JPH03265600A - Production of mullite whisker - Google Patents
Production of mullite whiskerInfo
- Publication number
- JPH03265600A JPH03265600A JP2062530A JP6253090A JPH03265600A JP H03265600 A JPH03265600 A JP H03265600A JP 2062530 A JP2062530 A JP 2062530A JP 6253090 A JP6253090 A JP 6253090A JP H03265600 A JPH03265600 A JP H03265600A
- Authority
- JP
- Japan
- Prior art keywords
- sol
- mullite
- gel
- firing
- boehmite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910052863 mullite Inorganic materials 0.000 title claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000010304 firing Methods 0.000 claims abstract description 14
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims abstract description 14
- 229910001593 boehmite Inorganic materials 0.000 claims abstract description 13
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 13
- 238000002360 preparation method Methods 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 5
- 239000000377 silicon dioxide Substances 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- 239000002253 acid Substances 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000001935 peptisation Methods 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000000919 ceramic Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 238000010574 gas phase reaction Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- -1 but in recent years Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000015927 pasta Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/005—Growth of whiskers or needles
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/34—Silicates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
本発明は、例えばウィスカー強化複合セラミックや重合
体のフィラーとして利用されるムライトウィスカーの製
造方法に関するものである。The present invention relates to a method for producing mullite whiskers, which are used, for example, as fillers for whisker-reinforced composite ceramics and polymers.
ムライトは3^120.・2Si02(へ1□Os/S
iO2モル比=1.5)で示されるケイ酸アルミニウム
であるが、ジエイ・ニス・パスタ(J、^、Pa5k)
の研究論文(CeramicInternationa
l 、 9 (4) 、107〜113(1983))
によると^1□Ch/SiO2(モル比)が1.5ない
し2.87の範囲でアルミナと固溶体を形成している。
そしで、このムライトは、従来より、化学工業磁器や耐
火物に利用されてきたが、近年は低熱膨張率、低誘電率
さらには機械的性質の高温における安定性や耐熱衝撃性
に優れていることから、アルミナを凌ぐ電子材料用セラ
ミックス(IC基板あるいはパッケージ)としで、又、
炭化ケイ素を凌ぐ高温構造用セラミックス(高温用搬送
ローラ、焼成道具)として有望視されている。
ところが、ムライトセラミックスは破壊靭性に劣る問題
点がある。
このような問題点を解決する為の手段としで、ムライト
セラミックス中に繊維状、ウィスカー状の補強材、例え
ば炭素繊維や炭化ケイ素ウィスカーを含有させる方法が
提案されている。又、アルミナウィスカーやムライトウ
ィスカーを含有させる方法も考えられている。
ムライトウィスカーの製造方法としで、従来では、気相
反応法が提案されている。
又、特開平1−212299号公報に示されているよう
に、ムライト原料に1〜30原子%の^IFコを添加し
、800〜1600℃の温度で焼成して製造する方法も
提案されている。Mullite is 3^120.・2Si02(to1□Os/S
iO2 molar ratio = 1.5) is aluminum silicate, but J. varnish pasta (J, ^, Pa5k)
Research paper (Ceramic International
l, 9(4), 107-113 (1983))
According to ^1□Ch/SiO2 (molar ratio) is in the range of 1.5 to 2.87 to form a solid solution with alumina. Mullite has traditionally been used in chemical industrial porcelain and refractories, but in recent years, mullite has been used for its low coefficient of thermal expansion, low dielectric constant, and excellent mechanical properties such as stability at high temperatures and thermal shock resistance. Therefore, it can be used as a ceramic for electronic materials (IC substrate or package) that surpasses alumina, and
It is seen as a promising material for high-temperature structural ceramics (high-temperature conveyance rollers, firing tools) that surpasses silicon carbide. However, mullite ceramics have a problem of inferior fracture toughness. As a means to solve these problems, a method has been proposed in which fibrous or whisker-like reinforcing materials, such as carbon fibers or silicon carbide whiskers, are incorporated into mullite ceramics. Also, a method of incorporating alumina whiskers or mullite whiskers is also being considered. Conventionally, a gas phase reaction method has been proposed as a method for producing mullite whiskers. Furthermore, as shown in Japanese Patent Application Laid-open No. 1-212299, a method has been proposed in which 1 to 30 at. There is.
