方
法によって、高温特性及び化学的耐久性に優れるムライ
ト質セラミックスの機械的特性をさらに向上させたムラ
イト−ジルコニア複合セラミックスが得られる。 尚、上記の高強度・高靭性ムライト−ジルコニア複合セ
ラミックスの製造方法において、ベーマイトゾルとシリ
カゾルの^l/Siのモル比は約1.5〜2.87であ
るものが望ましく、又、ジルコニアゾルの添加量はZ「
0.換算で約30体積%以下、好ましくは約5〜20体
積%、より一層好ましくは約10〜20体積%であるも
のが望ましい。 ところで、本発明者らは、ゾル−ゲル法によるジルコニ
ア均一分散ムライト質微粉末の製造方法(特開昭62−
202813)を提案していたが、その後鋭意研究を重
ねた結果、すなわち上記の発明は、ベーマイトゾルとシ
リカゾルの^l/Siのモル比を1.5〜2.87とし
た混合物にジルコニアゾルをZrO□換算で30体積%
以下加えてゲル化させ、乾燥、粉砕したものを約115
0〜1250℃で仮焼することによって、易焼結性のム
ライト・ジルコニア複合粉末を製造できたことに基づい
て達成されたものである。 ここで、ベーマイトゾルとしては反応活性の高いベーマ
イトゾルを使用することが好ましいが、これはガンマ−
アルミナ(γ−^LL)やベーマイト(八f0011)
の水分散液を80℃以上に加熱しながら、硝酸、塩酸等
の無機酸や酢酸、ギ酸等の有機酸を*i加えて、解膠す
ることによって得られる。 シリカゾルとしては、シリカ微粒子、例えば湿式法で製
造されるホワイトカーボンや乾式法のヒユームドシリカ
を酸性水中に分散させたコロイド水ン容液が好ましい。 ジルコニアゾルは、オキシ塩化ジルコニウム、硝酸ジル
コニウム等のジルコニウム塩の水溶液に、それに含まれ
る塩酸、硝酸を中和させる目的で尿素やヘキサメチレン
テトラミンを加えることによって得られる。 そして、まず、前記のベーマイトゾルとシリカゾルを^
l/Siのモル比をムライトの理論組成及びアルミナと
の固溶体を形成する1、5〜2.87の範囲内に調製す
る。尚、この範囲外での組成では、最終的に遊離のシリ
カやアルミナが生成し、焼結体特性に悪影響を及ぼすの
で好ましくない。 次に、上記の混合物にジルコニアゾルを加えてゲル化さ
せる。 このZrL添加量は30体積%以下、特に好ましくは約
10〜20体積%であることが望ましい、尚、30体積
%を越える場合は、焼結体にした時の機械的強度が低下
するので好ましくない、逆に、少なすぎる場合は破壊靭
性の向上が小さい。 ベーマイトゾルとシリカ微粒子の^l/S’+のモル比
を1.5〜2.87とした混合物にジルコニアゾルをz
rOda算で5〜20体槓%加えて、ゲル化させ、乾燥
、粉砕した後に、約1150〜1250℃で仮焼して得
られる原料微粉末を、水スラリーを使った湿式法により
1〜2μ−に微粉砕する。ここで焼成温度を限定してい
るが、1150℃未満の低すぎる温度では粉末中にγ−
Al2O.相が残存し、これが湿式粉砕の際に水和物と
なって固い多孔性の凝集粒子を形成し、その後の微粉化
を困難にし、かつ、得られる粉末も多孔質の粗雑な構造
の粒子から構成される為、焼結時の緻密化を著しく阻害
して好ましくないからである。すなわち、1150℃以
上の温度で焼成することによって、複合粉末中にγ−A
l2O3が実質的に含まれないものが得られる。 逆に、1250℃を越えた高すぎる温度では、結晶質ム
ライトが生成するが、それに伴って粉末の比表面積及び
活性度が低下する為、緻密化の進行が妨げられる。 焼成温度を限定するもう一つの理由は、複合粉末中のジ
ルコニア結晶の粒径に関する点である。 複合粉末を微細かつ均一にすることが原料特性として望
ましい、ところで、 1250℃以下では、正方晶ジル
コニアはおよそ10〜ZonIIIの範囲にあり好まし
いが、この温度を越えると急激にその大きさが増大し、
これが粉末の活性度及び焼結体の機械的特性を向上させ
る正方晶ジルコニア比率の低下につながり、好ましくな
いのである。 このようにして製造された原料微粉末を金型成型法もし
くは静水圧成形法により所望の成型体とする。 この成型体を電気炉に入れ、大気中で焼成する。 昇温速度は1200℃まで300℃/hr以下、焼結温
度までは100℃/hr以下とすることが望ましい、昇
温速度をこのように限定した理由は、成形体の焼結によ
る収縮のほとんどは1200℃以降で起きる為である。 特に、1300℃付近ではムライトの生成反応が起る。 そして、1200℃以上での昇温速度をこの速度より大
きくすると、緻密化、結晶化が充分でなく、高密度の焼
結体が得られない。 焼結温度は約1550〜1650℃とし、この温度で数
時間保持したのち、室温まで自然放冷する。 焼結温度を限定しているのは、焼結体の緻密化を充分に
させる為である。 1550℃未満の低すぎる温度では
理論密度の95%以上の緻密化が困難である。特に、高
強度の焼結体を製造する場合には約1610〜1650
℃での焼結が望ましい、この範囲の温度では理論密度の
99%以上にまで密度が向上する。 しかしながら、1650℃を越えた高すぎる温度で焼結
を行うと、残留気孔により、密度が低下し、かつ粒成長
により強度低下の原因となって好ましくない。
The purpose of the present invention is to create a mullite-zirconia composite ceramic that further improves the mechanical properties of mullite ceramics that are susceptible to high-temperature properties and chemical durability, and a mullite-zirconia composite ceramic that is produced using a chemical synthesis method called the sol-gel method. The purpose of this invention is to provide a method for manufacturing the same. The above purpose is to obtain crystalline δ-Al2O. and crystalline t
- High-strength product made by sintering mullite-zirconia composite powder, which is a composite of ZrO2 and amorphous silica.
Achieved by high toughness mullite-zirconia composite ceramics. In addition, in the above-mentioned high-strength and high-toughness mullite-zirconia composite ceramic, crystalline t-Zr0□ is about 94 mol or less per 100 mol of crystalline δ-Al2O in the mullite-zirconia composite powder, and this Crystalline δ-Al2O. and crystalline L-Zr02 total 110
Amorphous silica is preferably about 24 parts by volume or more, and preferably about 62 parts by volume or less, based on 0 parts by volume, and crystalline δ-Al2O. Its diameter is about 10
on- or less, more preferably about 20 to 50 nm,
It is desirable that the crystalline t-Zr0□ has a diameter of about 5On- or less, more preferably about 10 to 20n rings, and this composite powder has a specific surface area of about 20 to 55+
