JPH0496309A - Manufacture of surface reoxidation type semiconductor ceramic capacitor - Google Patents

Manufacture of surface reoxidation type semiconductor ceramic capacitor

Info

Publication number
JPH0496309A
JPH0496309A JP21463790A JP21463790A JPH0496309A JP H0496309 A JPH0496309 A JP H0496309A JP 21463790 A JP21463790 A JP 21463790A JP 21463790 A JP21463790 A JP 21463790A JP H0496309 A JPH0496309 A JP H0496309A
Authority
JP
Japan
Prior art keywords
layer
semiconductor ceramic
conductive paste
ceramic substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21463790A
Other languages
Japanese (ja)
Other versions
JPH07123096B2 (en
Inventor
Koichiro Tsujiku
浩一郎 都竹
Naoto Narita
直人 成田
Yasushi Inoue
泰史 井上
Yoichi Mizuno
洋一 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP21463790A priority Critical patent/JPH07123096B2/en
Publication of JPH0496309A publication Critical patent/JPH0496309A/en
Publication of JPH07123096B2 publication Critical patent/JPH07123096B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To make it possible to mass produce large-capacity surface reoxide type semiconductor ceramic capacitors without causing a decrease in reliability by forming first and second nonreducing conductive paste layers so that an oxide layer occurs in a region in contact with a semiconductor ceramic substrate. CONSTITUTION:A carbon powder layer 2 containing metals is formed on one of the main surfaces of a semiconductor ceramic substrate 1. Next, nonreducing conductive paste is applied in such a manner as to cover the carbon powder layer 2 containing metals, forming a first conductive paste layer. This is dried, and a first electrode layer 3 is formed. Nonreducing conductive paste is applied on the other main surface of the semiconductor ceramic substrate 1, forming a second conductive paste layer. This is dried, and a second electrode layer 4 is formed. Next, a reoxidizing and baking operation is performed, forming a reoxide layer 5 and first and second electrode 4a, 5a. The reoxide layer 5 is formed during the heating operation. The surface of the semiconductor ceramic substrate 1 which is not covered with the first and second electrode layers 3, 4 is oxidized by oxygen in an oxidizing atmosphere.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、表面再酸化型(S元再酸化型)半導体磁器コ
ンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a surface reoxidation type (S-reoxidation type) semiconductor ceramic capacitor.

[従来の技術] 典型的な表面再酸化型半導体磁器(セラミック)コンデ
ンサを製造する際には、磁器材料の成形体を大気中(酸
化性雰囲気)で焼結させた後に、N2 +H,の還元性
雰囲気中で還元処理(2゛cc半導器基体を得、1〜か
る後、再び酸化性雰囲気中で焼成することによって半導
体磁器基体の表面に10〜20μn〕程度の表面再酸化
層即ち誘電体層を形成し7、この誘電体層上に一対の金
属電極を設ける。
[Prior Art] When manufacturing a typical surface reoxidation type semiconductor ceramic capacitor, a molded body of ceramic material is sintered in the air (oxidizing atmosphere) and then reduced with N2 + H. A reduction treatment in an oxidizing atmosphere (a 2cc semiconductor substrate is obtained and then fired again in an oxidizing atmosphere to form a surface re-oxidation layer of about 10 to 20 μn on the surface of the semiconductor ceramic substrate), that is, a dielectric layer. A dielectric layer is formed 7, and a pair of metal electrodes are provided on the dielectric layer.

この種のコンデンサでは半導体磁器部分が等価的に電極
とし、て機能するので1.一方の金属電極と半導体磁器
部分との間に第1の容量が得られ、他方の金属電極と半
導体磁器部分との間に第2の容量が得られ、第1及び第
2の客先が直列接続される。この結果、静電容量の大幅
な増大が不可能になる。
In this type of capacitor, the semiconductor ceramic part functions equivalently as an electrode, so 1. A first capacitance is obtained between one metal electrode and the semiconductor porcelain part, a second capacitance is obtained between the other metal electrode and the semiconductor porcelain part, and the first and second customers are connected in series. Connected. As a result, a significant increase in capacitance is not possible.

