JPH0496338A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0496338A
JPH0496338A JP21461090A JP21461090A JPH0496338A JP H0496338 A JPH0496338 A JP H0496338A JP 21461090 A JP21461090 A JP 21461090A JP 21461090 A JP21461090 A JP 21461090A JP H0496338 A JPH0496338 A JP H0496338A
Authority
JP
Japan
Prior art keywords
electrode
gate
source
gate electrode
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21461090A
Other languages
Japanese (ja)
Inventor
Hisao Kawasaki
久夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21461090A priority Critical patent/JPH0496338A/en
Publication of JPH0496338A publication Critical patent/JPH0496338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To enable a saturated drain current to be controlled precisely with a good repeatability and to reduce a gate and source resistance remarkably, by performing a recess etching while monitoring the saturated drain current. CONSTITUTION:After a buffer layer 101 of high purity and an activated layer 102 are laminated on a substrate 100 in succession, a metallic film for forming an ohmic contact is deposited. Further, a heat treatment is performed, and a base material 11S for a source electrode and a base material 11D for a drain electrode are formed. Then, after applying a resist film 12 thereto extensively, a through hole 13 of T-shape in section is formed in the resist film 12. Further, a recess etching is applied to the activated layer 102 via the through hole 13, while monitoring a saturated drain current. Continually, a metallic film for a gate electrode is deposited extensively, and a metallic film 14b in the through hole 13 and a metallic film 14a on the resist film 12 are provided. Then, by a lift-off method, the metallic film 14a on the resist film 12 and the resist film 12 itself are removed, and thereby, a gate electrode 14b of T-shape in section is formed. Continuously, a metallic film 15 for forming an ohmic contact is deposited, and after performing a heat treatment, a source electrode 16S and a drain electrode 16D are formed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電極の形成方法を改良した半導体装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device in which a method for forming electrodes is improved.

(従来の技術) ■−■族化合物半導体を用いた電界効果型トランジスタ
(F E T)あるいは高電子移動度トランジスタ(H
EMT)は、優れたマイクロ波特性を有しマイクロ波帯
域で動作する半導体装置として広く実用化されている。
(Prior art) Field effect transistor (FET) or high electron mobility transistor (H
EMT) has been widely put into practical use as a semiconductor device that has excellent microwave characteristics and operates in the microwave band.

これらFETあるいはH、E M Tのマイクロ波特性
をより向上させるためには、ゲート長を短くすると同時
にゲート抵抗やソース抵抗などの寄生抵抗を小さくする
。ことが重要である。
In order to further improve the microwave characteristics of these FETs, H, and EMTs, the gate length is shortened and parasitic resistances such as gate resistance and source resistance are reduced. This is very important.

現行のFET製造方法を、第2図に示す工程図を参照し
て例示すると、第2図(a)に示すように、半絶縁性G
 a A、、s基板100上に高純度のバッファ層10
1、活性層102 を例えばエピタキシャル成長法で順
次積層した後、オーミック接触形成用金属膜、例えばA
uGe/Niを蒸着し、熱処理を施し前記活性層102
とオーミック接触をなすソース電極103S、 ドレイ
ン電極103Dを形成する1次に、第2図(b)で示す
ようにレジスト膜104を全面に塗布した後。
To illustrate the current FET manufacturing method with reference to the process diagram shown in FIG. 2, as shown in FIG. 2(a), semi-insulating G
a High purity buffer layer 10 on the substrate 100
1. After sequentially stacking the active layer 102 by, for example, an epitaxial growth method, a metal film for forming an ohmic contact, for example, A
uGe/Ni is deposited and heat treated to form the active layer 102.
After forming a source electrode 103S and a drain electrode 103D which make ohmic contact with the resist film 103D, a resist film 104 is applied to the entire surface as shown in FIG. 2(b).