m”/H, and the aggregate particle size of the aggregates of this composite powder is preferably about 1 to 1.3μ, and the stirrup-Zr02 is contained in the composite powder in an amount of 100 moles of t-ZrJ. Alternatively, zirconia sol may be added to a mixture of boehmite sol and silica sol to form a gel, and then about 1150 to 125 moles or less may be contained.
The composite powder obtained by calcining at 0°C is heated to about 1200°C under conditions of about 00°C/hr or less, more preferably about 200 to 300°C/hr, and then heated to about 1200°C at about 00°C/hr or less.
Hereinafter, high-strength sintering is performed by raising the temperature to approximately 1,550 to 1,650°C under conditions of more preferably approximately 80 to 100°C/hr.
By the method for producing a high-toughness mullite-zirconia composite ceramic, it is possible to obtain a mullite-zirconia composite ceramic that has further improved mechanical properties of a mullite ceramic that has excellent high-temperature properties and chemical durability. In addition, in the above-mentioned method for producing high-strength and high-toughness mullite-zirconia composite ceramics, it is desirable that the molar ratio of ^l/Si between the boehmite sol and the silica sol is about 1.5 to 2.87; The amount of addition is Z'
0. It is desirable that the amount is about 30% by volume or less, preferably about 5 to 20% by volume, and even more preferably about 10 to 20% by volume. By the way, the present inventors have developed a method for producing zirconia uniformly dispersed mullite fine powder by a sol-gel method (Japanese Patent Application Laid-Open No. 1986-62-1).
202813), but as a result of extensive research, the above invention was developed by adding zirconia sol to a mixture of boehmite sol and silica sol with a molar ratio of ^l/Si of 1.5 to 2.87. 30 volume% in terms of ZrO□
Approximately 115 g of the following added, gelled, dried, and crushed
This was achieved based on the fact that an easily sinterable mullite-zirconia composite powder could be produced by calcining at 0 to 1250°C. Here, as the boehmite sol, it is preferable to use a boehmite sol with high reaction activity, but this
Alumina (γ-^LL) and boehmite (8f0011)
It is obtained by peptizing an aqueous dispersion by adding an inorganic acid such as nitric acid or hydrochloric acid or an organic acid such as acetic acid or formic acid while heating the aqueous dispersion to 80° C. or higher. The silica sol is preferably a colloidal water solution in which fine silica particles, such as white carbon produced by a wet method or fumed silica produced by a dry method, are dispersed in acidic water. Zirconia sol is obtained by adding urea or hexamethylenetetramine to an aqueous solution of a zirconium salt such as zirconium oxychloride or zirconium nitrate for the purpose of neutralizing hydrochloric acid and nitric acid contained therein. First, add the above-mentioned boehmite sol and silica sol.
The molar ratio of l/Si is adjusted within the range of 1.5 to 2.87, which forms a solid solution with the theoretical composition of mullite and alumina. Incidentally, a composition outside this range is not preferable because free silica or alumina will eventually be produced, which will have an adverse effect on the properties of the sintered body. Next, zirconia sol is added to the above mixture to form a gel. The amount of ZrL added is desirably 30% by volume or less, particularly preferably about 10 to 20% by volume. If it exceeds 30% by volume, the mechanical strength of the sintered body will decrease, so it is preferable. On the contrary, if it is too small, the improvement in fracture toughness will be small. Zirconia sol was added to a mixture of boehmite sol and silica fine particles with a molar ratio of ^l/S'+ of 1.5 to 2.87.