上述のような問題を解決するために、研磨によって表面
再酸化層の一部を除去して半導体磁器部分を露出させ、
ここに一方の金属電極を設けることが提案されている。
In order to solve the above-mentioned problems, a part of the surface re-oxidation layer is removed by polishing to expose the semiconductor porcelain part.
It has been proposed to provide one metal electrode here.

これによれば、表面再酸化層の厚みを実効的に1/2に
したことになり、大きな容量が得られる。
According to this, the thickness of the surface reoxidation layer is effectively reduced to 1/2, and a large capacity can be obtained.

また、別の方法として、表面再酸化層の上に一方の電極
を得るために非還元性金属(例えば銀)のペーストを塗
布し、また他方の電極を得るために還元性金属(Z、等
の卑金属)のペーストを塗布し、その後焼付処理するこ
とによって還元性金属(卑金属)の下の表面再酸化層を
還元し、半導体磁器部分に対する電極接続を達成する方
法がある。
Another method is to apply a paste of a non-reducing metal (e.g. silver) on top of the surface reoxidation layer to obtain one electrode, and a paste of a reducing metal (Z, etc.) to obtain the other electrode. There is a method of reducing the surface reoxidation layer under the reducible metal (base metal) by applying a paste of the base metal (base metal) and then baking it to achieve an electrode connection to the semiconductor porcelain part.

[発明が解決しようとする課題] ところで、前者の研磨による方法には、表面再酸化層及
び半導体磁器にマイクロクラックか発生し、信頼性が低
下するという問題がある。勿論、マイクロクラックの発
生を防ぐように研磨することは可能であるが、生産効率
が大幅に低下し、量産が困難になる。
[Problems to be Solved by the Invention] Incidentally, the former method using polishing has a problem in that microcracks occur in the surface reoxidation layer and the semiconductor ceramic, resulting in a decrease in reliability. Of course, it is possible to perform polishing to prevent the occurrence of microcracks, but this will significantly reduce production efficiency and make mass production difficult.

後者の還元性金属(卑金属)を塗布して焼付ける方法を
採用すると、量産時に還元性金属が別の素子に接触し、
その部分が還元されて絶縁性か大幅に低下することがあ
る。更にまた、焼付炉内に還元性金属(卑金属)が飛散
し、これが自己又は他の素子に付着し、その部分の絶縁
劣化が起り、信頼性が低下する。
If the latter method of coating and baking a reducing metal (base metal) is adopted, the reducing metal will come into contact with another element during mass production,
That part may be reduced and the insulation properties may be significantly reduced. Furthermore, reducing metals (base metals) are scattered in the baking furnace and adhere to themselves or other elements, causing insulation deterioration in that part and reducing reliability.

そこで、本発明の目的は、信頼性の低下を招くことなし
に容量の大きい表面再酸化型半導体磁器コンデンサを量
産することができる方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for mass-producing surface reoxidation type semiconductor ceramic capacitors with a large capacity without causing a decrease in reliability.

[課題を解決するための手段] 上記目的を達成するための本発明は、半導体磁器基体を
形成する工程と、前記半導体磁器基体の特定された領域
上にカーボン粉末と金属粉末との混合物層を形成し、こ
の混合物層を覆うように第1の非還元性導電ペースト層
を形成する工程と、前記第1の非還元性導電ペースト層
の形成と同時又は前もしくは後に前記半導体磁器基体の
特定された領域に第2の非還元性導電ペースト層を形成
する工程と、前記混合物層を形成した領域には酸化層が
形成されないが、前記第1及び第2の非還元性導電ペー
スト層が前記半導体磁器基体に接している領域には酸化
層が生じるように、前記第1及び第2の非還元性導電ペ
ースト層を形成したものを加熱処理する工程とを含む表
面再酸化型半導体磁器コンデンサの製造方法に係わるも
のである。
[Means for Solving the Problems] To achieve the above object, the present invention includes a step of forming a semiconductor ceramic substrate, and a layer of a mixture of carbon powder and metal powder on a specified region of the semiconductor ceramic substrate. and forming a first non-reducible conductive paste layer to cover this mixture layer; forming a second non-reducing conductive paste layer in the area where the mixture layer is formed, and an oxide layer is not formed in the area where the mixture layer is formed; manufacturing a surface reoxidation type semiconductor ceramic capacitor, comprising the step of heat-treating the first and second non-reducible conductive paste layers so that an oxidized layer is formed in the region in contact with the ceramic substrate; It is related to the method.

