JPH01149415A - Semiconductor porcelain substance - Google Patents

Semiconductor porcelain substance

Info

Publication number
JPH01149415A
JPH01149415A JP62308239A JP30823987A JPH01149415A JP H01149415 A JPH01149415 A JP H01149415A JP 62308239 A JP62308239 A JP 62308239A JP 30823987 A JP30823987 A JP 30823987A JP H01149415 A JPH01149415 A JP H01149415A
Authority
JP
Japan
Prior art keywords
substance
bismuth oxide
rubidium
semiconductor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308239A
Other languages
Japanese (ja)
Inventor
Osamu Kanda
修 神田
Tsutomu Sakashita
坂下 勉
Masaichi Moriwaki
森脇 正市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62308239A priority Critical patent/JPH01149415A/en
Publication of JPH01149415A publication Critical patent/JPH01149415A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title porcelain substance having excellent electric characteristics by a method wherein the composition consisting of the specific quantity of bismuth oxide and rubidium compound is diffused into the crystal grain boundary of semiconductor porcelain. CONSTITUTION:The composition, consisting of bismuth oxide Bi2O3 of 10-90molar%, a rubidium compound of 10-90molar% is coated as a diffusion substance, and they are sintered in an atmospheric air. When the mixture is used as a diffusion substance, dielectric constant can be improved by 1.3 and insulation resistivity can also be improved remarkably when compared with the previous case in which a bismuth oxide single unit is used as a diffusion substance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体磁器の粒界に誘電体層を設けてなる半
導体磁器物質に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor ceramic material in which a dielectric layer is provided at the grain boundaries of the semiconductor ceramic material.

〔従来技術〕[Prior art]

近年、チタン酸ストロンチウム(SrTi01)を主体
とする半導体磁器の粒界に、誘電体として高絶縁層を設
けてなる粒界誘電体型の半導体磁器物質がコンデンサ、
バリスタ、サーミスタ等に広く用いられている。そして
この半導体磁器物質は、まずチタン酸ストロンチウム(
SrTi01)を主材料としてこれに、原子価制御剤と
して酸化ニオブ(Nb20S) 。
In recent years, grain boundary dielectric type semiconductor ceramic materials, in which a highly insulating layer is provided as a dielectric material at the grain boundaries of semiconductor ceramics mainly composed of strontium titanate (SrTi01), have been used for capacitors,
Widely used in varistors, thermistors, etc. This semiconductor porcelain material was first made of strontium titanate (
SrTi01) as the main material and niobium oxide (Nb20S) as a valence control agent.

酸化インドリウム(YzOz)等を添加し、また焼結助
剤として酸化ケイ素(SiOz)、酸化アルミニウム(
AlzOs )等を添加し、還元雰囲気中にて焼結して
半導体磁器を得、次にこの半導体磁器の粒界に誘電体層
を設けるべ(、酸化マンガン(MnOz) 1酸化銅(
Cub) 、酸化ビスマス(BizOs)等の金属酸化
物を前記拡散物質として熱拡散させて得られていた(特
公昭5B−27649号公報、特公昭58−23922
号公報)。
Indium oxide (YzOz), etc. are added, and silicon oxide (SiOz) and aluminum oxide (SiOz) are added as sintering aids.
A semiconductor porcelain is obtained by adding materials such as AlzOs) and sintering in a reducing atmosphere, and then a dielectric layer is provided at the grain boundaries of this semiconductor porcelain (manganese oxide (MnOz), copper monoxide (
Cub), bismuth oxide (BizOs), and other metal oxides were obtained by thermally diffusing metal oxides as the diffusion substance (Japanese Patent Publication No. 5B-27649, Japanese Patent Publication No. 58-23922).
Publication No.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