The raw material fine powder obtained by adding 5 to 20 mol% of rOda, gelling it, drying it, pulverizing it, and calcining it at about 1150 to 1250 degrees Celsius is 1 to 2μ by a wet method using water slurry. - Finely grind. Although the firing temperature is limited here, if the temperature is too low (less than 1150℃), γ-
Al2O. Phases remain, which become hydrated during wet milling to form hard, porous, aggregated particles, making subsequent pulverization difficult, and the resulting powder also consists of porous, coarsely structured particles. This is because it is undesirable because it significantly inhibits densification during sintering. That is, by firing at a temperature of 1150°C or higher, γ-A is added to the composite powder.
A substance substantially free of l2O3 is obtained. On the other hand, if the temperature is too high, exceeding 1250° C., crystalline mullite will be produced, but the specific surface area and activity of the powder will decrease accordingly, and the progress of densification will be hindered. Another reason for limiting the firing temperature is related to the particle size of the zirconia crystals in the composite powder. It is desirable for the raw material properties to make the composite powder fine and uniform. By the way, at temperatures below 1250°C, tetragonal zirconia is preferably in the range of about 10 to Zon III, but above this temperature, its size increases rapidly. ,
This is undesirable because it leads to a decrease in the tetragonal zirconia ratio, which improves the activity of the powder and the mechanical properties of the sintered body. The raw material fine powder thus produced is formed into a desired molded body by molding with a mold or isostatic pressing. This molded body is placed in an electric furnace and fired in the atmosphere. It is desirable that the temperature increase rate be 300℃/hr or less up to 1200℃ and 100℃/hr or less up to the sintering temperature.The reason for limiting the temperature increase rate in this way is that most of the shrinkage due to sintering of the compact This is because this occurs at temperatures above 1200°C. In particular, a mullite production reaction occurs at around 1300°C. If the temperature increase rate at 1200° C. or higher is higher than this rate, densification and crystallization will not be sufficient and a high-density sintered body will not be obtained. The sintering temperature is about 1550 to 1650°C, and after being maintained at this temperature for several hours, it is allowed to cool naturally to room temperature. The reason why the sintering temperature is limited is to sufficiently densify the sintered body. If the temperature is too low, below 1550°C, it is difficult to achieve densification of 95% or more of the theoretical density. In particular, when manufacturing high-strength sintered bodies, approximately 1610 to 1650
Sintering at a temperature of 0.degree. C. is preferred; at temperatures within this range, the density increases to over 99% of the theoretical density. However, sintering at a temperature that is too high, exceeding 1650° C., is undesirable because residual pores cause a decrease in density and grain growth causes a decrease in strength.

