JPH0497502A - Electronic device - Google Patents

Electronic device

Info

Publication number
JPH0497502A
JPH0497502A JP2215423A JP21542390A JPH0497502A JP H0497502 A JPH0497502 A JP H0497502A JP 2215423 A JP2215423 A JP 2215423A JP 21542390 A JP21542390 A JP 21542390A JP H0497502 A JPH0497502 A JP H0497502A
Authority
JP
Japan
Prior art keywords
barium titanate
semiconductor porcelain
electronic device
breakdown voltage
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2215423A
Other languages
Japanese (ja)
Inventor
Makoto Sano
誠 佐野
Norimitsu Kito
鬼頭 範光
Takahiko Kawahara
河原 隆彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2215423A priority Critical patent/JPH0497502A/en
Publication of JPH0497502A publication Critical patent/JPH0497502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electronic device with a high breakdown voltage and improved reliability by carrying out heat treatment on the electronic device in the oxidizing atmosphere at a temperature below a baking temperature for semiconductor porcelain while by forming electrodes by sputtering. CONSTITUTION:After fabricating a low resistance barium titanate semiconductor porcelain raw body, heat treatment on an electronic device carried out in the oxidizing atmosphere at a temperature below a baking temperature for the semiconductor porcelain, and electrodes are formed by sputtering, thus obtaining a barium titanate semiconductor porcelain superior in less process variation and breakdown voltage characteristic. That is, the resistivity distribution inside the barium titanate semiconductor porcelain element is greatly uniformalized and a superior breakdown voltage characteristic can be obtained. Accordingly, an electronic device made of such barium titanate semiconductor porcelain has superior breakdown voltage characteristic and reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電子部品に関し、特に、チタン酸バリウム系
半導体磁器を用いた、電子部品に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to electronic components, and particularly to electronic components using barium titanate-based semiconductor ceramics.

(従来技術) 従来、電子部品に用いられるチタン酸バリウム系半導体
磁器を形成するには、チタン酸バリウム系半導体磁器材
料を用いてスラリーを形成し、このスラリーをフィルタ
に通して成形し、その成形物を所定の焼成温度で焼成し
て形成する方法があった。このように、スラリーをフィ
ルタに通すことによって、結晶粒径の揃った半導体磁器
をつくることができる。
(Prior art) Conventionally, in order to form barium titanate-based semiconductor porcelain used in electronic components, a slurry is formed using a barium titanate-based semiconductor porcelain material, this slurry is passed through a filter, and the molding process is performed. There was a method of forming objects by firing them at a predetermined firing temperature. In this way, by passing the slurry through a filter, semiconductor porcelain with uniform crystal grain size can be produced.

得られた半導体磁器に無電解めっきによってNi電極を
形成し、さらに、このNi電極上にAg電極を付与する
ことによって、電子部品が形成される。
An electronic component is formed by forming a Ni electrode on the obtained semiconductor ceramic by electroless plating and further applying an Ag electrode on the Ni electrode.

(発明が解決しようとする課題) しかしながら、このようなチタン酸バリウム系半導体磁
器を小さく切って調べたところ、第2図に示すように、
その磁器内の比抵抗分布が不均一になっている。そのた
め、耐電圧特性が悪くなってしまう。なお、この比抵抗
分布は、次式に示すように、個々の比抵抗値ρ、を全で
の抵抗値の平均値Σρ= /nで割った値で示している
(Problems to be Solved by the Invention) However, when such barium titanate-based semiconductor porcelain was cut into small pieces and examined, as shown in Figure 2,
The resistivity distribution within the porcelain is non-uniform. Therefore, the withstand voltage characteristics deteriorate. Note that this resistivity distribution is expressed as a value obtained by dividing the individual resistivity values ρ by the average value Σρ=/n of all the resistance values, as shown in the following equation.

I富1 X、=ρ、/(Σρ、/n) ;弓 また、ガラス相を形成しやすくなるような成分を含むチ
タン酸バリウム系半導体磁器に、従来の無電解メツキ法
によるNit極およびNi電極上にAg[極を付与する
と、抵抗値の加工変化が大きくなり、電圧特性が劣化す
る。
I wealth 1 X, = ρ, /(Σρ, /n) When an Ag[pole is provided on the electrode, the process change in resistance value becomes large and the voltage characteristics deteriorate.

それゆえに、この発明の主たる目的は、優れた耐電圧特
性を有する信転性の高い、電子部品を提供することであ
る。
Therefore, the main object of the present invention is to provide an electronic component with excellent withstand voltage characteristics and high reliability.

