JPH02137283A - Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic - Google Patents

Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic

Info

Publication number
JPH02137283A
JPH02137283A JP63291166A JP29116688A JPH02137283A JP H02137283 A JPH02137283 A JP H02137283A JP 63291166 A JP63291166 A JP 63291166A JP 29116688 A JP29116688 A JP 29116688A JP H02137283 A JPH02137283 A JP H02137283A
Authority
JP
Japan
Prior art keywords
ceramic
curie point
piezoelectric element
piezoelectric
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63291166A
Other languages
Japanese (ja)
Inventor
Hamae Ando
安藤 浜江
Masamitsu Nishida
西田 正光
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63291166A priority Critical patent/JPH02137283A/en
Publication of JPH02137283A publication Critical patent/JPH02137283A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve lineality, reduce variation with time at a high temperature, and realize large output and strength by a method wherein crystal grain diameter is made smaller than or equal to a specified value, composition is made into perovskite structure, and polarization processing temperature is specified with respect to Curie point. CONSTITUTION:Piezoelectric ceramics in a ceramic piezoelectric element constituted of piezoelectric ceramic and an electrode is formed of perovskite structure material whose average crystal grain diameter is smaller than or equal to 1.0mum. As to polarization processing, polarization is performed in a temperature range higher than or equal to 2/5 of Curie point in centigrade and lower than or equal to Curie point. Thereby, the lineality of a ceramic piezoelectric element is improved, so that a stable ceramic piezoelectric element, wherein variation with time at a high temperature is little and output and strength are large, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電セラミックスと電極からなるセラミック
圧電素子及び、その分極処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a ceramic piezoelectric element made of piezoelectric ceramics and electrodes, and a method for polarizing the same.

従来の技術 従来セラミック圧電素子は、結晶粒径数μIの圧電セラ
ミックスの表面に銀、金、白金等の金属の導電体を数百
度で焼き付けて電極とし、これを100℃程度のシリコ
ン・オイル中lこで3kv/mm程度の直流電界を両電
極間に印加して分極処理を行っている。
Conventional technology A conventional ceramic piezoelectric element is made by baking a conductor of a metal such as silver, gold, or platinum at several hundred degrees onto the surface of a piezoelectric ceramic with a crystal grain size of several μI to form an electrode. A DC electric field of about 3 kV/mm is applied between both electrodes to perform polarization processing.

発明が解決しようとする問題点 分極処理温度が比較的低温で行われている為、高温時で
の特性の経時変化が大きく、また線形性が向上しない。
Problems to be Solved by the Invention Since the polarization treatment is performed at a relatively low temperature, the characteristics change significantly over time at high temperatures, and the linearity does not improve.

従って高出力で使用できる安定した特性のセラミック圧
電素子を得ることが困難であった。
Therefore, it has been difficult to obtain a ceramic piezoelectric element with stable characteristics that can be used at high output.

課題を解決するための手段 圧電セラミックスと電極からなるセラミック圧電素子に
於いて、圧電セラミックスを、結晶粒径が平均で1.O
μ議以下のペロブスカイト型構造材料により構成する。
Means for Solving the Problems In a ceramic piezoelectric element consisting of a piezoelectric ceramic and an electrode, the piezoelectric ceramic has a crystal grain size of 1. O
It is constructed from a perovskite-type structural material of less than μm.

また、分極処理を行う際に、分極処理温度を摂氏でキュ
リー点の215以上でかつキュリー点以下の高温で行う
Further, when performing the polarization treatment, the polarization treatment temperature is performed at a high temperature of 215 degrees Celsius or higher than the Curie point and lower than the Curie point.

作用 上記構成のペロブスカイト型セラミック圧電素子は、線
形性が著しく改善される。
Function: The perovskite ceramic piezoelectric element having the above structure has significantly improved linearity.

また、上記の分極処理によれば、セラミック圧電素子の
高温時での経時変化が少な(、線形性の優れたものが容
易に得られることにより、高出力用・高機能のペロブス
カイト型セラミック圧電素子が得られる。
In addition, according to the above polarization treatment, the ceramic piezoelectric element changes little over time at high temperatures (and it is easy to obtain a ceramic piezoelectric element with excellent linearity). is obtained.

実施例 以下実施例を示す。Example Examples are shown below.