所定のパターンに従ってレジスト膜104に透孔105
を形成し、この透孔104を通して活性層102の、リ
セスエッチングを施す、このリセスエッチングは、FE
Tの飽和ドレイン電流を制御する目的で行なわれ、リセ
スエッチングの際ソース電極103S、ドレイン電極1
03Dとでドレイン電流をモニタすることによって、精
度良く飽和ドレイン電流を制御できる0次に、ゲート電
極用金属膜、例えばAQを全面に蒸着し、 リフトオフ
法によりレジスト膜104上の金属膜部分及びレジ゛ス
ト膜104を除去することによりゲート電極106が形
成され、第2図(C)に示すようなFETが形成される
Holes 105 are formed in the resist film 104 according to a predetermined pattern.
The active layer 102 is recessed through the through hole 104. This recess etching is performed using FE.
This is performed for the purpose of controlling the saturated drain current of T, and during recess etching, the source electrode 103S and the drain electrode 1
By monitoring the drain current with 03D, the saturated drain current can be controlled with high precision. Next, a metal film for the gate electrode, for example AQ, is deposited on the entire surface, and the metal film portion on the resist film 104 and the resist are removed by a lift-off method. By removing the resist film 104, a gate electrode 106 is formed, and an FET as shown in FIG. 2(C) is formed.

このFETでは、飽和ドレイン電流の制御が容易に行え
る反面、以下に記す問題がある。すなわち、FETのマ
イクロ波特性を向上させるには、ゲート長を短縮しゲー
ト容量の低減を図る必要がある。しかしながら、ゲート
長を短縮することによってゲート電極106の断面積が
減少し、ゲート抵抗の増大をきたしてしまう。特にゲー
ト長を0.26μm以下にまで短縮すると、 ゲート抵
抗が著しく増大してしまうため、マイクロ波特性の向上
は望めない、一方、ソース抵抗はソース・ゲート電極間
の活性層102の抵抗でほぼ決まるため、ソース抵抗を
低減させるにはソース・ゲート電極間隔を可能なかぎり
短縮することが望ましい、しかもソース、ゲート電極間
のばらつきでソース抵抗が変動するため、ソース電極1
035とゲート電極106には高い重ね合わせ精度が要
求される。
Although this FET can easily control the saturated drain current, it has the following problems. That is, in order to improve the microwave characteristics of the FET, it is necessary to shorten the gate length and reduce the gate capacitance. However, by shortening the gate length, the cross-sectional area of the gate electrode 106 decreases, resulting in an increase in gate resistance. In particular, if the gate length is shortened to 0.26 μm or less, the gate resistance increases significantly, so no improvement in microwave characteristics can be expected.On the other hand, the source resistance is the resistance of the active layer 102 between the source and gate electrodes. Therefore, in order to reduce the source resistance, it is desirable to shorten the distance between the source and gate electrodes as much as possible.Moreover, since the source resistance fluctuates due to variations between the source and gate electrodes,
035 and the gate electrode 106 are required to have high overlay accuracy.

上記問題を解決する方法としては、ゲート電極106の
断面形状をT字型とすることによって、ゲート長を短く
しかつゲート抵抗の低減を図り、更にソース抵抗の低減
を図るためにゲート電極106とソース電極103Sと
をセルフアライメント方式で形成するFETが提案され
ている。かかるFETの製造方法を第3図を参照して説
明する。まず、第3図(a)に示すように、半絶縁性G
aAs基板100上に高純度のバッファ層101、活性
層102.レジスト膜104を順次積層した後、同図(
b)の如くレジスト膜104に上部が広く下部が狭まっ
た透孔105を形成し、この透孔105を通して活性層
102を活性層の厚み及びキャリア濃度をもとに予め決
められた深さまでリセスエッチングする0次に、ゲート
電極用金属膜を全面に蒸着し、リフトオフ法によりレジ
スト膜104上の金属膜及びレジスト膜104を除去す
ることによって第3図(C)に示すようなT字型の断面
形状を有するゲート電極(基体)116を形成する6次
に、ゲート電極116をマスクとしてオーミック接触形
成用金属膜103を蒸着し熱処理を施してソース電極L
O3S、 ドレイン電極103Dを形成し。
A method for solving the above problem is to shorten the gate length and reduce gate resistance by making the cross-sectional shape of the gate electrode 106 T-shaped, and to further reduce the source resistance, the gate electrode 106 is An FET in which the source electrode 103S is formed using a self-alignment method has been proposed. A method for manufacturing such an FET will be explained with reference to FIG. First, as shown in FIG. 3(a), a semi-insulating G
A high purity buffer layer 101, an active layer 102 . After sequentially stacking the resist films 104, the same figure (
As shown in b), a through hole 105 which is wide at the top and narrow at the bottom is formed in the resist film 104, and the active layer 102 is recessed through this hole 105 to a predetermined depth based on the thickness and carrier concentration of the active layer. Next, a metal film for the gate electrode is deposited on the entire surface, and the metal film on the resist film 104 and the resist film 104 are removed by a lift-off method to form a T-shaped cross section as shown in FIG. Next, using the gate electrode 116 as a mask, a metal film 103 for forming an ohmic contact is deposited and heat-treated to form the source electrode L.
O3S, forming a drain electrode 103D.