ところで、上記の気相反応法においては、ムライトウィ
スカーの成長速度が遅く、時間がかかり、さらには原料
ガスが高価な為に製造コストが高くつくという欠点があ
る。
又、特開平1−212299号公報提案の^IF。
を添加する方法では、^IF、が固体粒子である為、ム
ライト原料との均一な混合が出来にくく、ウィスカーが
部分的にしか得られないという欠点がある。さらには、
得られたムライトは^120ユ=73.7モル%で^1
□0.に冨み、ムライトの理論組成(ムライトの^12
0s=60モル%)からかなりのズレが生じているとい
う欠点もあった。
本発明の第1の目的は、粒子の固着がなく、高品質なム
ライトウィスカーを製造する方法を提供することである
。
本発明の第2の目的は、理論組成に近い高純度なムライ
トウィスカーを製造する方法を提供することである。
本発明の第3の目的は、ムライトウィスカーを安価に製
造する方法を提供することである。By the way, the above-mentioned gas phase reaction method has disadvantages in that the growth rate of mullite whiskers is slow, it takes time, and furthermore, the production cost is high because the raw material gas is expensive. Also, ^IF proposed in Japanese Unexamined Patent Publication No. 1-212299. In the method of adding IF, since it is a solid particle, it is difficult to mix it uniformly with the mullite raw material, and whiskers are only partially obtained. Furthermore,
The obtained mullite is ^120 U = 73.7 mol%^1
□0. Theoretical composition of mullite (mullite ^12
There was also a drawback that there was a considerable deviation from the value (0s = 60 mol%). The first object of the present invention is to provide a method for producing high-quality mullite whiskers without particle sticking. A second object of the present invention is to provide a method for producing mullite whiskers with high purity close to the theoretical composition. A third object of the present invention is to provide a method for manufacturing mullite whiskers at low cost.
上記本発明の目的は、ベーマイトゾルとシリカゾルとを
混合してムライト組成ゾルを調製するムライトゾル調製
工程と、前記ムライト組成ゾルにHFを添加してゲル化
するゲル化工程と、このゲル化工程で得たゲルを乾燥さ
せる乾燥工程と、この乾燥工程で得た乾燥物をM戒する
焼成工程とを含むことを特徴とするムライトウィスカー
の製造方法によって達成される。
尚、上記のムライトウィスカーの製造方法においで、ム
ライト組成ゾルの^hoz/5iOz(モル比)が1.
37〜1.76の範囲となるようベーマイトゾルとシリ
カゾルとが混合されることが好ましく、又、)IF/
3^120.・2SiOz(モル比)が0.01〜0.