原料粉体としてP b s O4、Z n O、S n
 O2、Nb* Os N Tt 02 、Z ro2
、MnO2の粉体をPb (Znxz3Nbs+z3)
0,09 (SntzsNbat C1) o、os7
 i 00,42Z r 0o−40+ 0.5w t
%MnO2で表される組成の成分比に秤量(約220g
)L、、たちのを、混合・乾燥の後850℃で2時間仮
焼した。これを粉砕し、粉砕時間をかえて平均粒子径1
.0pm、0.4μm、0.2μmの3種の粉体を作製
した。これをプレス成形し、バインダーを除去後それぞ
れ粒子径1.0μmのものは1290℃で2粒子径0.
4μ謡は1230℃で2粒子径0.2pmは1170℃
で2時間本焼成を行った。その結果、1.0,0.4及
び0.2μmの粉体からそれぞれ平均の結晶粒径が1.
0.0.6及び0.4μIの焼成体を得た。
P b s O4, Z n O, S n as raw material powder
O2, Nb* Os N Tt 02 , Z ro2
, MnO2 powder to Pb (Znxz3Nbs+z3)
0,09 (SntzsNbat C1) o, os7
i 00,42Z r 0o-40+ 0.5w t
The weight (approximately 220 g
)L,, after mixing and drying, calcined at 850°C for 2 hours. This was pulverized, and the average particle size was 1 by varying the pulverization time.
.. Three types of powder were produced: 0 pm, 0.4 μm, and 0.2 μm. This was press-molded, and after removing the binder, the particles with a particle size of 1.0 μm were heated to 1290°C and the particles with a particle size of 0.0 μm were heated.
4μ song is 1230℃, 2 particle size 0.2pm is 1170℃
Main firing was performed for 2 hours. As a result, the average crystal grain size was 1.0, 0.4, and 0.2 μm, respectively.
Fired bodies of 0.0.6 and 0.4 μI were obtained.

また比較のために1.0μ■の粉体を1290℃で5時
間焼成を行い平均の結晶粒径が1.3μmの焼成体を得
た。この焼成体を誘電特性測定用に直径10mm5厚さ
0.3mmの円板と、線形性測定用に2X12mm、厚
さ0.5mmの棒状の試料に切断し、それぞれの両面に
Cr−Au電極を蒸着した。これを分極温度を100,
130.160,200℃の各温度で分極時間は30分
間の分極処理を行った。(尚、このセラミ・、り圧電素
子のキュリー点は330℃であった。)分極の方法は、
温度を一定に保ったシリコン・オイル中に圧電セラミッ
クスを浸し、これに3kv/mmの直流電界を印加して
行った。作製した圧電素子の誘電的、圧電的特性と線形
性を測定した。
For comparison, a powder of 1.0 μm was fired at 1290° C. for 5 hours to obtain a fired product with an average crystal grain size of 1.3 μm. This fired body was cut into disks with a diameter of 10 mm and thickness of 0.3 mm for dielectric property measurement, and into rod-shaped samples of 2 x 12 mm and thickness of 0.5 mm for linearity measurement, and Cr-Au electrodes were placed on both sides of each. Deposited. Set the polarization temperature to 100,
Polarization was performed at temperatures of 130, 160, and 200° C. for 30 minutes. (The Curie point of this ceramic piezoelectric element was 330°C.) The polarization method is as follows:
Piezoelectric ceramics were immersed in silicone oil whose temperature was kept constant, and a DC electric field of 3 kv/mm was applied thereto. The dielectric and piezoelectric properties and linearity of the fabricated piezoelectric element were measured.

線形性は、ネットワークアナライザー(YHP?J41
92A)を使用して先1こ述べた棒状のセラミック圧電
素子に加える電圧を変化させた時の共振周波数の変動を
共振周波数が1%低下する時の電流密度(m A o−
p / m m2)で示した。測定の結果を表1に示す
。なお、電流密度は大きいほど大きな出力が得られる。
Linearity was measured using a network analyzer (YHP?J41).
The current density when the resonant frequency decreases by 1% (m A o-
p/m m2). The measurement results are shown in Table 1. Note that the larger the current density, the greater the output.

電流密度が2倍になれば、同じ大きさのセラミック圧電
素子で4倍の出力を得ることが可能になる。
If the current density is doubled, it becomes possible to obtain four times the output with the same size ceramic piezoelectric element.