また上記オーミック接触形成用金属膜のうち、ゲート電
極116上に蒸着した該金属膜部103はそのままでゲ
ート電極106を構成することにより第3図(d)に示
すようなFETが形成される。このFET構造では、ゲ
ート電極107の断面形状をT字型とすることによって
ゲート電極の断面積が増すため、ゲート長を短く形成し
てもゲート抵抗の増大を抑えることができ、またソース
・ゲート電極間隔がゲート電極形状で一義的に決められ
るため、ウェーハ面内のソース抵抗のばらつきが小さく
、しかもゲート・ソース間隔を短く形成することが可能
であるため、ソース抵抗の低減にも有効な構造である。
Further, among the metal films for forming ohmic contact, the metal film portion 103 deposited on the gate electrode 116 forms the gate electrode 106 as it is, thereby forming an FET as shown in FIG. 3(d). In this FET structure, by making the cross-sectional shape of the gate electrode 107 T-shaped, the cross-sectional area of the gate electrode increases, so even if the gate length is shortened, an increase in gate resistance can be suppressed. Since the electrode spacing is uniquely determined by the gate electrode shape, variations in source resistance within the wafer surface are small, and the gate-source spacing can be formed short, making this structure effective for reducing source resistance. It is.

第3図に示したFETの製造方法によれば、リセスエッ
チングの深さはソース・ドレイン間の電流をモニタする
ことができないため、活性層102のキャリア濃度、膜
厚の情報をもとに所定の飽和ドレイン電流が得られるよ
うに決定しなければならない、しかしながら、エツチン
グレートの変動。
According to the FET manufacturing method shown in FIG. 3, the depth of recess etching is determined based on information about the carrier concentration and film thickness of the active layer 102, since the current between the source and drain cannot be monitored. However, the variation in etching rate must be determined so that a saturated drain current of is obtained.

結晶成長の不安定性に起因するウェーハ間のキャリア濃
度、膜厚のばらつき等を考慮した場合。
When considering variations in carrier concentration and film thickness between wafers due to instability of crystal growth.

FETの飽和ドレイン電流を再現性良く精密に制御する
ことは極めて困難である。
It is extremely difficult to precisely control the saturation drain current of an FET with good reproducibility.

(発明が解決しようとする課題) 以上述べたように従来のFET構造ではゲート抵抗、ソ
ース抵抗の低減を図りかつ飽和ドレイン電流を再現性良
く精密に制御することが極めて困難であった0本発明は
、この様な欠点を解消し。
(Problems to be Solved by the Invention) As described above, with the conventional FET structure, it is extremely difficult to reduce the gate resistance and source resistance and precisely control the saturation drain current with good reproducibility. eliminates such shortcomings.

