JPH0497137A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0497137A
JPH0497137A JP2212999A JP21299990A JPH0497137A JP H0497137 A JPH0497137 A JP H0497137A JP 2212999 A JP2212999 A JP 2212999A JP 21299990 A JP21299990 A JP 21299990A JP H0497137 A JPH0497137 A JP H0497137A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
counter electrode
driving electrode
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2212999A
Other languages
Japanese (ja)
Inventor
Masafumi Hoshino
雅文 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2212999A priority Critical patent/JPH0497137A/en
Publication of JPH0497137A publication Critical patent/JPH0497137A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce capacity formed between a driving electrode and a counter electrode and reduce the current consumption by removing the part of the wiring pattern of the counter electrode which overlaps with the driving electrode so that part of it is left. CONSTITUTION:Plural picture element electrodes 2 are formed on a substrate 1 by depositing, for example, I.T.O., etc., by sputtering and etching it. Then a nonlinear resistance film 4 and the driving electrode 3 are deposited successively in this order and etched continuously in a single mask process. The counter electrode 5 is also formed by depositing I.T.O., etc., by sputtering and etching it selectively. At this time, part 5a of the pattern of the counter electrode 5 consisting of a transparent conductive film facing the driving electrode 3 is removed. Consequently, the parasitic capacity between the driving electrode 3 and counter electrode 5 decreases and the power consumption of a liquid crystal panel is reducible.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は計測器の表示パネル、パソコンの画像表示装置
、液晶テレビなどの液晶表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a display panel for a measuring instrument, an image display device for a personal computer, a liquid crystal display device for a liquid crystal television, and the like.

〔発明の概要〕[Summary of the invention]

本発明は、画素電極と駆動用電極間に非線形抵抗膜を設
けた二端子素子を用いた液晶表示装置において、前記駆
動用電極に対向する透明基板上の透明電極の一部分がか
けていることにより液晶パネルの寄生容量が少なくなり
消費電流が減少することを目的としている。
The present invention provides a liquid crystal display device using a two-terminal element in which a nonlinear resistance film is provided between a pixel electrode and a drive electrode, in which a portion of the transparent electrode on a transparent substrate facing the drive electrode is covered. The purpose is to reduce the parasitic capacitance of the liquid crystal panel and reduce current consumption.

〔従来の技術〕[Conventional technology]

小型、軽量、薄型、低消費電力の表示装置として、液晶
表示装置は他の表示装置と比へて優位性を持ち、近年実
用化が進められて来ている。液晶表示装置の表示情報量
の増大化を図る目的で薄膜トランジスタなどの三端子ア
クティツマトリクス液晶表示装置や、ZnOバリスタや
金属−絶縁膜金属構造からなるいわゆるMTM形非形影
線形抵抗素子縁膜部にSiリンチな窒化膜や酸化膜など
を用いた非線形抵抗素子などの二端子アクティブマトリ
クス液晶表示装置が研究されている。
2. Description of the Related Art Liquid crystal display devices have advantages over other display devices as small, lightweight, thin, and low power consumption display devices, and have been put into practical use in recent years. In order to increase the amount of information displayed on liquid crystal display devices, we are using three-terminal active matrix liquid crystal display devices such as thin film transistors, ZnO varistors, and so-called MTM type non-shape linear resistor elements consisting of metal-insulating film metal structures. Two-terminal active matrix liquid crystal display devices such as nonlinear resistance elements using silicon nitride films, oxide films, and the like are being researched.

一端子素子は、三端子素子と比較して、形成膜数が少な
く、パターニング精度はかなり粗くてよいなどの特徴が
あり、低コスト、大面積表示装置への応用が可能である
Compared to three-terminal devices, one-terminal devices have features such as a smaller number of formed films and relatively rough patterning accuracy, and can be applied to low-cost, large-area display devices.

第3図は非線形抵抗素子を用いた二端子アクテイブマト
リクス液晶表示装置のX−Yマトリクスパネル回路図で
ある。行液晶駆動電極31と列液晶駆動電極32は基板
及び対向基板にそれぞれ通常100〜1000本程形成
される。X−Y交差部には液晶33と非線形抵抗素子3
4が形成される。第2図は非線形抵抗素子として、Si
リッチな窒化シリコン膜などを用いた二端子素子の正面
図と断面図である。
FIG. 3 is an X-Y matrix panel circuit diagram of a two-terminal active matrix liquid crystal display device using nonlinear resistance elements. Usually about 100 to 1000 row liquid crystal drive electrodes 31 and column liquid crystal drive electrodes 32 are formed on each of the substrate and the counter substrate. A liquid crystal 33 and a nonlinear resistance element 3 are placed at the X-Y intersection.
4 is formed. Figure 2 shows Si as a nonlinear resistance element.
FIG. 2 is a front view and a cross-sectional view of a two-terminal device using a rich silicon nitride film or the like.