拡散物質としてどのような物質を用いるかにより、得ら
れる半導体磁器物質の電気的な特性〔誘電率(εmPp
L誘電正接(tan δ)、絶縁抵抗率(ρ1□)等〕
に相違がある。例えば、拡散物質として酸化マンガン(
MnOt)又は酸化銅(Cub)を用いて得られる半導
体磁器物質にあっては、絶縁抵抗率は高いが、誘電正接
が高く、また誘電率が低くなる。一方、拡散物質として
酸化ビスマス(BizOs)を用いる場合には誘電正接
は低く、また誘電率は高いが、絶縁抵抗率が低くなる。
The electrical properties of the resulting semiconductor ceramic material [dielectric constant (εmPp
L dielectric loss tangent (tan δ), insulation resistivity (ρ1□), etc.]
There is a difference. For example, manganese oxide (
Semiconductor ceramic materials obtained using MnOt) or copper oxide (Cub) have high insulation resistivity, but have high dielectric loss tangents and low dielectric constants. On the other hand, when bismuth oxide (BizOs) is used as the diffusion material, the dielectric loss tangent is low and the dielectric constant is high, but the insulation resistivity is low.

また、拡散物質として酸化ビスマス(BizO,)及び
酸化銅(Cub)の混合物を用いる場合には、酸化ビス
マス(Bi203)又は酸化銅(Cub)を単一で使用
する場合と比較して平均的に各電気的特性が向上するが
、充分な特性値を達成しているとはいえなかった。
Furthermore, when using a mixture of bismuth oxide (BizO) and copper oxide (Cub) as a diffusion material, the average Although each electrical characteristic improved, it could not be said that sufficient characteristic values were achieved.

このように、すべての電気的特性について良好な結果(
誘電率及び絶縁抵抗率は高く、誘電正接は低い)を有す
る半導体磁器物質は未だ得られていない。
Thus, good results for all electrical characteristics (
A semiconductor ceramic material having high dielectric constant and insulation resistivity and low dielectric loss tangent has not yet been obtained.

本発明者、は、拡散物質として種々の材料を用いてなる
半導体磁器物質について、その電気的特性を調査した結
果、拡散物質として酸化ビスマス(BizO:+)と、
ルビジウム系化合物との混合物を用いた場合には、すべ
ての電気的特性が良好である半導体磁器物質が得られる
ことを知見した。
As a result of investigating the electrical characteristics of semiconductor ceramic materials using various materials as diffusion materials, the present inventor found that bismuth oxide (BizO:+) was used as a diffusion material,
It has been found that when a mixture with a rubidium-based compound is used, a semiconductor ceramic material having good electrical properties can be obtained.

本発明はかかる知見に基づいてなされたものであり、前
述のすべての電気的特性について良好な結果が得られる
半導体磁器物質を提供することを目的とする。
The present invention was made based on this knowledge, and it is an object of the present invention to provide a semiconductor ceramic material that can obtain good results in all of the above-mentioned electrical properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る半導体磁器物質は、半導体磁器の結晶粒界
に、酸化ビスマス(BizOs) 10〜90モル%及
びルビジウム系化合物10〜90モル%を含んでなる組
成物が拡散し、前記結晶粒界に誘電体層を形成してなる
ことを特徴とする。
In the semiconductor ceramic material according to the present invention, a composition comprising 10 to 90 mol % of bismuth oxide (BizOs) and 10 to 90 mol % of a rubidium compound is diffused into the grain boundaries of the semiconductor porcelain. It is characterized by forming a dielectric layer thereon.

〔作用〕[Effect]

半導体磁器の粒界に誘電体層を形成すべく熱拡散される
拡散物質として上述した如き組成物を採用した場合、得
られる半導体磁器物質はその誘電率及び絶縁抵抗率が大
幅に向上する。しかも誘電正接は十分に低い。
When the above-described composition is employed as a diffusing substance that is thermally diffused to form a dielectric layer at the grain boundaries of semiconductor porcelain, the dielectric constant and insulation resistivity of the resulting semiconductor porcelain material are greatly improved. Moreover, the dielectric loss tangent is sufficiently low.

〔実施例〕〔Example〕

以下本発明を、例えばコンデンサの製造に適用した場合
の実施例について具体的に説明する。
Hereinafter, embodiments in which the present invention is applied to, for example, the manufacture of capacitors will be specifically described.