(課題を解決するための手段) この発明は、半導体磁器の焼成温度またはその焼成温度
より低い温度で酸化雰囲気中において半導体磁器に熱処
理を施し、さらに、その半導体磁器の表面にスパッタリ
ングによって、Cr、T1Ni、Aj!またはこれらの
合金で電極を形成した、電子部品である。
(Means for Solving the Problems) The present invention heat-treats semiconductor porcelain in an oxidizing atmosphere at a firing temperature of the semiconductor porcelain or a temperature lower than the firing temperature, and further, sputters Cr on the surface of the semiconductor porcelain. T1Ni, Aj! Or it is an electronic component with electrodes formed from these alloys.

(作用) 酸化雰囲気中において半導体磁器の焼成温度以下の温度
で熱処理することによって、半導体素子内の比抵抗分布
が均一になる。また、スパッタリングによって電極を形
成することによって、抵抗価の加工変化が小さくなる。
(Function) By performing heat treatment in an oxidizing atmosphere at a temperature below the firing temperature of semiconductor porcelain, the resistivity distribution within the semiconductor element becomes uniform. Further, by forming the electrodes by sputtering, the process change in resistance value is reduced.

(発明の効果) この発明によれば、優れた耐電圧特性を有する信転性の
高い、電子部品が得られる。
(Effects of the Invention) According to the present invention, an electronic component having excellent voltage resistance characteristics and high reliability can be obtained.

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

(実施例) まず、出発原料として、主成分となるべきBaTie、
、5rTio、、CaTiOs 、PbTio、と、そ
れらに配合される半導体化剤および添加物とを準備した
。そして、得ようとする磁器の主成分の組成を、BaT
i0.が75モル%、5rTiOsが12モル%、Ca
 T i O3が6モル%、PbTi0.が7モル%と
なるように配合した。これに対して、半導体化剤と添加
物とを、Yが0.38モル%、Mnが0.038モル%
およびSin、が0.030モル%になるように配合し
て配合原料を得た。
(Example) First, as a starting material, BaTie, which should be the main component,
, 5rTio, , CaTiOs, and PbTio, as well as semiconducting agents and additives to be added to them, were prepared. Then, the composition of the main component of the porcelain to be obtained is BaT
i0. 75 mol%, 5rTiOs 12 mol%, Ca
T i O3 is 6 mol%, PbTi0. It was blended so that it was 7 mol%. On the other hand, the semiconducting agent and the additives were made such that Y was 0.38 mol% and Mn was 0.038 mol%.
and Sin were blended to be 0.030 mol% to obtain a blended raw material.

次に、この配合原料を湿式混合、粉砕し、1130℃で
仮焼して仮焼物を得た。この仮焼物を造粒して造粒物と
し、得られた造粒物に有機バインダーを加えて厚さ3.
5mの円板状に成形して成形物を得た。この成形物を空
気中において、1350℃で1時間焼成し、チタン酸バ
リウム系半導体磁器素体を得た。さらに、このチタン酸
バリウム系半導体磁器素体に別表1に示す条件で熱処理
を施し、チタン酸バリウム系半導体磁器を得た。
Next, this mixed raw material was wet mixed, pulverized, and calcined at 1130°C to obtain a calcined product. This calcined product is granulated to obtain a granulated product, and an organic binder is added to the obtained granulated product to obtain a thickness of 3.
A molded product was obtained by molding into a 5 m disc shape. This molded product was fired in air at 1350° C. for 1 hour to obtain a barium titanate semiconductor ceramic body. Furthermore, this barium titanate-based semiconductor porcelain body was heat-treated under the conditions shown in Attached Table 1 to obtain barium titanate-based semiconductor porcelain.

そして、熱処理されたチタン酸バリウム系半導体磁器の
電気特性を測定するために、そのチタン酸バリウム系半
導体磁器にIn−Ga合金を電極として付与し、25℃
における抵抗値R1(Ω)と耐電圧(V)を測定し、そ
の結果を別表2に示した。なお、表中*印を付したもの
は本発明の範囲外のものである。
In order to measure the electrical properties of the heat-treated barium titanate-based semiconductor porcelain, an In-Ga alloy was applied as an electrode to the barium titanate-based semiconductor porcelain.
The resistance value R1 (Ω) and withstand voltage (V) were measured, and the results are shown in Attached Table 2. In addition, those marked with * in the table are outside the scope of the present invention.

別表2かられかるように、焼成温度を超える温度で熱処
理したチタン酸バリウム系半導体磁器の耐電圧は低い。
As shown in Attached Table 2, barium titanate-based semiconductor porcelain heat-treated at a temperature exceeding the firing temperature has a low withstand voltage.

それに対して、焼成温度以下で熱処理したチタン酸バリ
ウム系半導体磁器の耐電圧は高い。
On the other hand, barium titanate-based semiconductor ceramics heat-treated below the firing temperature have a high withstand voltage.

