JPH0493910A - Telecentric ftheta lens - Google Patents

Telecentric ftheta lens

Info

Publication number
JPH0493910A
JPH0493910A JP20841990A JP20841990A JPH0493910A JP H0493910 A JPH0493910 A JP H0493910A JP 20841990 A JP20841990 A JP 20841990A JP 20841990 A JP20841990 A JP 20841990A JP H0493910 A JPH0493910 A JP H0493910A
Authority
JP
Japan
Prior art keywords
lens
group
groups
surface facing
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20841990A
Other languages
Japanese (ja)
Other versions
JP3034565B2 (en
Inventor
Katsuaki Ono
克昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2208419A priority Critical patent/JP3034565B2/en
Publication of JPH0493910A publication Critical patent/JPH0493910A/en
Application granted granted Critical
Publication of JP3034565B2 publication Critical patent/JP3034565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane

Abstract

PURPOSE:To excellently improve various aberrations by arranging 1st - 4th lens groups in order in a lens system which images deflected luminous flux as a light spot on a scanned surface and determining the composite focal length of the whole system, the focal length of the 3rd group, the radius of curvature of the 2nd group lens surface, the on-air interval between the 2nd and 3rd groups, and the refractive index of the 3rd group lens under specific conditions. CONSTITUTION:The luminous flux from a light source device 1 is deflected as a rotary polygon mirror 3 rotates. Then the deflected luminous flux is imaged as the light spot on the scanned surface 7 through the ftheta lens 5 and a surface tile correcting lens 6. The ftheta lens 5 is an image forming lens system and constituted by arranging the 1st - 4th groups in order from the object side to the image side. Then 0.4<f/f3<0.95, -0.3<RIII/f<-0.2, -0.4<RIVC/f<-0.3, 0<DIV/f<0.06, and 1.6<nIII hold, where (f) is the composite focal length of the whole system, f3 the focal length of the 3rd group, RIII and RIV the radii of curvature of the object-side and image-side lens surfaces of the 2nd group lens, DIV the on-axis air interval between the 2nd and 3rd groups, and nIII the refractive index of the material of the 3rd group lens. Then the ftheta, theta, or comatic aberration is overcorrected or undercorrected outside those condition ranges.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はテレセントリックなfθレンズに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a telecentric fθ lens.

[従来の技術] 光源装置からの光束を偏向装置により等角速度的に偏向
させ、偏向光束を結像レンズ系と面倒れ補正レンズとに
より走査面上に光スポットとして結像させて光走査を行
う光走査装置が知られている。このような光走査装置に
於いては、等速度的な光走査を実現するために結像レン
ズ系としてfθレンズが用いられる。
[Prior art] A light beam from a light source device is deflected at a constant angular velocity by a deflection device, and the deflected light beam is imaged as a light spot on a scanning surface by an imaging lens system and a surface tilt correction lens to perform optical scanning. Optical scanning devices are known. In such an optical scanning device, an fθ lens is used as an imaging lens system to realize uniform speed optical scanning.

一般に欠口られたfθレンズはテレセントリックでなく
、このため走査面位置とfθレンズとの光軸方向の距離
が設計上の距離からずれると、設計通りのfθ特性が得
られないという問題がある。
Generally, a cutout fθ lens is not telecentric, and therefore, if the distance between the scanning plane position and the fθ lens in the optical axis direction deviates from the designed distance, there is a problem that the designed fθ characteristics cannot be obtained.

従来、テレセントリックなfθレンズとしては特開昭6
2−299927号公報開示のものがある。
Conventionally, as a telecentric f-theta lens, JP-A-6
There is one disclosed in Publication No. 2-299927.

[発明が解決しようとする課題] このfθレンズではレンズ最終面と走査面との間隔が狭
く、面倒れ補正レンズを配備する余裕がない。
[Problems to be Solved by the Invention] In this fθ lens, the distance between the final lens surface and the scanning surface is narrow, and there is no room for a surface tilt correction lens.