1となるようHFは添加されることが好ましく、又、乾
燥工程では120℃より低い温度で処理されることが好
ましく、又、焼成工程においで、1000℃までは開放
系で、1000℃から1200〜1600℃の焼成温度
までは密閉系で焼成が行なわれることが好ましい。
ここで、ムライト組成ゾルの^1zOs/5iO2(モ
ル比)が1.37〜1.76のものが好ましいのは、1
.37より小さな値であるとクリストバライト(Si(
h)が析出する傾向にあり、逆に、1.76より大きな
値であると、コランダム(α−^1□0.)が析出する
傾向にあるからである。従っで、高純度なムライトウィ
スカーを製造するには、^120z/5iOi(モル比
)が1.37〜1.76であることが望ましいのである
。
ムライト組成ゾルの製造に際してはベーマイトゾルが用
いられることが好ましいものであり、このベーマイトゾ
ルは、ベーマイトの水中分散液を80℃以上に加熱しな
がら硝酸、塩酸等の無機酸や酢酸、ギ酸等の有機酸を適
量加えで、解膠することによって得られる。又、スピネ
ル型欠陥構造をとり活性度の高いγ−アルミナを前記の
酸で解膠することによっても、ベーマイトゾルを得るこ
とが出来る。
又、シリカゾルとしては反応活性が高いコロイダルシリ
カ(シリカゾル)やシリカ微粒子を用いることができる
。コロイダルシリカはシリカの超微粒子が水中に分散し
ているコロイド溶液で、シリ力微粒子には、例えば湿式
法で製造されるホワイトカーボンや乾式法のヒユームド
シリカがある。
又、HFが選ばれた理由は、HFが水溶液である為、ウ
ェットプロセスで均一な混合が可能となるからである。
そしで、その添加量をHF/3^120.・2SiOz
(モル比)で0.01〜0.1とするのが好ましいのは
、0.01より少なすぎると添加効果がないからであり
、又、0.1より多いとウィスカー以外の固着粒子が生
成する傾向があった為である。
ゲルを120℃より低い温度で乾燥するのが好ましい理
由は、120℃より高い温度で乾燥するとHFが蒸発し
てしまい、反応[M−○−OH+HF−+M−0−F十
H20(MはAI、 Si)コが充分でなくなり、ムラ
イトウィスカーが得られにくくなるからである。
そしで、上記のようにして生成したムライト組成のゲル
をボールミルや撹拌ミル等の粉砕装置でコンタミネーシ
ョンに留意しながら微粉砕することによっで、高純度ム
ライト粉末が得られ、このようにして得たものを焼成す
る訳であるが、この焼成工程においで、1000℃まで
は開放系で行うことが好ましい理由は、水和物の脱水の
為であり、1000℃から焼成温度までを密閉系で行う
ことが好ましい理由は、焼成時に分解したFtj、分が
^1□03・SiO2源に充分に接触できるようにする
為である。The purpose of the present invention is to provide a mullite sol preparation step in which a mullite composition sol is prepared by mixing a boehmite sol and a silica sol, a gelling step in which HF is added to the mullite composition sol to gel it, and this gelling step. This is achieved by a method for producing mullite whiskers, which is characterized by comprising a drying step of drying the obtained gel, and a firing step of burning the dried product obtained in this drying step. In the above method for producing mullite whiskers, the mullite composition sol has a molar ratio of ^hoz/5iOz of 1.
It is preferable that the boehmite sol and the silica sol are mixed so that the ratio is in the range of 37 to 1.76, and
3^120.・2SiOz (molar ratio) is 0.01 to 0.
It is preferable that HF is added so that the temperature becomes 1, and it is preferable that the temperature is lower than 120°C in the drying process, and in the firing process, the temperature is in an open system up to 1000°C, and the temperature from 1000°C to 1200°C is It is preferable that the firing is carried out in a closed system up to a firing temperature of 1600°C. Here, it is preferable that the mullite composition sol has a ^1zOs/5iO2 (molar ratio) of 1.37 to 1.76.
.. If the value is smaller than 37, cristobalite (Si(
h) tends to precipitate, and conversely, if the value is larger than 1.76, corundum (α-^1□0.) tends to precipitate. Therefore, in order to produce high-purity mullite whiskers, it is desirable that ^120z/5iOi (molar ratio) is 1.37 to 1.76. When producing a mullite composition sol, it is preferable to use a boehmite sol, and this boehmite sol is prepared by heating an aqueous dispersion of boehmite to 80°C or higher and adding an inorganic acid such as nitric acid or hydrochloric acid or an acetic acid or formic acid. It is obtained by peptizing it by adding an appropriate amount of organic acid. A boehmite sol can also be obtained by peptizing γ-alumina, which has a spinel-type defect structure and has high activity, with the above-mentioned acid. Further, as the silica sol, colloidal silica (silica sol) or silica fine particles having high reaction activity can be used. Colloidal silica is a colloidal solution in which ultrafine silica particles are dispersed in water, and examples of silica particles include white carbon produced by a wet method and fumed silica produced by a dry method. Further, HF was selected because HF is an aqueous solution, which enables uniform mixing in a wet process. Then, the amount added is HF/3^120.・2SiOz
The reason why it is preferable to set the molar ratio to 0.01 to 0.1 is because if it is less than 0.01, there will be no addition effect, and if it is more than 0.1, fixed particles other than whiskers will be formed. This is because there was a tendency to The reason why it is preferable to dry the gel at a temperature lower than 120°C is that if the gel is dried at a temperature higher than 120°C, HF will evaporate, and the reaction [M−○−OH+HF−+M−0−F×H20 (M is AI , Si) becomes insufficient, making it difficult to obtain mullite whiskers. Then, by finely pulverizing the mullite composition gel produced as described above using a pulverizing device such as a ball mill or stirring mill while taking care to avoid contamination, high-purity mullite powder can be obtained. The obtained product is fired, and the reason why it is preferable to perform this firing process in an open system up to 1000°C is to dehydrate the hydrate, and it is preferable to perform it in a closed system from 1000°C to the firing temperature. The reason why it is preferable to carry out this process is to allow Ftj, which is decomposed during firing, to sufficiently contact the ^1□03.SiO2 source.