なお、混合物層の金属粉末は、第1の非還元性導電ペー
スト層の金属と同−又はこれとの接着性の良いものであ
ることが望ましい。
Note that it is desirable that the metal powder of the mixture layer has the same or good adhesion to the metal of the first non-reducible conductive paste layer.

また、非還元性導電ペースト層は、銀等の貴金属(非還
元性金属)の粉末とガラスフリット(金属酸化物及び/
又は非金属酸化物)の粉末とビヒクルとから成ることが
望ましい。
In addition, the non-reducible conductive paste layer is made of powder of noble metal (non-reducible metal) such as silver and glass frit (metal oxide and/or
or a non-metallic oxide) and a vehicle.

[作用] 本発明において使用されるカーボン粉末は酸化層の形成
を阻止する働きを有する。カーボン粉末に混合される金
属粉末は、半導体磁器基体と第1の非還元性導電ペース
ト層に基づく電極との間の接続に寄与する。第1の非還
元性導電ペースト層はカーボンを含む還元性混合物の他
のコンデンサ素子に対する不要な付着や、加熱炉の中へ
の飛散を防ぐ。
[Function] The carbon powder used in the present invention has the function of inhibiting the formation of an oxidized layer. The metal powder mixed with the carbon powder contributes to the connection between the semiconductor ceramic substrate and the electrode based on the first non-reducible conductive paste layer. The first non-reducible conductive paste layer prevents the reducing mixture containing carbon from unnecessary adhesion to other capacitor elements and from scattering into the heating furnace.

[実施例] 次に、第1図〜第4図を参照して本発明の実施例に係わ
る表面再酸化型半導体磁器コンデンサの製造方法を説明
する。
[Example] Next, a method for manufacturing a surface reoxidation type semiconductor ceramic capacitor according to an example of the present invention will be described with reference to FIGS. 1 to 4.

まず、高純度(99,5%以上)のチタン酸バリウム(
BaTi03)を94,5モル%と、酸化ネオジム(N
d 203 ) 5モル%と、鉱化剤として酸化マンガ
ン(Mn O)を0.5モル%秤量し、アルミナボール
の入った樹脂ポットを用いて湿式混合した。
First, high purity (over 99.5%) barium titanate (
94.5 mol% of BaTi03) and neodymium oxide (N
d203) 5 mol% and 0.5 mol% of manganese oxide (MnO) as a mineralizer were weighed and wet-mixed using a resin pot containing alumina balls.

次に、この混合物を脱水し、乾燥した後、これに有機バ
インダーを添加し、800〜1000kg/c12、の
圧力て直径10mm、厚み0.5+amの円板に成形し
た。
Next, this mixture was dehydrated and dried, and then an organic binder was added thereto, and the mixture was molded into a disk having a diameter of 10 mm and a thickness of 0.5+ am under a pressure of 800 to 1000 kg/c12.

次に、こ、の成形体を人気中(酸化性雰囲気中)で13
00”C12時間焼成して焼結体を得た後に、−度冷却
し、その後、この焼結体にN、90%+H210%の還
元性雰囲気中で1000℃、2時間の還元処理を施12
、第1図に示す円板状の甲導体磁器基体1を得た。
Next, this molded body was heated (in an oxidizing atmosphere) to 13
After obtaining a sintered body by firing at 00"C for 12 hours, it was cooled by -degree, and then the sintered body was subjected to a reduction treatment at 1000°C for 2 hours in a reducing atmosphere of 90% N + 10% H2.
A disk-shaped conductor ceramic substrate 1 shown in FIG. 1 was obtained.