このため面倒れ補正を行うことが出来ない。For this reason, it is not possible to perform surface tilt correction.

本発明はこのような事情に鑑みてなされたものであって
、面倒れ補正用レンズとともに用いることができ、諸収
差が良好に補正されたテレセントリックなfθレンズの
提供を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a telecentric fθ lens that can be used together with a lens for correcting surface tilt and has various aberrations well corrected.

[課題を解決するための手段] 以下、本発明を説明する。[Means to solve the problem] The present invention will be explained below.

本発明のfθレンズは、「光源装置からの光束を偏向装
置により等角速度的に偏向させ、偏向光束を結像レンズ
系と面倒れ補正レンズとにより走査面上に光スポットと
して結像させて光走査を行う光走査装置に於いて結像レ
ンズ系として用いられるレンズ系」であって、物体側か
ら像側へ向って第1乃至第4群を順次配してなる。
The fθ lens of the present invention deflects a light beam from a light source device at a constant angular velocity using a deflection device, and images the deflected light beam as a light spot on a scanning surface by an imaging lens system and a surface tilt correction lens. A lens system used as an imaging lens system in an optical scanning device that performs scanning, and has first to fourth groups sequentially arranged from the object side to the image side.

「第1群」は、正レンズとすることも負レンズとするこ
ともできる。
The "first group" can be a positive lens or a negative lens.

「第2群」は物体側に凹面を向けた負メニスカスレンズ
、「第3群」は物体側に凹面を向けた正メニスカスレン
ズ、「第4群Jは像側レンズ面が凸面である正レンズで
ある。
The "2nd group" is a negative meniscus lens with a concave surface facing the object side, the "3rd group" is a positive meniscus lens with a concave surface facing the object side, and the "4th group J is a positive lens with a convex lens surface on the image side. It is.

全系の合成焦点距離をf、第3群の焦点距離をf3、第
2群レンズの物体側および像側のレンズ面の曲率半径を
それぞれR□I++RIVs第2.第3群間の軸上空気
間隔をDlv、第3群レンズの材質の屈折率を01□1
とするとき、これらは (I)   0.4  < f/f3 < 0.95(
II)  −0,3<R,□、/f < −0,2(I
II)  −0,4<RIV/f<−0,3(IV) 
   O< D、v/f < 0.06(V)    
    1.6    <nt  1 、なる条件を満
足する。
The combined focal length of the entire system is f, the focal length of the third group is f3, and the radius of curvature of the object-side and image-side lens surfaces of the second group lens is R□I++RIVs2. The axial air distance between the third group is Dlv, and the refractive index of the material of the third group lens is 01□1
, these are (I) 0.4 < f/f3 < 0.95 (
II) -0,3<R,□,/f<-0,2(I
II) -0,4<RIV/f<-0,3(IV)
O<D, v/f<0.06(V)
1.6 <nt 1 , the following condition is satisfied.

第1群は、1枚もしくは2枚のレンズで構成される。The first group is composed of one or two lenses.

第1図乃至第3図にそれぞれ請求項2〜4のfθレンズ
のレンズ構成を示す。これらの図に於いて符号G2は第
2群、符号G3は第3群、符号G4は第4群を示す。図
の左側が物体側即ち偏向装置側であり、右側は像側即ち
像面S側である。
FIGS. 1 to 3 show lens structures of fθ lenses according to claims 2 to 4, respectively. In these figures, the symbol G2 indicates the second group, the symbol G3 indicates the third group, and the symbol G4 indicates the fourth group. The left side of the figure is the object side, that is, the deflection device side, and the right side is the image side, that is, the image plane S side.

第1図に示すように、請求項2のレンズ構成において、
第1群は物体側に凸面を向けた負メニスカスレンズG1
である。
As shown in FIG. 1, in the lens configuration of claim 2,
The first group is a negative meniscus lens G1 with a convex surface facing the object side.
It is.