一方の透明基板上に画素電極2 (1,T、 ○)を選
択的に形成した後、非線形抵抗膜4 (窒化ンリコン)
と駆動電極3(Cr)(第3図の行液晶駆動電極31に
対応する)を堆積し、それぞれを選択的にエツチングし
た構造になっている。
After selectively forming a pixel electrode 2 (1, T, ○) on one transparent substrate, a nonlinear resistance film 4 (nitride silicon) is formed.
and a drive electrode 3 (Cr) (corresponding to the row liquid crystal drive electrode 31 in FIG. 3) are deposited and each is selectively etched.

もう一方の基板上には、透明導電膜で形成された対向電
極5 (第3図の列液晶駆動電極32に対応する)が形
成されている。
On the other substrate, a counter electrode 5 (corresponding to the column liquid crystal drive electrode 32 in FIG. 3) made of a transparent conductive film is formed.

この様な液晶表示装置の駆動は次のように行う。Driving of such a liquid crystal display device is performed as follows.

第3図の多数の行電極31を一本ずつ上の方から線順次
に選択し、その選択期間内に列電極32によってデータ
を書き込む。このとき十分なコントラストで表示が行え
るためには、選択点での液晶に印加される実効電圧が液
晶の飽和電圧よりも大きいこと、非選択点での液晶に印
加される実効電圧が液晶のしきい値電圧よりも小さいこ
とが必要である。非線形抵抗膜を用いると、選択点では
書き込み時(高電圧印加時)には非線形抵抗膜24の抵
抗が低くなり、液晶33に電荷が注入されやす(なり、
保持期間(低電圧印加時)には、非線形抵抗膜24の抵
抗が高くなり、液晶33に注入された電荷が保持されや
すくなる。こうして液晶33に印加される実効電圧を高
く保つことができる。また、非選択時では書き込み時に
非線形抵抗膜24の抵抗はそれ程低くならず液晶33に
はあまり電荷は注入されない。よって液晶33に印加さ
れる実効電圧は比較的小さく抑えられることになり、分
割数はかなり大きくしても高いコントラストを保てる。
A large number of row electrodes 31 in FIG. 3 are selected line-sequentially from the top one by one, and data is written using the column electrodes 32 within the selection period. In order to display with sufficient contrast at this time, the effective voltage applied to the liquid crystal at the selected point must be greater than the saturation voltage of the liquid crystal, and the effective voltage applied to the liquid crystal at non-selected points must be higher than the saturation voltage of the liquid crystal. It needs to be smaller than the threshold voltage. When a nonlinear resistance film is used, the resistance of the nonlinear resistance film 24 becomes low at the selection point during writing (when high voltage is applied), and charges are easily injected into the liquid crystal 33.
During the holding period (when low voltage is applied), the resistance of the nonlinear resistance film 24 becomes high, and the charges injected into the liquid crystal 33 are easily held. In this way, the effective voltage applied to the liquid crystal 33 can be kept high. Furthermore, when not selected, the resistance of the nonlinear resistance film 24 does not decrease so much during writing, and not much charge is injected into the liquid crystal 33. Therefore, the effective voltage applied to the liquid crystal 33 can be kept relatively small, and high contrast can be maintained even if the number of divisions is considerably large.