まず、本発明の半導体磁器物質(以下本発明物質という
)の製造方法について説明する。例えばチタン酸ストロ
ンチウム(SrTiOz)に酸化ニオブ(NbzOs)
及び酸化マンガン(MnOg)を夫々0.1〜2モル%
の範囲で添加し、十分に混合した後、直径10鶴、厚さ
0.8nの円板状に加圧成形する。この後、水素1〜1
5%、窒素99〜85%からなる還元雰囲気中で140
0〜1540℃の範囲で4〜10時間焼成して半導体磁
器を製造する。次に、半導体磁器の片面に拡散物質(酸
化ビスマス(BizO+)とルビジウム系化合物、例え
ば炭酸ルビジウム(RbzC(1+)との混合物)を塗
布し、1000〜1350℃で1〜2時間加熱して拡散
物質を熱拡散させる。最後に、このようにして得られた
半導体磁器物質の両面に銀ペーストを付着させ、800
℃程度で焼付けて銀電極とし、コンデンサを得る。
First, a method for manufacturing the semiconductor ceramic material of the present invention (hereinafter referred to as the "present invention material") will be explained. For example, strontium titanate (SrTiOz) and niobium oxide (NbzOs)
and 0.1 to 2 mol% of manganese oxide (MnOg), respectively.
After mixing thoroughly, the mixture is pressure-molded into a disk shape with a diameter of 10 mm and a thickness of 0.8 nm. After this, hydrogen 1-1
140 in a reducing atmosphere consisting of 5% nitrogen and 99-85% nitrogen.
Semiconductor porcelain is produced by firing at a temperature of 0 to 1540°C for 4 to 10 hours. Next, a diffusion substance (a mixture of bismuth oxide (BizO+) and a rubidium-based compound, such as rubidium carbonate (RbzC(1+)) is applied to one side of the semiconductor porcelain and heated at 1000 to 1350°C for 1 to 2 hours to diffuse it. The material is thermally diffused.Finally, silver paste is deposited on both sides of the semiconductor porcelain material obtained in this way, and
It is baked at about ℃ to form a silver electrode and a capacitor is obtained.

なお拡散物質である混合物のルビジウム系化合物として
は炭酸ルビジウム(RbzCO3)の他に、酸化ルビジ
ウム(RbzO)、三酸化二ルビジウム(Rb、O,)
、過酸化ルビジウム(Rb!O□)、超酸化ルビジウム
(RbO□)、水酸化ルビジウム(RbOH)等が1種
又は2種以上用いられる。
In addition to rubidium carbonate (RbzCO3), rubidium oxide (RbzO) and dirubidium trioxide (Rb, O,
, rubidium peroxide (Rb!O□), rubidium superoxide (RbO□), rubidium hydroxide (RbOH), and the like are used one or more kinds.

酸化ビスマス(Bit(h)と炭酸ルビジウム(Rbz
CO3)との混合物を種々の組成比にて半導体磁器に塗
布して得た半導体磁器物質の電気的特性を下記第1表に
示す。なお、表中の誘電率(ε1.p)及び誘電正接(
tanδ)は、周波数1kHz、電圧1■にて測定した
値であり、絶縁抵抗率(ρ、1)はDC25V1分値に
よって求めた値である。また表中の特性数値は各種の組
成比における10枚の試料の平均値を示している。
Bismuth oxide (Bit (h) and rubidium carbonate (Rbz)
Table 1 below shows the electrical properties of semiconductor ceramic materials obtained by applying mixtures with CO3) to semiconductor ceramics at various composition ratios. In addition, the dielectric constant (ε1.p) and dielectric loss tangent (
tan δ) is a value measured at a frequency of 1 kHz and a voltage of 1 ■, and insulation resistivity (ρ, 1) is a value determined from a DC 25 V 1 minute value. Further, the characteristic values in the table indicate the average values of 10 samples at various composition ratios.