第2図に示すように、請求項3のレンズ構成に於いて、
第1群は「物体側に凸面を向けた正レンズGllと、こ
の正レンズGllの像側に接合され像側に凹面を向けた
負レンズG12とで構成される。
As shown in FIG. 2, in the lens configuration of claim 3,
The first group is composed of a positive lens Gll with a convex surface facing the object side, and a negative lens G12 which is cemented to the image side of the positive lens Gll and has a concave surface facing the image side.

第3図に示すように、請求項3のレンズ構成に於いて、
第1群は「物体側に凸面を向けた正レンズG13と、こ
の正レンズG13の像側に配備され像側に凹面を向けた
負レンズG14とで構成される。
As shown in FIG. 3, in the lens configuration of claim 3,
The first group is composed of a positive lens G13 having a convex surface facing the object side, and a negative lens G14 disposed on the image side of the positive lens G13 and having a concave surface facing the image side.

従って、請求項2のレンズ配置ではfeレンズは4群4
枚構成、請求項3.4のレンズ構成ではfθレンズは4
群5枚構成である。
Therefore, in the lens arrangement of claim 2, the FE lens has 4 groups, 4
In the lens configuration of claim 3.4, the number of fθ lenses is 4.
It consists of 5 elements in a group.

[作  用] 上記条件(I)〜(V)に就いて説明する。[For production] The above conditions (I) to (V) will be explained.

条件(I)〜(III)は何れもfθ特性(光軸に対し
θの角をもって入射する光束に対する理想像高をfθ、
実際の像高をHoとするとき、(Ho−fθ)・100
/fθ(z)で定義される)およびコマ収差を補正する
条件であり、これら条件の上限を越えると、fO特性・
コマ収差とも補正オーバーとなり、下限を越えると補正
アンダーとなる。
Conditions (I) to (III) are all fθ characteristics (the ideal height for a light beam incident at an angle of θ with respect to the optical axis is fθ,
When the actual image height is Ho, (Ho-fθ)・100
/fθ(z)) and coma aberration, and if the upper limits of these conditions are exceeded, the fO characteristics
Both coma aberration will be over-corrected, and if the lower limit is exceeded, it will be under-corrected.

条件(■v)はfθ特性を補正するための条件であり、
上限を越えると補正オーバーになる。
Condition (■v) is a condition for correcting the fθ characteristic,
If the upper limit is exceeded, the compensation will be over-compensated.

条件(V)はfθ特性と主走査方向の像面湾曲を補正す
るための条件であり、条件範囲外ではfθ特性は補正ア
ンダーになり、残存像面湾曲も大きくなる。
Condition (V) is a condition for correcting the fθ characteristic and the curvature of field in the main scanning direction. Outside the condition range, the fθ characteristic becomes under-corrected and the residual curvature of field becomes large.

なお本発明のfθシリンダ面倒れ補正レンズと伴に使用
され、面倒れ補正レンズに副走査方向の像面湾曲除去機
能があるので、fθシリンダおける副走査方向の像面湾
曲補正は問題とする必要がない。
It should be noted that since it is used together with the fθ cylinder surface tilt correction lens of the present invention and the surface tilt correction lens has a function of removing field curvature in the sub-scanning direction, correction of the field curvature in the sub-scanning direction of the fθ cylinder does not need to be a problem. There is no.

また第1〜3図に示すように、最終レンズ面と像面との
間には、面倒れ補正レンズを配備するのに十分な余地が
ある。
Further, as shown in FIGS. 1 to 3, there is sufficient room between the final lens surface and the image surface to provide a surface tilt correction lens.

以下、第4図及び第5図を参照して本発明のfθシリン
ダ使用例を簡単に説明する。
Hereinafter, an example of using the fθ cylinder of the present invention will be briefly described with reference to FIGS. 4 and 5.

第4図に於いて、光源装置lは例えば半導体レーザーと
コリメートレンズとにより構成され、実質的な平行光束
を放射する。
In FIG. 4, a light source device 1 is composed of, for example, a semiconductor laser and a collimating lens, and emits a substantially parallel light beam.