(以下余白〉 表 * m AO−p/n+in 上記の実施例で明らかな様に、本発明の方法によって作
成したセラミック圧電素子は、1.0μ冒以下の粒子径
の場合では分極温度が130’C(約キュリー点の27
5)以上で線形性が良い。更に、160℃(キュリー点
の約1/2)〜200℃(キュリー点の約315)の範
囲で特に線形性が良い。また、結晶粒径が1.0μmの
ものと1.3μmのものを比較すると、従来の分極処理
温度(100℃)では1.4倍、160℃(キュリー点
の約1/2)では1.6倍、結晶粒径が1.0μ閣のほ
うが線形性で良い特性が得られた。
(Margin below) Table * m AO-p/n+in As is clear from the above examples, the ceramic piezoelectric element produced by the method of the present invention has a polarization temperature of 130' when the particle size is 1.0μ or less. C (approximately 27 of the Curie point
5) The above results indicate good linearity. Furthermore, linearity is particularly good in the range of 160°C (about 1/2 of the Curie point) to 200°C (about 315°C of the Curie point). Also, when comparing crystal grain sizes of 1.0 μm and 1.3 μm, it is 1.4 times as large at the conventional polarization temperature (100°C) and 1. When the crystal grain size was 6 times larger and the crystal grain size was 1.0μ, better linearity characteristics were obtained.

さらに、結晶粒径は1.0μmより小さいほうがより良
好な線形性が得られた。
Furthermore, better linearity was obtained when the crystal grain size was smaller than 1.0 μm.

また、ε、KpとQは分極処理温度によっては大きな変
化がなかったが、高温で分極処理したものほど高温く1
60〜200℃)での経時変化が少なかった。
In addition, ε, Kp and Q did not change significantly depending on the polarization temperature, but the higher the temperature, the higher the temperature.
60 to 200°C), there was little change over time.

なお、本発明の範囲は、実施例に限定されるものではな
く、他の組成であっても良い。また分極処理の印加電圧
及び分極処理時間も実施例に限定されるものではない。
Note that the scope of the present invention is not limited to the examples, and other compositions may be used. Furthermore, the applied voltage and polarization treatment time for polarization treatment are not limited to the examples.

発明の効果 発明によれば、結晶粒子径が、1.0μ■以下であるこ
と及び組成がペロブスカイト型構造のセラミック圧電素
子とし、また、分極処理温度をキュリー点の215以上
でかつキュリー点以下とすることにより、セラミック圧
電素子の線形性が著しく向上する。この結果1、高温で
の経時変化の少ない安定した高出力・高強度のセラミッ
ク圧電素子の製造が可能となった。
Effects of the Invention According to the invention, the ceramic piezoelectric element has a crystal grain size of 1.0μ or less and a composition of perovskite structure, and the polarization temperature is set to 215 or above the Curie point and below the Curie point. By doing so, the linearity of the ceramic piezoelectric element is significantly improved. As a result 1, it has become possible to manufacture a stable, high-output, high-strength ceramic piezoelectric element with little change over time at high temperatures.

Claims (7)