まず、出発ゾル原料となるアルミナゾル、シリカゾルを
以下の方法で調製した。
アルミナゾル(ベーマイトゾル)は、市販ベーマイト粉
末(ビスタケミカル社のCatapal B ^120
゜含有量73.0wt%)を硝酸と共にイオン交換水に
加え、常圧下の80℃で3時間加熱することにより得た
。
シリカゾルは、市販コロイダルシリカ粉末(日本シリカ
社、N1psil E220A 5i02含有量92.
4wt%)を硝酸と共にイオン交換水に加え、常圧下で
pHを3以下に調整することにより得た。
さらに、上記のアルミナゾルとシリカゾルとを^1□O
x/SiO2(モル比)が1.37〜1.76の範囲で
混合させ、ムライト組成ゾルを調製した。
次に、上記ムライト組成ゾルに47%のフッ酸をHF/
3^120.・2Si02(モル比)が0.008〜0
.15の範囲で添加してゲル化させ、そのf&90〜1
30℃で48時間乾燥し、ボールミルで粉砕した。
このようにして得たゲル粉末を開放系において600℃
の温度で30分間熱処理した後、密閉容器中において1
150〜1650℃の温度範囲で1時間焼成した。
上記のようにして得た生成物の組成をX!!回折により
解析し、生成物の形態を電子顕微鏡により観察したので
、これらの結果を表1に示す。
又、第1図及び第2図に、上記実施例により得たムライ
トウィスカーの電子顕微鏡写真と電子線回折パターンを
示す。
これらの写真から明らかなように、生成物は<OO1>
方向へ成長した単結晶のウィスカーであり、アスペクト
比(長さ/直径の比ンは10以上と大きく、均一なウィ
スカーのみであることが判る。
【発明の効果]
■ HFを用いたウェットプロセスが採用されるので、
混合が均一となり、粒子がウィスカーに固着していると
いったことがなく、高品質なウィスカーが得られる。
■ ゾル−ゲル法による反応なので理論組成に近い高純
度なムライトが得られる。
■ 安価な原料を使用し、製造プロセスも単純な為、安
価にムライトウィスカーが得られる。First, alumina sol and silica sol, which serve as starting sol raw materials, were prepared in the following manner. Alumina sol (boehmite sol) is commercially available boehmite powder (Catapal B^120 from Vista Chemical Company).
73.0 wt%) was added to ion-exchanged water together with nitric acid, and the mixture was heated at 80° C. under normal pressure for 3 hours. The silica sol was commercially available colloidal silica powder (Nippon Silica Co., Ltd., N1psil E220A 5i02 content 92.
4 wt%) was added to ion-exchanged water together with nitric acid, and the pH was adjusted to 3 or less under normal pressure. Furthermore, the above alumina sol and silica sol are mixed with ^1□O
A mullite composition sol was prepared by mixing at x/SiO2 (molar ratio) in the range of 1.37 to 1.76. Next, 47% hydrofluoric acid was added to the mullite composition sol using HF/
3^120.・2Si02 (molar ratio) is 0.008 to 0
.. Add in a range of 15 to gel, and the f & 90 to 1
It was dried at 30°C for 48 hours and ground in a ball mill. The gel powder thus obtained was heated to 600°C in an open system.