ゲート抵抗、ソース抵抗を共に低減でき、しかも飽和ド
レイン電流を再現性良く精密に制御できる半導体装置の
製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can reduce both gate resistance and source resistance, and can precisely control saturation drain current with good reproducibility.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る半導体装置の製造方法は、化合物半導体基
板上にソース電極およびドレイン電極形成する工程と、
前記化合物半導体基板上の前記ソース電極とトレイン電
極との間のゲート電極形成予定域にリセスエッチングを
施す工程と、前記リセス内に下面で接する断面T字型の
ゲート電極を形成する工程と、前記ソース電極及びドレ
イン電極を含む領域に前記ゲート電極をマスクとしてオ
ーミック接触形成用金属膜を蒸着し新たなソース電極及
びドレイン電極を形成する工程とを含むことを特徴とす
る。
(Means for Solving the Problems) A method for manufacturing a semiconductor device according to the present invention includes a step of forming a source electrode and a drain electrode on a compound semiconductor substrate;
a step of performing recess etching on a region where a gate electrode is to be formed between the source electrode and the train electrode on the compound semiconductor substrate; a step of forming a gate electrode having a T-shaped cross section in contact with the lower surface in the recess; The method is characterized by including a step of depositing a metal film for forming an ohmic contact in a region including the source electrode and drain electrode using the gate electrode as a mask to form a new source electrode and drain electrode.

(作 用) 本発明に係る半導体装置の製造方法においては、飽和ド
レイン電流をモニタしながらリセスエッチングが行える
ため、再現性良く精密に飽和トレイン電流を制御するこ
とができ、しかもT字型の断面形状を有するゲート電極
上採用と、ソース電極とゲート電極とがセルフアライメ
ント方式で形成できるためゲート抵抗とソース抵抗の低
減を図ることができる。
(Function) In the method for manufacturing a semiconductor device according to the present invention, since recess etching can be performed while monitoring the saturated drain current, the saturated drain current can be precisely controlled with good reproducibility. Since the gate electrode has a shape and the source electrode and gate electrode can be formed in a self-alignment manner, gate resistance and source resistance can be reduced.

(実施例) 本発明の一実施例について図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

なお、説明において、従来と変わらない部分については
図面に従来と同じ番号をつけて示し、説明を省線する。
In addition, in the description, parts that are the same as in the prior art will be shown with the same numbers as in the conventional drawings, and the explanation will be omitted.

第1図(a)に示すように、半絶縁性GaAs基板10
0上に高純度のバッファ層101、活性層102を順次
積層した後、オーミック接触形成用金属膜例えばAuG
e/Niを蒸着し、熱処理を施しソース電極基体11S
、ドレイン電極基体110を形成する1次にレジスト[
12を全面に塗布した後、第1図(b)に示すように所
定のパターンに従ってレジスト膜12に断面形状がT字
型の透孔13を形成し、飽和ドレイン電流をモニタしな
から透孔13を通して活性層102にリセスエッチング
を施す、第2図を参照して従来例で述べたように、リセ
スエッチングの際ソース電極基体IIs、ドレイン電極
基体110で電流をモニタすることによって、精度良く
飽和ドレイン電流が制御できる。続いて、第1図(c)
に示すようにゲート電極用金属膜例えばAu / Pt
 / Tiを全面に蒸着を施し、前記透孔13内金属膜
14b、 レジスト1112上の金属膜部aを設ける。
As shown in FIG. 1(a), a semi-insulating GaAs substrate 10
After sequentially laminating a high-purity buffer layer 101 and an active layer 102 on the
e/Ni is deposited and heat treated to form the source electrode base 11S.
, the primary resist forming the drain electrode base 110 [
After coating the resist film 12 on the entire surface, a through hole 13 having a T-shaped cross section is formed in the resist film 12 according to a predetermined pattern as shown in FIG. 1(b). As described in the conventional example with reference to FIG. Drain current can be controlled. Next, Figure 1(c)
As shown in FIG.
/ Ti is vapor-deposited on the entire surface to provide the metal film 14b inside the through hole 13 and the metal film portion a on the resist 1112.