(以下余白) 第  1  表 第2表 第1表から、酸化ビスマス(Big(h) 10〜90
モル%、炭酸ルビジウム(RbzCOi) 10〜gO
モル%の範囲で良好な電気的特性が得られていることが
分かる。
(Left below) From Table 1, Table 2, Bismuth oxide (Big(h) 10-90
Mol%, rubidium carbonate (RbzCOi) 10~gO
It can be seen that good electrical properties are obtained within the range of mol %.

また酸化ビスマス(Bias3)が10モル%未満であ
る場合、又はそれが95モル%以上の場合は誘電率が低
下していることが分かる。また酸化ビスマス単体では、
絶縁抵抗率が著しく低下し、炭酸ルビジウム単体では誘
電正接が高くなることがわかる。
It can also be seen that when bismuth oxide (Bias3) is less than 10 mol% or when it is 95 mol% or more, the dielectric constant is lowered. In addition, bismuth oxide alone
It can be seen that the insulation resistivity decreases significantly and the dielectric loss tangent of rubidium carbonate alone increases.

更に第1表からは、酸化ビスマス(Bias、)20モ
ル%、炭酸ルビジウム(RbzCO:+)80モル%の
混合物を拡散物質として用いた本発明物質の電気的特性
が酸化ビスマス(BizO,)単体を拡散物質として用
いた従来例に比して、誘電率で1.3倍、絶縁抵抗率で
2桁と著しく向上していることも分かる。
Furthermore, Table 1 shows that the electrical properties of the material of the present invention using a mixture of 20 mol % bismuth oxide (Bias) and 80 mol % rubidium carbonate (RbzCO:+) as a diffusion material are similar to those of bismuth oxide (BizO,) alone. It can also be seen that the dielectric constant is improved by 1.3 times and the insulation resistivity is improved by two orders of magnitude compared to the conventional example in which the material was used as a diffusion material.

第2表は比較例として酸化マンガン(MnOz)、酸化
銅(CuO)を各々単体で拡散物質として拡散させた場
合の各電気特性値を表したものであるが、前記の本発明
物質と第2表の比較例との比較により、本発明物質の各
電気的特性の向上はより明確となる。
Table 2 shows the electrical characteristic values when manganese oxide (MnOz) and copper oxide (CuO) are each diffused as a single diffusion substance as a comparative example. By comparison with the comparative examples in the table, the improvement in each electrical property of the substance of the present invention becomes clearer.

また上述した如き本発明物質は、拡散物質の塗布及び大
気中焼成という簡単な製造プロセスで得ることができる
という利点もある。
Further, the above-mentioned material of the present invention has the advantage that it can be obtained by a simple manufacturing process of applying a diffusive substance and firing in the atmosphere.

なお、上述の実施例においては、拡散物質の一つとして
炭酸ルビジウムの場合について説明したが、他の水酸化
ルビジウム、酸化ルビジウム、三酸化二ルビジウム、過
酸化ルビジウム、超酸化ルビジウム又はこれらの2種以
上の混合物についても10〜90モル%の範囲内で上述
の実施例と略同様の効果があることが確認された。
In the above embodiment, rubidium carbonate was used as one of the diffusing substances, but other rubidium hydroxide, rubidium oxide, dirubidium trioxide, rubidium peroxide, rubidium superoxide, or two of these may also be used. It was confirmed that the above mixture had substantially the same effect as the above-mentioned example within the range of 10 to 90 mol %.

また上述の実施例では、前記半導体磁器物質の両面に銀
ペーストを印刷してこれを焼付け、銀電極としたが、そ
の他の公知の電極材料を用いてもよいことはいうまでも
ない。さらに半導体磁器製造時の焼成雰囲気は、上述の
実施例の如く水素1〜15%、窒素99〜85%からな
る雰囲気に限定されるものではなく、試料が十分に半導
体化され得る雰囲気であれば他の雰囲気であっても差し
支えない。
Further, in the above-described embodiment, silver electrodes were formed by printing silver paste on both sides of the semiconductor ceramic material and baking the same, but it goes without saying that other known electrode materials may be used. Furthermore, the firing atmosphere during the production of semiconductor porcelain is not limited to an atmosphere consisting of 1 to 15% hydrogen and 99 to 85% nitrogen as in the above-mentioned example, but as long as the atmosphere can sufficiently convert the sample into a semiconductor. Other atmospheres are also acceptable.