非線形抵抗素子においては、書き込み期間、保持期間そ
れぞれの期間に、非線形抵抗膜が所望の抵抗値になるよ
うに膜の組成や構造を決定する。また、このような液晶
表示装置で表示を行うにあたって、十分な駆動マージン
を得るためには、各々の画素における液晶部の容量CL
Cと、非線形抵抗素子部の容量CIとの比を十分大きく
することも必要である。(最低でもCLC/CI≧5) 〔発明が解決しようとする課題〕 単純マトリクスパネルにおいては分割数によって最適バ
イアス電圧下+ 1)が決まるが、二端子素子を用いた
パネルでは、二端子素子の特性によりバイアスが決まり
、通常は単純マトリクスパネルに比べ大きくなる。この
ため非選択時に液晶パネルにかかる電圧が高くなり消費
電流が増える。
In the nonlinear resistance element, the composition and structure of the nonlinear resistance film are determined so that the nonlinear resistance film has a desired resistance value during each of the writing period and the holding period. In addition, in order to obtain a sufficient drive margin when displaying with such a liquid crystal display device, it is necessary to increase the capacitance CL of the liquid crystal section in each pixel.
It is also necessary to make the ratio between C and the capacitance CI of the nonlinear resistance element section sufficiently large. (At least CLC/CI≧5) [Problem to be solved by the invention] In a simple matrix panel, the optimum bias voltage (+1) is determined by the number of divisions, but in a panel using two-terminal elements, the The characteristics determine the bias, which is usually larger than that of a simple matrix panel. Therefore, the voltage applied to the liquid crystal panel increases when it is not selected, increasing current consumption.

また、画素ごとに考えると二端子素子側のパターンは約
10%が駆動用電極、90%が画素電極であり対向電極
との間に液晶を挟んで容量となっている。非選択時には
駆動用電極にはバイアス電圧がかかり、画素電極にはバ
イアス電圧÷容量比(CLC/CI =10)がかかり
、この時流れる電流は2πfCV(A)となり、駆動用
電極と画素電極とでは、容量が1=9で、電圧が10:
1なので約1:1で消費されている。
Furthermore, considering each pixel, the pattern on the two-terminal element side is about 10% driving electrodes, 90% pixel electrodes, and a capacitor with liquid crystal sandwiched between them and the counter electrode. When not selected, a bias voltage is applied to the drive electrode, and a bias voltage divided by capacitance ratio (CLC/CI = 10) is applied to the pixel electrode, and the current flowing at this time is 2πfCV (A), and the voltage between the drive electrode and the pixel electrode is Then, the capacity is 1=9 and the voltage is 10:
1, so it is consumed at a ratio of approximately 1:1.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記問題点を解決するために、対向電極の配線
パターンのうら一部を残して駆動用電極と重なる部分を
一部取り去る構造とした。
In order to solve the above-mentioned problems, the present invention adopts a structure in which a part of the wiring pattern of the counter electrode is left behind, and a part of the wiring pattern overlapping with the driving electrode is removed.

〔作 用〕[For production]

上記構造とすることにより、駆動用電極と対向電極との
間にできる容量を少なくして消費電流を低減したもので
ある。
With the above structure, the capacitance formed between the driving electrode and the counter electrode is reduced, thereby reducing current consumption.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。第1
図は本発明の実施例を示す図である。第1図において基
板lの上に複数個の画素電極2が形成されている。これ
は、例えばl T、0.などをスパッタ法などによって
堆積し、選択的にエツチングすることによって形成でき
る。次に非線形抵抗膜4 (例えばSiリッチな5iN
x)と駆動用電極3 (例えばCr)をこの順に連続的
に堆積し、−回のマスク工程で連続的にエツチングする
。また、対向電極5も同様に1.T、O,などをスパッ
タ法などによって堆積し、選択的にエフチングすること
によって形成できる。この時、駆動用電極3と向かい合
った透明導電膜よりなる対向電極5のパターンの一部5
aを取り除いた形状とすることにより駆動用電極3と対
向電極5の間の寄生容量が減少する。第1図の場合はラ
インの両端を残して中央部分を取り除いたものであるが
、片側を残して取り除いた場合も同様である。
Embodiments of the present invention will be described below based on the drawings. 1st
The figure shows an embodiment of the present invention. In FIG. 1, a plurality of pixel electrodes 2 are formed on a substrate l. This is for example l T, 0. It can be formed by depositing such as by sputtering method or the like and selectively etching it. Next, a nonlinear resistive film 4 (for example, Si-rich 5iN
x) and the driving electrode 3 (for example, Cr) are successively deposited in this order and successively etched in - mask steps. Further, the counter electrode 5 is also 1. It can be formed by depositing T, O, etc. by sputtering or the like and selectively etching it. At this time, part 5 of the pattern of the counter electrode 5 made of a transparent conductive film facing the drive electrode 3
By removing the letter a, the parasitic capacitance between the driving electrode 3 and the counter electrode 5 is reduced. In the case of FIG. 1, both ends of the line are left and the central part is removed, but the same applies if one side is left and removed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、工程を増やすこと
なくマスクの形状を変えるだけで液晶パネルの消費電流
を約4割程度減少することができる。また、ラインの両
端を残して中央部分を取り除いた場合は、マスクキズ、
ゴミ等によるパターニング不良の発生率も従来の画素パ
ターンと同等である。
As explained above, according to the present invention, the current consumption of the liquid crystal panel can be reduced by about 40% by simply changing the shape of the mask without increasing the number of steps. Also, if you remove the center part while leaving both ends of the line, mask scratches,
The incidence of patterning defects due to dust etc. is also the same as that of conventional pixel patterns.