次に、半導体磁器基体1−の一方の主表面、Lに、1重
量%の非還元性金属粉末(Ag粉末)と99重量%のカ
ーボン粉末とから成る混合物上有機バイングーとビヒク
ルとから成る導電性ペースト(混合物a有量50平温%
)を印刷法で塗布(7、乾燥することによって混合物層
即ち金属含有カーボン粉末層2を第2図に示すように形
成1.た。
Next, on one main surface L of the semiconductor ceramic substrate 1-, a conductive material made of organic binder and a vehicle is placed on a mixture of 1% by weight of non-reducible metal powder (Ag powder) and 99% by weight of carbon powder. paste (mixture a content: 50% normal temperature)
) was coated by a printing method (7) and dried to form a mixture layer, that is, a metal-containing carbon powder layer 2 as shown in FIG.

次に、銀粉末とガラスフリット(例えばpb。Next, add silver powder and glass frit (e.g. pb).

B  C)  −−8t O2又はこのpboの代わり
にCaOlMgO又はN a 20を含むもの)とビヒ
クルとから成る銀ペースト即ち非還元性導、電ペースト
を第3図に示すように金属含有カーボン粉末層2を覆う
ように印刷法で塗布1.て第1の導電ペースト層を形成
l−1これを乾燥することによ、って第1の電極層3を
形成した。また、半導体磁器基体1の他方の主表面上に
非還元性導電ペーストである銀ペースト(銀粉末とガラ
スフリットとビヒクルから成るペースト)を印刷法で塗
布1.て第2の導電ペースト層を形成l−5、;これを
乾燥することによって第2の電極層4を形成した。
B C) A silver paste, that is, a non-reducible conductive, electrically conductive paste consisting of --8tO2 or a substance containing CaOlMgO or Na20 in place of this pbo) and a vehicle is coated with a metal-containing carbon powder layer as shown in FIG. Apply by printing method to cover 1. A first conductive paste layer 1-1 was formed, and this was dried to form a first electrode layer 3. Further, a silver paste (paste consisting of silver powder, glass frit, and vehicle), which is a non-reducible conductive paste, is applied on the other main surface of the semiconductor ceramic substrate 1 by a printing method (1). A second conductive paste layer was formed l-5; by drying this, a second electrode layer 4 was formed.

次に、第3図に示すものに800℃、2時間の再酸化処
理兼焼付処理を施1〜で再酸化層5及び第1及び第2の
電極4 a== 53を形成した。二の加熱処理時にカ
ーボン粉末は半導体磁器基体1の表面に酸化層か牛]−
7ることを阻止する。一方、非還元性導電ペーストに基
づく第1及び第2の電極層3.4の中にはガラスフリッ
トが含まれているので、どれが半導体磁器基体]の表面
領域に液相拡散すること又は酸素が拡散することによて
再酸化層5を形成される。なお、第1及び第アの電極層
3.4て覆われていない半導体磁器基体1の表面は酸化
性雰囲気の中の酸素に基づいて酸化される。
Next, the material shown in FIG. 3 was subjected to a reoxidation treatment and baking treatment at 800 DEG C. for 2 hours to form a reoxidation layer 5 and first and second electrodes 4a==53. During the second heat treatment, the carbon powder forms an oxidized layer on the surface of the semiconductor ceramic substrate 1.
7. On the other hand, the first and second electrode layers 3.4 based on non-reducible conductive paste contain glass frit, which prevents liquid phase diffusion or oxygen The re-oxidized layer 5 is formed by the diffusion of the oxidized material. Note that the surface of the semiconductor ceramic substrate 1 that is not covered with the first and first electrode layers 3.4 is oxidized based on oxygen in the oxidizing atmosphere.

金属含有カーボン粉末層2のカー−ボン粉末(大気中て
の反応開始温度的500 ’C)のほとんどは酸化され
て焼失するか、金属粉末(銀)は残留して電極2aとな
り、半導体磁器基体1と第1の電極3aとの電気的接続
に寄与する。銀から成る電極相2aは銀鏡(=1電極か
ら成る第1の電極3a(−対して良好に接着する。なお
、量産時にコンデンサ素子同志か接触することかあるか
、金属含有力ボン粉末層シは銀ペーストから成る第1の
電極層3で覆わttているのて、他のコンデンサ素子に
付着j7ない。
Most of the carbon powder (reaction initiation temperature in the atmosphere: 500'C) in the metal-containing carbon powder layer 2 is oxidized and burned away, or the metal powder (silver) remains and becomes the electrode 2a, forming the semiconductor ceramic substrate. 1 and the first electrode 3a. The electrode phase 2a made of silver adheres well to the first electrode 3a (- made of silver mirror). Since it is covered with a first electrode layer 3 made of silver paste, it does not adhere to other capacitor elements.