【実施例及び比較例】[Examples and comparative examples]

市販のベーマイト粉末を80℃以上の熱硝酸水溶液に分
散させ、アルミナゾルを作る。 このアルミナゾルに所定のシリカゾルを^1/S:のモ
ル比がムライト理論組成の1.5になるように加え、高
速ブレンダーにより撹拌混合した。 これにオキシ塩化ジルコニウム(ZrOCZ2・8H,
0)の加水分解によって得たジルコニアゾルをZ「02
換算で0.5.10.15.20体積%となるI各々加
え、ALL−S!L−ZrL混合ゲルを作った。 これらのゲルを100℃で乾燥した後、アルミナ製ボー
ルミルを用いて粉砕し、電気炉に入れて大気中において
1200℃で1時間仮焼した。 仮焼後の粉砕を水スラリーとしてアトリッションミルを
用い、平均粒子径が約1μになるまで粉砕する。 この粉砕前の複合粉末の結晶相はδ−Al2O.及びt
−ZrO2のみである。尚、粉砕後における複合粉末に
あっては、t−ZrJの50モル%が−ZrOtに転移
しているにすぎない、又、焼成粉末は50n−以下のδ
−^1zLCその平均径25ns)とt−ZrL(その
平均径13nm)の均一複合粉末であり、又、複合粉末
における結晶性のδ−^1!03と結晶性のt−Zr0
□との割合はモル比で約100対39であり、この結晶
性のδ−^1□0.と結晶性のt−ZrO2の合計量1
00体積部に対してアモルファスシリカは約48体°積
部であった。 又、この粉末の比表面積(N2ガス吸着、B、E、T。 法)は約51輪”/gであった。 そして、これを乾燥した後、150メツシユのふるいで
整粒し、2ton/afi2の圧力で静水圧成形した成
形体を電気炉に入れ、1200℃までは300℃/hr
、その後は1650℃まで100℃/hrの昇温速度で
昇温させ、大気中にて1650℃で3時間焼結した。 このようにして得られた焼結体から3x 4x 40m
mの試験片を切り出し、JIS3点法に従って、室温に
おける3点曲げ強度を測定した。 又、破壊靭性にle値をビッカース圧子押し込み法によ
り求めた。 その結果を第1図に示した0図中、曲げ強度を○印、破
壊靭性をΔ印で示す。 これかられかるようにZrO2含有量が5〜20体積%
において曲げ強度は4008Pa以上の高強度を示し、
破壊靭性も3.48Pa饋”’以上と向上していること
がわかる。 次に、複合粉末及び焼結体の緒特性を表にして示す。
Commercially available boehmite powder is dispersed in a hot nitric acid aqueous solution at 80°C or higher to make an alumina sol. A predetermined silica sol was added to this alumina sol so that the molar ratio of ^1/S: was 1.5 of the theoretical mullite composition, and the mixture was stirred and mixed using a high-speed blender. To this, zirconium oxychloride (ZrOCZ2.8H,
The zirconia sol obtained by hydrolysis of Z'02
Add each I which is 0.5, 10, 15, 20 volume % in conversion, ALL-S! An L-ZrL mixed gel was made. After drying these gels at 100°C, they were ground using an alumina ball mill, placed in an electric furnace, and calcined at 1200°C in the atmosphere for 1 hour. The pulverization after calcination is made into a water slurry and is pulverized using an attrition mill until the average particle size becomes about 1 μm. The crystal phase of this composite powder before pulverization is δ-Al2O. and t
-ZrO2 only. In addition, in the composite powder after pulverization, only 50 mol% of t-ZrJ has been transferred to -ZrOt, and the fired powder has a δ of 50n- or less.
-^1zLC (its average diameter is 25 ns) and t-ZrL (its average diameter is 13 nm).
□ is about 100:39 in molar ratio, and this crystalline δ-^1□0. and the total amount of crystalline t-ZrO2 1
The amount of amorphous silica was approximately 48 parts by volume. In addition, the specific surface area of this powder (N2 gas adsorption, B, E, T method) was about 51"/g. After drying, it was sized with a 150 mesh sieve and 2 tons/g. The compact formed by isostatic pressing at a pressure of afi2 is placed in an electric furnace, and heated at 300°C/hr up to 1200°C.
Thereafter, the temperature was raised to 1650°C at a temperature increase rate of 100°C/hr, and sintered at 1650°C for 3 hours in the atmosphere. 3x 4x 40m from the sintered body thus obtained
A test piece of m was cut out, and the three-point bending strength at room temperature was measured according to the JIS three-point method. Further, the le value of the fracture toughness was determined by the Vickers indentation method. The results are shown in Figure 1, in which the bending strength is indicated by ◯ and the fracture toughness is indicated by ∆. As you will see, the ZrO2 content is 5-20% by volume.
The bending strength shows a high strength of 4008 Pa or more,
It can be seen that the fracture toughness is also improved to 3.48 Pa'' or more.Next, the properties of the composite powder and sintered body are shown in a table.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はZrO,の添加量と焼結体の曲げ強度及び破壊
靭性との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of ZrO added and the bending strength and fracture toughness of the sintered body.