ついでリフトオフ法によりレジスト膜12上の金Jji
C1114a及びレジスト11fi+2を除去すること
により同図(d)に示すT字型の断面形状を有するゲー
ト電F@(基体)14bが形成される。ここでゲート電
極の断面形状をT字型とすることにより、ゲート電極の
断面積を大きく出来、ゲート長を短く形成してもゲート
抵抗の低減が図れる0次に、ゲート電F@(基体)14
bをマスクとしてオーミック接触形成用金属11[15
例えばAuGe/Niを蒸着し、熱処理を施す事によっ
て新たなソース電1i16s、 ドレイン電流160を
形成し、また上記オーミック接触形成用金属膜15のう
ち、ゲート電極上に蒸着した該金属膜部はそのままでゲ
ート電116Gを構成し第1図(e)に示すような構造
のFETが形成される。
Next, gold Jji on the resist film 12 is removed by a lift-off method.
By removing C1114a and the resist 11fi+2, a gate electrode F@(substrate) 14b having a T-shaped cross-sectional shape as shown in FIG. 3(d) is formed. Here, by making the cross-sectional shape of the gate electrode T-shaped, the cross-sectional area of the gate electrode can be increased, and the gate resistance can be reduced even if the gate length is shortened. 14
Ohmic contact forming metal 11 [15
For example, by depositing AuGe/Ni and performing heat treatment, a new source current 1i16s and drain current 160 are formed, and of the metal film 15 for forming an ohmic contact, the metal film portion deposited on the gate electrode is left as it is. The gate electrode 116G is configured using the steps shown in FIG.

第1図(e)においてソース電極165とゲート電極1
6Gとはセルフアライメントで形成できるため。
In FIG. 1(e), the source electrode 165 and the gate electrode 1
6G is because it can be formed by self-alignment.

ソース・ゲート電極間隔がグー1−形状により決まり、
しかも間隔を短く形成すことが可能であり。
The distance between the source and gate electrodes is determined by the shape,
Moreover, it is possible to form a short interval.

ソース抵抗のウェーハ面内ばらつきが小さく、かつソー
ス抵抗を低減することができる。
Variation in the source resistance within the wafer surface is small, and the source resistance can be reduced.

尚、本実施例ではオーミック接触形成用金属膜としてA
uGe/Niを使用する場合を説明したがオーミック接
触形成用金属膜はAuGe/Niに限られるものではな
く、例えばPt/AuGe、^U/^uGe等の金属膜
であって11構わない。
In this example, A is used as the metal film for forming ohmic contact.
Although the case where uGe/Ni is used has been described, the metal film for forming ohmic contact is not limited to AuGe/Ni, and may be a metal film such as Pt/AuGe, ^U/^uGe, etc.

(発明の効果) 以上述べたように本発明による半導体装置の製造方法で
は、飽和ドレイン電流をモニタしながらリセスエッチン
グが行えるため、エツチングレートの変動、ウェーハ間
のキャリア濃度、膜厚が多少ばらついても再現性良く精
密に飽和ドレイン電流を制御することができる。更に、
T字型の断面形状を有するゲート電極の採用と、ソース
電極とゲート電極とがセルフアライメント方式で形成で
きるため、ゲート抵抗とソース抵抗を著しく低減できる
という′R茗な効果がある。
(Effects of the Invention) As described above, in the method for manufacturing a semiconductor device according to the present invention, recess etching can be performed while monitoring the saturated drain current. It is also possible to precisely control the saturation drain current with good reproducibility. Furthermore,
Since the gate electrode has a T-shaped cross section and the source electrode and gate electrode can be formed in a self-alignment manner, there is an advantage that the gate resistance and the source resistance can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(Q)乃至第1図(、)は本発明の一実施例を工
程順に示すいずれも断面図、第2図(、l)乃至第2図
(C)、及び第3図(a)乃至第3図(d)は夫々従来
のFETの製造方法を工程順に示すいずれも断面図であ
る。 12・・レジスト膜      13・・・透孔15・
・・オーミック接触形成用金属膜16G・・・ゲート電
Fi165・・ソース電極16rl・・ドレイン電極 
   100・・・半導体基板代理人 弁理士 大 胡
 典 夫 15・ ★−−、フM触!V!銭珂1貞E1m屹16D
;ドレイン電1飄 フロSτソース囁」シ +6G + ケートta、。 第 図 (号の1) 11S; ソース4IL!VIL(基仁ト→+10:F
Lイレi書[澤ごi(」9イ1〈)12: Lリストア
1更 13:太孔 14b:(迷3したの)&A膿 (慢の1) 1041−)ス計 ハ東 逸3t、1 106二ケー計t& 第2図 (1の2) (yの1)
Figures 1 (Q) to 1 (,) are cross-sectional views showing one embodiment of the present invention in the order of steps, Figures 2 (, l) to 2 (C), and Figure 3 (a). ) to FIG. 3(d) are sectional views showing the conventional FET manufacturing method in the order of steps. 12...Resist film 13...Through hole 15.
...Metal film for ohmic contact formation 16G...Gate electrode Fi165...Source electrode 16rl...Drain electrode
100... Semiconductor substrate agent Patent attorney Nori Ogo 15 ★--, fu M touch! V! Qianke 1 Tei E1m 屹16D
;Drain electricity 1 air flow Sτ source whisper'shi + 6G + Kate ta,. Figure (Issue 1) 11S; Source 4IL! VIL (Kihito → +10:F
L Irei book [Sawagoi (''9i1〈) 12: L restore 1 change 13: Tai hole 14b: (I got lost 3) & A pus (arrogant 1) 1041-) Su total Ha Toitsu 3t, 1 106 2K total t & Figure 2 (1 of 2) (y of 1)