3図は非線形抵抗素子を用いた二端子アクティブマトリ
クス液晶表示装置のX−Yマトリクスパネル回路図であ
る。
FIG. 3 is an X-Y matrix panel circuit diagram of a two-terminal active matrix liquid crystal display device using nonlinear resistance elements.

1 ・ ・ 2 ・ ・ 3 ・ ・ 4 ・ ・ 5 ・ ・ 6 ・ ・ 33・ ・ 34・ ・ 基板 画素電極 駆動用電極 非線形抵抗膜 対向電極 液晶 行液晶駆動用電極 列液晶駆動用電極 液晶 非線形抵抗素子1 ・・ 2・・・ 3 ・・ 4 ・・ 5 ・・ 6 ・・ 33・・ 34・・ substrate pixel electrode Drive electrode nonlinear resistive film Counter electrode liquid crystal Row liquid crystal drive electrode Column liquid crystal drive electrode liquid crystal nonlinear resistance element

【図面の簡単な説明】[Brief explanation of drawings]

第1図(δ1.(blはそれぞれ本発明の実施例を示す
平面、I−I断面図、第2図181. fb)はそれぞ
れ従来の画素パターンを示す平面、n−n断面図、第出
願人 セイコー電子工業株式会社
Fig. 1 (δ1. (bl) is a plane and I-I sectional view showing the embodiment of the present invention, and Fig. 2 (181. fb) is a plane and nn sectional view showing the conventional pixel pattern, respectively. People Seiko Electronics Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 透明基板上に複数の画素電極を有し、非線形抵抗膜、駆
動用電極などからなる二端子素子を用いた液晶表示装置
において、駆動用電極が形成された基板と対向する対向
基板上の透明電極は、前記駆動用電極に対向した部分の
一部分がかけていることを特徴とする液晶表示装置。
In a liquid crystal display device that has a plurality of pixel electrodes on a transparent substrate and uses a two-terminal element consisting of a nonlinear resistive film, a driving electrode, etc., the transparent electrode is on a counter substrate that faces the substrate on which the driving electrode is formed. The liquid crystal display device is characterized in that a portion of the portion facing the driving electrode is covered.
JP2212999A 1990-08-09 1990-08-09 Liquid crystal display device Pending JPH0497137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212999A JPH0497137A (en) 1990-08-09 1990-08-09 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212999A JPH0497137A (en) 1990-08-09 1990-08-09 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0497137A true JPH0497137A (en) 1992-03-30

Family

ID=16631804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212999A Pending JPH0497137A (en) 1990-08-09 1990-08-09 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0497137A (en)

Similar Documents

Publication Publication Date Title
US8797252B2 (en) Liquid crystal display apparatus and method for generating a driver signal based on resistance ratios
JPH01267618A (en) Thin-film transistor driving type liquid crystal display element
JPS6238709B2 (en)
JP2630663B2 (en) Electro-optical device
EP0182484B1 (en) Liquid crystal display device
JPH0497137A (en) Liquid crystal display device
JPH04104129A (en) Two-terminal element
JPH03210534A (en) Two-terminal element
JPH05216067A (en) Thin-film transistor array
EP0461648B1 (en) Metal-insulator-metal type matrix liquid cristal display free from image sticking
JPH0346626A (en) Two-terminal element
JPH0324527A (en) Liquid crystal display device
JP2654644B2 (en) Horizontal two-terminal element
JPH02300724A (en) Two-terminal element
JP2547118B2 (en) Electro-optical device
JPH03210532A (en) Two-terminal element
JPS61290491A (en) Matrix type display unit
JPS6223019A (en) Liquid crystal display device
JPH04293017A (en) Liquid crystal display device
JP2976346B2 (en) Active matrix type liquid crystal display
JP2626923B2 (en) Driving method of electro-optical device
JP2775892B2 (en) Two-terminal element type liquid crystal display
JPH03283469A (en) Liquid crystal display
JPH0293433A (en) Liquid crystal display device
JP3054507B2 (en) Liquid crystal display