さらに、試料番号1〜5に示すチタン酸バリウム系半導
体磁器について、次に示すような各電極を形成した。
Furthermore, the following electrodes were formed on the barium titanate semiconductor ceramics shown in sample numbers 1 to 5.

まず、Ni無電解めっき法にて、Nit極を付与し、そ
の上にAg!極を付与して、試料1a〜5aとした。
First, a Ni electrode is applied using Ni electroless plating method, and then Ag! A pole was provided to give samples 1a to 5a.

また、スパッタリングにて、Cr−Ni合金を電極とし
て付与して、試料1b〜5bとした。
Further, samples 1b to 5b were prepared by applying a Cr-Ni alloy as an electrode by sputtering.

そして、25℃における抵抗値R1(Ω)と耐電圧(V
)を測定した。また、この抵抗値R,(Ω)と、In−
Ga電極での抵抗値R,(Ω)とから、次式によって、
抵抗値の加工変化率ΔR(%)を求めた。
Then, the resistance value R1 (Ω) and the withstand voltage (V
) was measured. Also, this resistance value R, (Ω) and In-
From the resistance value R, (Ω) at the Ga electrode, by the following formula,
The processing change rate ΔR (%) of the resistance value was determined.

ΔR= (1−(Rz /R,)) xi 00  (
%)なお、これらの測定結果および算出結果を別表3に
示した。
ΔR= (1-(Rz /R,)) xi 00 (
%) These measurement results and calculation results are shown in Attached Table 3.

別表3から明らかなように、従来のNi無電解めっき法
などの電極を形成した試料では、抵抗値の加工変化が大
きく、In−Ga電極での耐電圧特性に比べて著しく劣
化している。それに比べて、スパッタリングによって電
極を形成した試料では、耐電圧特性の変化が少ない。
As is clear from Table 3, in the samples in which the electrodes were formed using the conventional Ni electroless plating method, the resistance value changed significantly due to processing, and the withstand voltage characteristics were significantly deteriorated compared to those of the In-Ga electrodes. In comparison, samples with electrodes formed by sputtering show little change in withstand voltage characteristics.

このように、低抵抗チタン酸バリウム系半導体磁器素体
を作製した後、その焼成温度以下の温度および酸化雰囲
気で熱処理し、スパッタリングにて電極を形成すること
によって、加工変化が小さく、耐電圧特性の優れたチタ
ン酸バリウム系半導体磁器が得られる。すなわち、この
発明の電子部品に用いられるチタン酸バリウム系半導体
磁器の素子内の比抵抗分布は、第1図に示すように、非
常に均一になり、優れた耐電圧特性が得られる。
In this way, after producing a low-resistance barium titanate-based semiconductor ceramic body, it is heat-treated at a temperature below its firing temperature and in an oxidizing atmosphere, and electrodes are formed by sputtering, resulting in small processing changes and high voltage resistance. Barium titanate-based semiconductor porcelain with excellent properties can be obtained. That is, as shown in FIG. 1, the specific resistance distribution within the element of the barium titanate-based semiconductor ceramic used in the electronic component of the present invention becomes extremely uniform, and excellent withstand voltage characteristics are obtained.

したがって、このようなチタン酸バリウム系半導体磁器
を用いた電子部品では、優れた耐電圧特性を有し、信顛
性も高い。
Therefore, electronic components using such barium titanate-based semiconductor ceramics have excellent withstand voltage characteristics and high reliability.

この発明は、特に、Pb5iOzを含む系に有効である
が、Pb5iOz含む系に限られたものではなく、それ
以外のものであってもよい。
This invention is particularly effective for systems containing Pb5iOz, but is not limited to systems containing Pb5iOz and may be applied to other systems.

また、この実施例では、Cr−Ni合金をスパッタリン
グすることによって、電極を形成したが、チタン酸バリ
ウム系半導体磁器の電極としては、Cr、Ti、Ni、
AI!、またはこれらの合金をスパッタリングすること
によって、その電極を形成してもよく、これらについて
も同様の結果が得られている。
Further, in this example, the electrode was formed by sputtering a Cr-Ni alloy, but the barium titanate-based semiconductor ceramic electrode may be made of Cr, Ti, Ni,
AI! The electrode may be formed by sputtering , or an alloy thereof, and similar results have been obtained with these.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明にかかる電子部品に用いられるチタ
ン酸バリウム系半導体磁器の素子の比抵抗分布図である
。 第2図は、この発明の背景となる従来の電子部品に用い
られるチタン酸バリウム系半導体磁器の素子の比抵抗分
布図である。 特許出願人 株式会社 村田製作所 代理人 弁理士 岡 1) 全 啓 表1 *印はこの発明の範囲外 表3 *印はこの発明の範囲外 表2 *印はこの発明の範囲外 第 図 第 図
FIG. 1 is a resistivity distribution diagram of a barium titanate semiconductor ceramic element used in an electronic component according to the present invention. FIG. 2 is a resistivity distribution diagram of a barium titanate semiconductor ceramic element used in a conventional electronic component, which is the background of the present invention. Patent Applicant Murata Manufacturing Co., Ltd. Representative Patent Attorney Oka 1) Zenkei Table 1 *marked is table outside the scope of this invention 3 *marked is table outside the scope of this invention 2 *marked is outside the scope of this invention Figure 1