このコンデ゛/ザの20℃における電気的特性を測定し
たところ、 静電容量は673nF/cm2、 tanδは2.8%、 絶縁抵抗(IR)は1010Ω以十、 破壊電圧は直流0.9kVてあった。
When we measured the electrical characteristics of this capacitor at 20°C, we found that the capacitance was 673 nF/cm2, the tan δ was 2.8%, the insulation resistance (IR) was more than 1010 Ω, and the breakdown voltage was 0.9 kV DC. there were.

カーボン粉末に対する金属粉末の量を種々変えた他は、
上述と同一の方法でコンデンサを作り、同様に電気的特
性を測定し5たとこる次のようになった。
In addition to varying the amount of metal powder to carbon powder,
A capacitor was made using the same method as described above, and its electrical characteristics were similarly measured.The results were as follows.

(1) 金属粉末が零%であり、カーボン粉末のりの場
菖には、第1の銀鏡何重IJil!3 a々″−1′導
体磁器基体1との間かオープン状態になり、コンデンサ
か得られなか−)だ。
(1) If the metal powder is 0% and the carbon powder paste is used as an irises, the first silver mirror is multilayered! 3 a-1' The conductor and the ceramic base 1 are in an open state, and a capacitor cannot be obtained.

(2) 金属粉末か0.1重量96の場合は、静電容量
か703 nF /c++12、t、a nδが12.
5%、 絶縁抵抗か1〔−〕10Ω以−し、 破壊電圧は0.1kVて”あった。
(2) If the metal powder is 0.1 weight 96, the capacitance is 703 nF /c++12, t, an δ is 12.
5%, the insulation resistance was 1[-]10Ω or more, and the breakdown voltage was 0.1kV.

(3) 金属粉末が10重量%の場合は、静電容量は6
75nF/cm2、 tanδが2.4%、 絶縁抵抗か10”Ω以上、 破壊電圧か1.OkVてあった。
(3) If the metal powder is 10% by weight, the capacitance is 6
It was 75nF/cm2, tan δ was 2.4%, insulation resistance was 10”Ω or more, and breakdown voltage was 1.0kV.

(4) 金属粉末が50重屓%の場合は、静電容量は6
72nF/cI112、 tanδか2.3%、 絶縁抵抗が1010Ω以上、 破壊電圧が0.9kVであった。
(4) If the metal powder is 50% by weight, the capacitance is 6
It was 72nF/cI112, tan δ was 2.3%, insulation resistance was 1010Ω or more, and breakdown voltage was 0.9kV.

(5) 金属粉末が90重量%の場合は、静電容量は6
70nF/em2、 tanδが2.4%、 絶縁抵抗が1010Ω以上、 破壊電圧が0.9kVであった。
(5) If the metal powder is 90% by weight, the capacitance is 6
The resistance was 70nF/em2, tan δ was 2.4%, insulation resistance was 1010Ω or more, and breakdown voltage was 0.9kV.

(6) 金属粉末が100重量%(カーボン粉末零重量
%)の場合には、 静電容量が358nF/cs2、 tanδが2.0%、 絶縁抵抗が1010Ω以上、 破壊電圧が1.2kVであった。
(6) When the metal powder is 100% by weight (carbon powder is 0% by weight), the capacitance is 358nF/cs2, tanδ is 2.0%, insulation resistance is 1010Ω or more, and breakdown voltage is 1.2kV. Ta.