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体基板上にソース電極およびドレイン電極形
成する工程と、前記化合物半導体基板上の前記ソース電
極とドレイン電極との間のゲート電極形成予定域にリセ
スエッチングを施す工程と、前記リセス内に下面で接す
る断面T字型のゲート電極を形成する工程と、前記ソー
ス電極及びドレイン電極を含む領域に前記ゲート電極を
マスクとしてオーミック接触形成用金属膜を蒸着し新た
なソース電極及びドレイン電極を形成する工程とを含む
ことを特徴とする半導体装置の製造方法。
forming a source electrode and a drain electrode on a compound semiconductor substrate; etching a recess in a region where a gate electrode is to be formed between the source electrode and the drain electrode on the compound semiconductor substrate; A step of forming a contacting gate electrode with a T-shaped cross section, and a step of vapor depositing a metal film for forming an ohmic contact in a region including the source electrode and drain electrode using the gate electrode as a mask to form a new source electrode and drain electrode. A method for manufacturing a semiconductor device, comprising:
JP21461090A 1990-08-14 1990-08-14 Manufacture of semiconductor device Pending JPH0496338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21461090A JPH0496338A (en) 1990-08-14 1990-08-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21461090A JPH0496338A (en) 1990-08-14 1990-08-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0496338A true JPH0496338A (en) 1992-03-27

Family

ID=16658572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21461090A Pending JPH0496338A (en) 1990-08-14 1990-08-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0496338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141040A (en) * 2006-12-04 2008-06-19 Nec Corp Field effect transistor and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141040A (en) * 2006-12-04 2008-06-19 Nec Corp Field effect transistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4377899A (en) Method of manufacturing Schottky field-effect transistors utilizing shadow masking
JPH02271538A (en) Manufacture of semiconductor device
JPH08172102A (en) Manufacture of semiconductor device
JPH0496338A (en) Manufacture of semiconductor device
JPH0281441A (en) Manufacture of semiconductor device
JPS6057977A (en) Manufacture of shottky gate field effect transistor
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
JPS5852351B2 (en) Manufacturing method of semiconductor device
JPH02307232A (en) Manufacture of semiconductor device
JPS5947771A (en) Manufacture of semiconductor device
JPH01165126A (en) Manufacture of semiconductor device
JPS62115782A (en) Manufacture of semiconductor device
JPS5931073A (en) Manufacture of field effect transistor
JPH03268333A (en) Manufacture of semiconductor device
JPS59130481A (en) Schottky gate field effect transistor
JPH03196531A (en) Field-effect transistor and manufacture thereof
JPH011279A (en) semiconductor equipment
JPH02307231A (en) Manufacture of semiconductor device
JPH03233939A (en) Field-effect transistor and its manufacture
JPH02268445A (en) Manufacture of field effect transistor
JPH01107577A (en) Manufacture of field effect transistor
JPS5850434B2 (en) Method for manufacturing field effect transistors
JPH06140629A (en) Manufacture of field-effect transistor
JPH024137B2 (en)
KR930011290A (en) Manufacturing method of MESFET