Claims (1)

【特許請求の範囲】[Claims]  半導体磁器の焼成温度または前記焼成温度より低い温
度で酸化雰囲気中において前記半導体磁器に熱処理を施
し、さらに、前記半導体磁器の表面にスパッタリングに
よって、Cr,Ti,Ni,Alまたはこれらの合金で
電極を形成した、電子部品。
The semiconductor porcelain is heat-treated in an oxidizing atmosphere at the firing temperature of the semiconductor porcelain or a temperature lower than the firing temperature, and further, electrodes are formed on the surface of the semiconductor porcelain by sputtering with Cr, Ti, Ni, Al, or an alloy thereof. formed, electronic components.
JP2215423A 1990-08-14 1990-08-14 Electronic device Pending JPH0497502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2215423A JPH0497502A (en) 1990-08-14 1990-08-14 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2215423A JPH0497502A (en) 1990-08-14 1990-08-14 Electronic device

Publications (1)

Publication Number Publication Date
JPH0497502A true JPH0497502A (en) 1992-03-30

Family

ID=16672092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2215423A Pending JPH0497502A (en) 1990-08-14 1990-08-14 Electronic device

Country Status (1)

Country Link
JP (1) JPH0497502A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898396A (en) * 1972-03-28 1973-12-13
JPS5410996A (en) * 1977-06-27 1979-01-26 Mitsubishi Electric Corp Manufacture of titanium oxide electrode
JPS6064402A (en) * 1983-09-19 1985-04-13 株式会社明電舎 Temperature sensitive resistance element
JPS6164402A (en) * 1984-08-22 1986-04-02 アンドレアス シユテイール Chain saw
JPH01289206A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Voltage-dependent nonlinear resistance element and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4898396A (en) * 1972-03-28 1973-12-13
JPS5410996A (en) * 1977-06-27 1979-01-26 Mitsubishi Electric Corp Manufacture of titanium oxide electrode
JPS6064402A (en) * 1983-09-19 1985-04-13 株式会社明電舎 Temperature sensitive resistance element
JPS6164402A (en) * 1984-08-22 1986-04-02 アンドレアス シユテイール Chain saw
JPH01289206A (en) * 1988-05-17 1989-11-21 Matsushita Electric Ind Co Ltd Voltage-dependent nonlinear resistance element and manufacture thereof

Similar Documents

Publication Publication Date Title
Jun et al. Preparation of ZnO-glass varistor from tetrapod ZnO nanopowders
JP3259678B2 (en) Piezoelectric ceramic composition
JP3399364B2 (en) Piezoelectric ceramic composition
JPH0497502A (en) Electronic device
JP4779466B2 (en) Barium titanate semiconductor porcelain composition
JP2987762B2 (en) Ferroelectric porcelain composition
JP3342556B2 (en) Piezoelectric ceramic composition
JPS6358782B2 (en)
JP2873656B2 (en) Piezoelectric ceramic composition
JPH02137283A (en) Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic
JP3023920B2 (en) Manufacturing method of semiconductor porcelain
JP3342555B2 (en) Piezoelectric ceramic composition
JPS63311701A (en) Manufacture of positive characteristic semiconductor porcelain
JP3111630B2 (en) Barium titanate-based semiconductor porcelain and method of manufacturing the same
JPS6217368B2 (en)
JPH0388769A (en) Piezoelectric porcelain material
JPH02262301A (en) Varistor
JPS63110601A (en) Manufacture of semiconductor porcelain material
JPS63301410A (en) Insulated grain boundary type semiconductor ceramic composition
JPH0613203A (en) Manufacture of semiconductor ceramic element
JPH01292805A (en) Insulating grain boundary type semiconductor porcelain composition
JPH0517218A (en) Piezoelectric porcelain composition
JPH05198408A (en) Manufacture of semiconductor ceramic varistor
JPH08319157A (en) Barium titanate ceramic and its production
JPH0336773A (en) Piezoelectric porcelain material