比較例として、第1図の半導体磁器基体1の表面に再酸
化層を形成し、この再酸化層の第1の領域上に第1の電
極を形成するためにZnペースト層(還元性ペースト層
)を形成し、再酸化層の第2の領域上に銀ペースト層(
非還元性ペースト層)を形成し、これ等の焼付処理を施
すことによってコンデンサを得、実施例と同様に特性を
測定したところ、 静電容量が690nF/cIm2、 tanδが3.9%、 絶縁抵抗が107Ω、 破壊電圧が0.11kVであった。
As a comparative example, a reoxidation layer is formed on the surface of the semiconductor ceramic substrate 1 shown in FIG. ) and a silver paste layer (
A capacitor was obtained by forming a non-reducing paste layer (non-reducing paste layer) and performing these baking treatments, and its characteristics were measured in the same manner as in the example. The capacitance was 690 nF/cIm2, tan δ was 3.9%, and insulation was high. The resistance was 107Ω and the breakdown voltage was 0.11kV.

以上の実施例及び比較例から明らかなように、金属粉末
が1〜90重量%の範囲において、金属粉末100重量
%の場合及びZnを使用する場合よりも良い電気的特性
を得ることができる。
As is clear from the above Examples and Comparative Examples, when the metal powder is in the range of 1 to 90% by weight, better electrical characteristics can be obtained than when the metal powder is 100% by weight or when Zn is used.

[変形例] 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and, for example, the following modifications are possible.

(1) カーボン粉末と混合する金属粉末は第1の電極
3aの金属と同一の銀であることが望ましいが、第1の
電極3aに対する接着性が良く、且つ焼付温度で溶融し
ない融点を有する金属であればどのようなものでもよい
(1) The metal powder to be mixed with the carbon powder is preferably silver, which is the same as the metal of the first electrode 3a, but it is a metal that has good adhesion to the first electrode 3a and has a melting point that does not melt at the baking temperature. It can be anything.

(2) 円筒型コンデンサの製造にも適用可能である。(2) It is also applicable to manufacturing cylindrical capacitors.

(3) 各加熱処理の温度を、磁器材料、電極材料の種
類の変化に応じて種々変えることができる。例えば酸化
焼成の温度を1100〜1400℃の範囲、還元処理の
温度を800〜1200℃の範囲、再酸化処理の温度を
700〜1100℃の範囲の任意の温度にすることがで
きる。
(3) The temperature of each heat treatment can be varied depending on the type of ceramic material and electrode material. For example, the temperature of the oxidation firing can be set to any temperature in the range of 1100 to 1400°C, the temperature of the reduction treatment can be set to any temperature in the range of 800 to 1200°C, and the temperature of the reoxidation treatment can be set to any temperature in the range of 700 to 1100°C.

[発明の効果] 上述から明らかなように本発明は次の効果を有する。[Effect of the invention] As is clear from the above, the present invention has the following effects.

(イ) カーボン粉末と金属粉末との混合物から成る還
元性を有する層を非還元性金属層で覆って焼付処理する
ので、焼付処理時に還元性物質(カーボン)が自己又は
別の製品の不要箇所に付着して特性劣化を生じさせない
(b) Since the reducing layer made of a mixture of carbon powder and metal powder is covered with a non-reducing metal layer and baked, reducing substances (carbon) are removed from unnecessary parts of the product itself or other products during the baking process. It will not adhere to the surface and cause characteristic deterioration.

(ロ) カーボン粉末に金属粉末が混入されているため
、カーボンが酸化(燃焼)した後の電気的接続を良好に
達成することができる。
(b) Since the metal powder is mixed into the carbon powder, good electrical connection can be achieved after the carbon is oxidized (burned).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は本発明の実施例に
係わる表面再酸化型半導体磁器コンデンサを製造工程順
に示す断面図である。 1・・・半導体磁器基体、2・・・金属含有カーボン粉
末層、3・・・第1の電極層、4・・・第2の電極層、
5・・・酸化層。 代  理  人   高  野  則  次手続補正書
0.え、 手続補正書0.。 2、発明の名称 2、発明の名称 表面再酸化型半導(k、磁器11ンデンザの製造方法事
件との関係
1, 2, 3, and 4 are cross-sectional views showing the surface reoxidation type semiconductor ceramic capacitor according to the embodiment of the present invention in the order of manufacturing steps. DESCRIPTION OF SYMBOLS 1... Semiconductor ceramic base, 2... Metal-containing carbon powder layer, 3... First electrode layer, 4... Second electrode layer,
5... Oxidized layer. Agent Norihiro Takano Written amendment to the next procedure 0. Eh, procedural amendment 0. . 2. Name of the invention 2. Name of the invention Surface reoxidation type semiconductor (k. Connection with the porcelain 11-denza manufacturing method incident)