Claims (6)

【特許請求の範囲】[Claims] (1)結晶性のδ−Al_2O_3と、結晶性のt−Z
rO_2と、アモルファスシリカとの複合物からなるム
ライト−ジルコニア複合粉末を焼結したことを特徴とす
る高強度・高靭性ムライト−ジルコニア複合セラミック
ス。
(1) Crystalline δ-Al_2O_3 and crystalline t-Z
A high-strength, high-toughness mullite-zirconia composite ceramic characterized by sintering a mullite-zirconia composite powder made of a composite of rO_2 and amorphous silica.
(2)特許請求の範囲第1項記載の高強度・高靭性ムラ
イト−ジルコニア複合セラミックスにおいて、複合粉末
における結晶性のδ−Al_2O_3100モルに対し
て結晶性のt−ZrO_2が約94モル以下であり、こ
の結晶性のδ−Al_2O_3と結晶性・のt−ZrO
_2の合計量100体積部に対してアモルファスシリカ
が約24体積部以上であるもの。
(2) In the high-strength and high-toughness mullite-zirconia composite ceramic according to claim 1, the amount of crystalline t-ZrO_2 is about 94 mol or less per 3100 mol of crystalline δ-Al_2O_2 in the composite powder. , this crystalline δ-Al_2O_3 and crystalline t-ZrO
The amount of amorphous silica is approximately 24 parts by volume or more per 100 parts by volume of the total amount of _2.
(3)特許請求の範囲第1項記載の高強度・高靭性ムラ
イト−ジルコニア複合セラミックスにおいて、複合粉末
における結晶性のδ−Al_2O_3はその径が約10
0nm以下であり、結晶性のt−ZrO_2はその径が
約50nm以下であるもの。
(3) In the high-strength and high-toughness mullite-zirconia composite ceramic according to claim 1, the crystalline δ-Al_2O_3 in the composite powder has a diameter of about 10
0 nm or less, and crystalline t-ZrO_2 has a diameter of about 50 nm or less.
(4)ベーマイトゾルとシリカゾルとの混合物にジルコ
ニアゾルを加えてゲル化させ、その後約1150〜12
50℃で仮焼して得られる複合粉末を約300℃/hr
以下の条件で約1200℃まで昇温させ、その後は約1
00℃/hr以下の条件で約1550〜1650℃に昇
温させて焼結することを特徴とする高強度・高靭性ムラ
イト−ジルコニア複合セラミックスの製造方法。
(4) Add zirconia sol to the mixture of boehmite sol and silica sol to gel it, and then
The composite powder obtained by calcining at 50℃ is heated at about 300℃/hr.
Raise the temperature to about 1200℃ under the following conditions, and then increase the temperature to about 1200℃.
1. A method for producing a high-strength and high-toughness mullite-zirconia composite ceramic, which comprises sintering at a temperature of about 1,550 to 1,650° C. under conditions of 00° C./hr or less.
(5)特許請求の範囲第4項記載の高強度・高靭性ムラ
イト−ジルコニア複合セラミックスの製造方法において
、ベーマイトゾルとシリカゾルのAl/Siのモル比が
約1.5〜2.87であるもの。
(5) In the method for producing a high-strength and high-toughness mullite-zirconia composite ceramic according to claim 4, the Al/Si molar ratio of the boehmite sol and the silica sol is about 1.5 to 2.87. .
(6)特許請求の範囲第4項記載の高強度・高靭性ムラ
イト−ジルコニア複合セラミックスの製造方法において
、ジルコニアゾルの添加量がZrO_2換算で約30体
積%以下であるもの。
(6) In the method for manufacturing a high-strength and high-toughness mullite-zirconia composite ceramic according to claim 4, the amount of zirconia sol added is about 30% by volume or less in terms of ZrO_2.
JP63224478A 1988-09-09 1988-09-09 Mullite-zirconia compound ceramics having high strength and toughness and production thereof Pending JPH0274560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224478A JPH0274560A (en) 1988-09-09 1988-09-09 Mullite-zirconia compound ceramics having high strength and toughness and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224478A JPH0274560A (en) 1988-09-09 1988-09-09 Mullite-zirconia compound ceramics having high strength and toughness and production thereof