【特許請求の範囲】[Claims] (1)圧電セラミックスと電極からなるセラミック圧電
素子に於いて、前記圧電セラミックスが、結晶粒径が平
均で1.0μm以下のペロブスカイト型構造材料からな
ることを特徴とするセラミック圧電素子。
(1) A ceramic piezoelectric element consisting of a piezoelectric ceramic and an electrode, wherein the piezoelectric ceramic is made of a perovskite-type structure material with an average crystal grain size of 1.0 μm or less.
(2)圧電セラミックスの結晶粒径が平均で0.6μm
以下であることを特徴とする請求項1記載のセラミック
圧電素子。
(2) The average crystal grain size of piezoelectric ceramics is 0.6 μm
The ceramic piezoelectric element according to claim 1, characterized in that:
(3)圧電セラミックスの分極処理方法に於いて、摂氏
でキュリー点の2/5以上でかつキュリー点以下の温度
で分極することを特徴とする圧電セラミックスの分極処
理方法。
(3) A method for polarizing piezoelectric ceramics, characterized in that polarization is performed at a temperature of 2/5 or more of the Curie point and below the Curie point in degrees Celsius.
(4)摂氏でキュリー点の2/5以上でかつキュリー点
の3/5以下の温度で分極処理することを特徴とする請
求項3記載の圧電セラミックスの分極処理方法。
(4) The method for polarizing piezoelectric ceramics according to claim 3, characterized in that the polarization treatment is carried out at a temperature of 2/5 or more of the Curie point and 3/5 or less of the Curie point in degrees Celsius.
(5)摂氏でキュリー点の1/2以上でかつキュリー点
の3/5以下であることを特徴とする請求項3記載の圧
電セラミックスの分極処理方法。
(5) The method for polarizing piezoelectric ceramics according to claim 3, characterized in that the temperature is 1/2 or more of the Curie point and 3/5 or less of the Curie point in degrees Celsius.
(6)圧電セラミックスの結晶粒径が平均で1.0μm
以下であることを特徴とする請求項3記載の圧電セラミ
ックスの分極処理方法。
(6) The average crystal grain size of piezoelectric ceramics is 1.0 μm
The method for polarizing piezoelectric ceramics according to claim 3, characterized in that:
(7)分極処理温度が摂氏でキュリー点の1/2以上で
かつ3/5以下であり、さらに圧電セラミックスがPb
(Zn_1_/_3Nb_2_/_3)O_3−Pb(
Sn_1_/_3Nb_2_/_3)O_3−PbTi
O_3−PbZrO_3系の組成からなるペロブスカイ
ト型構造材料であることを特徴とする請求項3記載の圧
電セラミックスの分極処理方法。
(7) The polarization temperature is 1/2 or more and 3/5 or less of the Curie point in degrees Celsius, and the piezoelectric ceramic is Pb
(Zn_1_/_3Nb_2_/_3)O_3-Pb(
Sn_1_/_3Nb_2_/_3)O_3-PbTi
4. The method for polarizing piezoelectric ceramics according to claim 3, wherein the material is a perovskite structure material having a composition of O_3-PbZrO_3 system.
JP63291166A 1988-11-17 1988-11-17 Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic Pending JPH02137283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291166A JPH02137283A (en) 1988-11-17 1988-11-17 Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291166A JPH02137283A (en) 1988-11-17 1988-11-17 Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic

Publications (1)

Publication Number Publication Date
JPH02137283A true JPH02137283A (en) 1990-05-25

Family

ID=17765301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291166A Pending JPH02137283A (en) 1988-11-17 1988-11-17 Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JPH02137283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149059A (en) * 1990-10-09 1992-05-22 Shizuoka Univ Ceramic piezoelectric body
JPH04349164A (en) * 1991-05-23 1992-12-03 Matsushita Electric Ind Co Ltd Piezoelectric ceramics and production thereof
JPH06112542A (en) * 1992-08-12 1994-04-22 Daishinku Co Piezoelectric ceramic, its manufacture, ceramic vibrator, and piezoelectric transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149059A (en) * 1990-10-09 1992-05-22 Shizuoka Univ Ceramic piezoelectric body
JPH04349164A (en) * 1991-05-23 1992-12-03 Matsushita Electric Ind Co Ltd Piezoelectric ceramics and production thereof
JPH06112542A (en) * 1992-08-12 1994-04-22 Daishinku Co Piezoelectric ceramic, its manufacture, ceramic vibrator, and piezoelectric transformer

Similar Documents

Publication Publication Date Title
Feldman Formation of thin films of BaTiO3 by evaporation
JP3259678B2 (en) Piezoelectric ceramic composition
JP3282576B2 (en) Piezoelectric ceramic composition
JPH11228227A (en) Piezoelectric ceramic composition
JP3228175B2 (en) Piezoelectric ceramic composition
JP3654408B2 (en) Piezoelectric ceramic composition
JPH02137283A (en) Ceramic piezoelectric element and polarization processing method of piezoelectric ceramic
JP2884635B2 (en) Piezoelectric ceramics and method of manufacturing the same
JP2884631B2 (en) Piezoelectric ceramics and manufacturing method thereof
JP3781317B2 (en) Piezoelectric ceramic material
US3542683A (en) Piezoelectric ceramic compositions
JPH0517216A (en) Piezoelectric ceramics
US3583916A (en) Piezoelectric ceramic composition
JPH0555661A (en) Manufacture of piezoelectric porcelain
JPH02174276A (en) Piezoelectric porcelain material
JPH04224168A (en) Piezoelectric ceramic composition
JPH01264962A (en) Pyroelectric porcelain material and its production
JPS61236176A (en) Piezoelectric ceramics composition
JPH0616473A (en) Piezoelectric porcelain composition
JPH02184574A (en) Production of ceramics
JPH0383855A (en) Production of barium titanate-based semiconductor porcelain
JPH02258662A (en) Piezoelectric porcelain composition
JPH03115167A (en) Piezoelectric ceramics
JPH05175007A (en) Manufacture of semiconductor porcelain component
JPS624874B2 (en)