After heat treatment for 30 minutes at a temperature of
It was baked for 1 hour at a temperature range of 150 to 1650°C. The composition of the product obtained as above is X! ! The product was analyzed by diffraction and the morphology of the product was observed by electron microscopy, and the results are shown in Table 1. Further, FIGS. 1 and 2 show electron micrographs and electron diffraction patterns of mullite whiskers obtained in the above example. As is clear from these photos, the product is <OO1>
It is a single-crystal whisker that has grown in the direction, and the aspect ratio (length/diameter ratio) is as large as 10 or more, indicating that it is only a uniform whisker. [Effects of the invention] ■ Wet process using HF Since you will be hired,
Mixing becomes uniform, particles are not stuck to the whiskers, and high-quality whiskers are obtained. ■ Since the reaction is based on the sol-gel method, highly pure mullite with a composition close to the theoretical composition can be obtained. ■ Mullite whiskers can be obtained at low cost because inexpensive raw materials are used and the manufacturing process is simple.
第1図は本発明の実施により製造されたムライトウィス
カーの電子類@鏡写真、第2図は本発明の実施により製
造されたムライトウィスカーの電子線回折パターンであ
る。FIG. 1 is an electron beam photograph of a mullite whisker produced according to the present invention, and FIG. 2 is an electron diffraction pattern of a mullite whisker produced according to the present invention.
Claims (5)
ト組成ゾルを調製するムライトゾル調製工程と、前記ム
ライト組成ゾルにHFを添加してゲル化するゲル化工程
と、このゲル化工程で得たゲルを乾燥させる乾燥工程と
、この乾燥工程で得た乾燥物を焼成する焼成工程とを含
むことを特徴とするムライトウィスカーの製造方法。(1) A mullite sol preparation step in which a mullite composition sol is prepared by mixing boehmite sol and silica sol, a gelling step in which HF is added to the mullite composition sol to gel it, and a gel obtained in this gelling step. A method for producing mullite whiskers, comprising a drying step of drying and a firing step of firing the dried product obtained in the drying step.
(モル比)が1.37〜1.76の範囲となるようベー
マイトゾルとシリカゾルとが混合される特許請求の範囲
第1項記載のムライトウィスカーの製造方法。(2) Al_2O_3/SiO_2 of mullite composition sol
2. The method for producing mullite whiskers according to claim 1, wherein boehmite sol and silica sol are mixed so that the molar ratio is in the range of 1.37 to 1.76.
)が0.01〜0.1となるようHFが添加される特許
請求の範囲第1項記載のムライトウィスカーの製造方法
。(3) The method for producing mullite whiskers according to claim 1, wherein HF is added so that HF/3Al_2O_3·2SiO_2 (molar ratio) is 0.01 to 0.1.
特許請求の範囲第1項記載のムライトウィスカーの製造
方法。(4) The method for producing mullite whiskers according to claim 1, wherein the drying step is performed at a temperature lower than 120°C.