Claims (1)

【特許請求の範囲】 [1]半導体磁器基体を形成する工程と、 前記半導体磁器基体の特定された領域上にカーボン粉末
と金属粉末との混合物層を形成し、この混合物層を覆う
ように第1の非還元性導電ペースト層を形成する工程と
、 前記第1の非還元性導電ペースト層の形成と同時又は前
もしくは後に前記半導体磁器基体の特定された領域に第
2の非還元性導電ペースト層を形成する工程と、 前記混合物層を形成した領域には酸化層が形成されない
が、前記第1及び第2の非還元性導電ペースト層が前記
半導体磁器基体に接している領域には酸化層が生じるよ
うに、前記第1及び第2の非還元性導電ペースト層を形
成したものを加熱処理する工程と を含むことを特徴とする表面再酸化型半導体磁器コンデ
ンサの製造方法。
[Scope of Claims] [1] A step of forming a semiconductor ceramic substrate, and forming a mixture layer of carbon powder and metal powder on a specified region of the semiconductor ceramic substrate, and forming a second layer so as to cover the mixture layer. forming a second non-reducible conductive paste layer on a specified region of the semiconductor ceramic substrate simultaneously with, before or after forming the first non-reducible conductive paste layer; forming a layer; an oxide layer is not formed in the region where the mixture layer is formed, but an oxide layer is formed in the region where the first and second non-reducible conductive paste layers are in contact with the semiconductor ceramic substrate; A method of manufacturing a surface reoxidation type semiconductor ceramic capacitor, comprising the step of heat-treating the first and second non-reducible conductive paste layers so that the first and second non-reducible conductive paste layers are formed.
JP21463790A 1990-08-13 1990-08-13 Method for manufacturing surface reoxidation type semiconductor ceramic capacitor Expired - Lifetime JPH07123096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463790A JPH07123096B2 (en) 1990-08-13 1990-08-13 Method for manufacturing surface reoxidation type semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463790A JPH07123096B2 (en) 1990-08-13 1990-08-13 Method for manufacturing surface reoxidation type semiconductor ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH0496309A true JPH0496309A (en) 1992-03-27
JPH07123096B2 JPH07123096B2 (en) 1995-12-25

Family

ID=16659047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463790A Expired - Lifetime JPH07123096B2 (en) 1990-08-13 1990-08-13 Method for manufacturing surface reoxidation type semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH07123096B2 (en)

Also Published As

Publication number Publication date
JPH07123096B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JPS643282B2 (en)
JPH0616459B2 (en) Method for manufacturing porcelain capacitor
JPH0496309A (en) Manufacture of surface reoxidation type semiconductor ceramic capacitor
JPH0429210B2 (en)
JPS6312371B2 (en)
JPH0496308A (en) Manufacture of surface reoxidation type semiconductor ceramic capacitor
JPS6399515A (en) Reduction reoxidation type semiconductor porcelain capacitor and manufacture of the same
JPH1012043A (en) Conductive composition and boundary layer ceramic capacitor
JPH01102912A (en) Reduction-reoxidation type semiconductor cylindrical capacitor
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JPH0532889B2 (en)
JPS6216006B2 (en)
JPH0532890B2 (en)
JPH0587005B2 (en)
JP2605332B2 (en) Method for forming grain boundary layer of semiconductor porcelain
JP3471467B2 (en) Manufacturing method of grain boundary layer type semiconductor ceramic capacitor
JPH06204008A (en) Manufacture of semiconductor ceramic element
JPH06283369A (en) Manufacture of dielectric powder layered capacitor
JPH0279407A (en) Manufacture of grain boundary insulation type semiconductor porcelain capacitor
JPH03280411A (en) Manufacture of surface reoxidized type semiconductor ceramic capacitor
JPS6366411B2 (en)
JPH1025164A (en) Burning method of laminated ceramic electronic part
JPH037128B2 (en)
JPS6364844B2 (en)
JPH01149415A (en) Semiconductor porcelain substance