Publications (1)

Publication Number Publication Date
JPH0274560A true JPH0274560A (en) 1990-03-14

Family

ID=16814425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224478A Pending JPH0274560A (en) 1988-09-09 1988-09-09 Mullite-zirconia compound ceramics having high strength and toughness and production thereof

Country Status (1)

Country Link
JP (1) JPH0274560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497942A (en) * 1990-08-17 1992-03-30 Chichibu Cement Co Ltd Production of mullite-zirconia composite ceramics
CN101830717A (en) * 2010-05-11 2010-09-15 浙江大学 Zirconium sol reinforced corundum-mullite product and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497942A (en) * 1990-08-17 1992-03-30 Chichibu Cement Co Ltd Production of mullite-zirconia composite ceramics
CN101830717A (en) * 2010-05-11 2010-09-15 浙江大学 Zirconium sol reinforced corundum-mullite product and production method thereof

Similar Documents

Publication Publication Date Title
US5114891A (en) Sintered material based on aluminum oxide
RU2436751C2 (en) Composition for producing refractory materials
US20070179041A1 (en) Zirconia Ceramic
CN108530057B (en) Preparation of morphology-controllable CaTiO applied to energy storage by sol-gel method3Method for producing ceramic
US4834928A (en) Doped silicon nitride article
JP3129870B2 (en) Manufacturing method of ceramic sintered body
JPH0288452A (en) Heat-resistant inorganic compact
JPH0553751B2 (en)
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
JPH0274560A (en) Mullite-zirconia compound ceramics having high strength and toughness and production thereof
KR101174622B1 (en) Manufacturing method of mullite using agalmatolite
JPH0339967B2 (en)
JP6502495B2 (en) Ceramic powder with controlled size distribution
JPS5939367B2 (en) Manufacturing method of zirconium oxide fine powder
KR20120084446A (en) Manufacturing method of mullite
JP2000159570A (en) Production of compact cordierite sintered product
JPH0274559A (en) Mullite zirconia compound powder capable of readily calcining
JPS62202813A (en) Production of mullite fine powder containing uniformly dispersed zirconia
JPH06219828A (en) Production of mullite-silicon carbide combined ceramics
JPH0497942A (en) Production of mullite-zirconia composite ceramics
JPS6357383B2 (en)
JPH0549627B2 (en)
JPH06100358A (en) Production of mullite sintered compact
JPS62275067A (en) Manufacture of silicon nitride sintered body
KR101442634B1 (en) Manufacturing method of aluminum titanate having high-temperature strength and manufacturing method of the same