1000℃から1200〜1600℃の焼成温度までは
密閉系で焼成が行なわれる特許請求の範囲第1項記載の
ムライトウィスカーの製造方法。(5) In the firing process, temperatures up to 1000°C are open system;
The method for producing mullite whiskers according to claim 1, wherein the firing is carried out in a closed system from 1000°C to a firing temperature of 1200 to 1600°C.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2062530A JPH0649638B2 (en) | 1990-03-15 | 1990-03-15 | Method for manufacturing mullite whiskers |
DE4102063A DE4102063A1 (en) | 1990-03-15 | 1991-01-24 | METHOD FOR PRODUCING MULLIT WHISKERS |
GB9104288A GB2241942B (en) | 1990-03-15 | 1991-02-28 | Method of making mullite whiskers |
US07/893,950 US5229093A (en) | 1990-03-15 | 1992-06-04 | Method for making mullite whiskers using hydrofluoric acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2062530A JPH0649638B2 (en) | 1990-03-15 | 1990-03-15 | Method for manufacturing mullite whiskers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03265600A true JPH03265600A (en) | 1991-11-26 |
JPH0649638B2 JPH0649638B2 (en) | 1994-06-29 |
Family
ID=13202847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2062530A Expired - Lifetime JPH0649638B2 (en) | 1990-03-15 | 1990-03-15 | Method for manufacturing mullite whiskers |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH0649638B2 (en) |
DE (1) | DE4102063A1 (en) |
GB (1) | GB2241942B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009515800A (en) * | 2005-11-10 | 2009-04-16 | ザ・モーガン・クルーシブル・カンパニー・ピーエルシー | Fiber resistant to high temperatures |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114162844B (en) * | 2021-12-07 | 2023-06-02 | 中南大学 | Precursor composite sol for alumina/mullite biphase fiber and preparation method thereof |
CN114380576B (en) * | 2022-01-27 | 2022-11-15 | 景德镇陶瓷大学 | Mullite whisker reinforced ceramic body generated in situ and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01212299A (en) * | 1988-02-17 | 1989-08-25 | Kiyoshi Okada | Production of mullite whisker |
-
1990
- 1990-03-15 JP JP2062530A patent/JPH0649638B2/en not_active Expired - Lifetime
-
1991
- 1991-01-24 DE DE4102063A patent/DE4102063A1/en active Granted
- 1991-02-28 GB GB9104288A patent/GB2241942B/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009515800A (en) * | 2005-11-10 | 2009-04-16 | ザ・モーガン・クルーシブル・カンパニー・ピーエルシー | Fiber resistant to high temperatures |
Also Published As
Publication number | Publication date |
---|---|
JPH0649638B2 (en) | 1994-06-29 |
DE4102063C2 (en) | 1992-09-24 |
GB2241942B (en) | 1993-11-17 |
GB2241942A (en) | 1991-09-18 |
DE4102063A1 (en) | 1991-09-19 |
GB9104288D0 (en) | 1991-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03504848A (en) | Hard mullite - manufacturing method of whisker felt | |
Hirata et al. | Characterization and Sintering Behavior of Alkoxide‐Derived Aluminosilicate Powders | |
JP2010508231A (en) | Compound for manufacturing heat-resistant materials | |
WO1991001952A1 (en) | Mullite whisker preparation | |
JPH01119559A (en) | Mullite-alumina composite sintered compact and its production | |
CN113307610A (en) | High-density quartz-zirconia composite ceramic and preparation method thereof | |
CN109811415B (en) | Method for preparing mullite whiskers from kaolin at low temperature | |
JPH03265600A (en) | Production of mullite whisker | |
JP3038047B2 (en) | Production method of high purity mullite | |
JPH0339967B2 (en) | ||
JPS61275163A (en) | Manufacture of high temperature strength alumina silica baseceramic sintered body | |
US5229093A (en) | Method for making mullite whiskers using hydrofluoric acid | |
JPH06219828A (en) | Production of mullite-silicon carbide combined ceramics | |
JPH0421605B2 (en) | ||
JPH0448726B2 (en) | ||
JPS6357383B2 (en) | ||
Sales et al. | Effect of NiO and/or TiO2 mullite formation and microstructure from gels | |
JPH075291B2 (en) | Method for producing zirconia uniformly dispersed mullite fine powder | |
JPH06100358A (en) | Production of mullite sintered compact | |
JPH0497942A (en) | Production of mullite-zirconia composite ceramics | |
US6039929A (en) | Synthesis of monoclinic celsian | |
Zhien et al. | The effects of additives on the properties and structure of hot-pressed aluminium titanate ceramics | |
JPH0615421B2 (en) | Method for manufacturing mullite sintered body | |
JPH045770B2 (en) | ||
JP4319866B2 (en) | Method for producing inorganic fibrous refractory insulation |