さらにまた、本実施例においては本発明物質をコンデン
サに用いる場合について説明したが、本発明はこれに限
るものではなく、バリスタ、サーミスタ等の他の用途に
用いてもよいのはいうまでもない。
Furthermore, in this example, the case where the substance of the present invention is used in a capacitor has been described, but it goes without saying that the present invention is not limited to this and may be used in other applications such as varistors and thermistors. .

〔効果〕〔effect〕

以上詳述した如く、本発明の半導体磁器物質では、M化
ビスマス(Big(h) 10〜90モル%と、ルビジ
ウム系化合物10〜90モル%とからなる組成物が拡散
物質として利用されるので、その半導体磁器物質は、誘
電率、誘電正接、絶縁抵抗率等の電気的特性において良
好な結果を有することができる。
As detailed above, in the semiconductor ceramic material of the present invention, a composition consisting of 10 to 90 mol% of bismuth Mide (Big(h)) and 10 to 90 mol% of a rubidium-based compound is used as a diffusing substance. , the semiconductor ceramic material can have good results in electrical properties such as dielectric constant, dielectric loss tangent, and insulation resistivity.

Claims (1)

【特許請求の範囲】[Claims] 1.半導体磁器の結晶粒界に、酸化ビスマス(Bi_2
O_3)10〜90モル%及びルビジウム系化合物10
〜90モル%を含んでなる組成物が拡散し、前記結晶粒
界に誘電体層を形成してなることを特徴とする半導体磁
器物質。
1. Bismuth oxide (Bi_2
O_3) 10 to 90 mol% and rubidium compound 10
A semiconductor ceramic material, characterized in that a composition comprising ~90 mol % is diffused to form a dielectric layer at the grain boundaries.
JP62308239A 1987-12-04 1987-12-04 Semiconductor porcelain substance Pending JPH01149415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308239A JPH01149415A (en) 1987-12-04 1987-12-04 Semiconductor porcelain substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308239A JPH01149415A (en) 1987-12-04 1987-12-04 Semiconductor porcelain substance

Publications (1)

Publication Number Publication Date
JPH01149415A true JPH01149415A (en) 1989-06-12

Family

ID=17978610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308239A Pending JPH01149415A (en) 1987-12-04 1987-12-04 Semiconductor porcelain substance

Country Status (1)

Country Link
JP (1) JPH01149415A (en)

Similar Documents

Publication Publication Date Title
JPS63927B2 (en)
JPH0524646B2 (en)
JPH0226775B2 (en)
JPH01149415A (en) Semiconductor porcelain substance
JPS623569B2 (en)
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JPH1012043A (en) Conductive composition and boundary layer ceramic capacitor
JP2616372B2 (en) Method for manufacturing semiconductor porcelain element
JP2605314B2 (en) Semiconductor porcelain material
JPH01149412A (en) Semiconductor porcelain substance
JPH0547589A (en) Intergranular insulation type semiconductor ceramic capacitor
JP2679065B2 (en) Semiconductor porcelain material
JPS6316504A (en) Ceramic forming composition and semiconductor ceramic substrate, dielectric ceramic substrate and capacitor using the same
JPH01274411A (en) Semiconductor porcelain substance
JPH0426545A (en) Semiconductive porcelain and its manufacture
JPH02107561A (en) Semiconductor porcelain material
JPH01187914A (en) Semiconductor porcelain substance
JPH01149411A (en) Semiconductor porcelain substance
JPS63289919A (en) Semiconductor porcelain element
JPS6029211B2 (en) Manufacturing method of semiconductor ceramic capacitor
JPH0374818A (en) Ceramic capacitor having varistor characteristics and its manufacture
JPS584448B2 (en) Method for manufacturing reduction and reoxidation type semiconductor ceramic capacitor body
JPH0524645B2 (en)
JPS6126207B2 (en)
JPH0194609A (en) Semiconductor porcelain substance