平行光束は、副走査対応方向に正の屈折力を持つシリン
ダーレンズ2により副走査対応方向に集束されて、偏向
装置たる回転多面鏡3の偏向反射面4上に副走査対応方
向に長い線像として結像する。偏向反射面4に反射され
た光束は偏向光束となり。回転多面鏡3の回転に伴い等
角速度的に偏向する。
The parallel light beam is focused in the direction corresponding to the sub-scanning by a cylinder lens 2 having a positive refractive power in the direction corresponding to the sub-scanning, and forms a long line image in the direction corresponding to the sub-scanning on the deflecting reflection surface 4 of the rotating polygon mirror 3 which is a deflection device. imaged as. The light beam reflected by the deflection reflecting surface 4 becomes a deflected light beam. As the rotating polygon mirror 3 rotates, it is deflected at a constant angular velocity.

偏向光束は次いで、fθシリンダと面倒れ補正レンズ6
とを透過し、これらレンズの作用により走査面7上に光
スポットとして結像する。
The deflected light beam then passes through the fθ cylinder and the surface tilt correction lens 6.
and is imaged as a light spot on the scanning surface 7 by the action of these lenses.

第ぢ図は光源装置から走査面までを光路にそって展開し
、副走査方向が上下方向となるように描いた図である。
Figure 3 is a diagram showing the optical path from the light source device to the scanning surface, developed along the optical path, with the sub-scanning direction being the vertical direction.

図に示すように、この例ではfeシリンダと面倒れ補正
レンズ6とによって偏向反射面4と走査面7とが副走査
対応方向に関して幾何光学的に略共役な関係となってお
り、偏向反射面4が破線で示すように面倒れを起こして
も光スポットの結像位置は副走査方向に移動しない。従
って面倒れは補正される。
As shown in the figure, in this example, due to the FE cylinder and the surface tilt correction lens 6, the deflection reflection surface 4 and the scanning surface 7 have a substantially conjugate relationship in geometrical optics with respect to the direction corresponding to the sub-scanning, and the deflection reflection surface As shown by the broken line in 4, even if the surface is tilted, the imaging position of the light spot does not move in the sub-scanning direction. Therefore, the surface inclination is corrected.

偏向装置としては回転多面鏡の他、ピラミダルミラーを
使用できる。また面倒れ補正レンズとしては第4.5図
に示す長尺シリンダーレンズの他に長尺トロイダルレン
ズ等を使用できる。
As a deflection device, a pyramidal mirror can be used in addition to a rotating polygon mirror. In addition to the long cylindrical lens shown in FIG. 4.5, a long toroidal lens or the like can be used as the surface tilt correction lens.

また本発明のfθシリンダ使用する上で、光源装置から
の光束を偏向反射面近傍に線像に結像させる必要は必ず
しもなく、fθシリンダ面倒れ補正レンズとで偏向反射
面と走査面とを副走査対応方向に関して幾何光学的な共
役関係とすることも必ずしも必要でない。
In addition, when using the fθ cylinder of the present invention, it is not necessarily necessary to form a line image of the light beam from the light source device near the deflection reflection surface, and the deflection reflection surface and the scanning surface are subdivided by the fθ cylinder surface tilt correction lens. It is not always necessary to establish a geometrically optical conjugate relationship with respect to the scan-corresponding directions.

[実施例] 以下、具体的な実施例を7例挙げる。[Example] Seven specific examples are listed below.

各実施例に於いて、fは全系の合成焦点距離、2θは偏
向角を示す。
In each example, f represents the composite focal length of the entire system, and 2θ represents the deflection angle.

物体側から数えて第1番目のレンズ面の曲率半径をR,
(i・1〜10)、第1番目と第i+1番目のレンズ面
の間の光軸上の間隔をD、(1=1〜9)、物体側がら
数えて第j番目のレンズの材質の屈折率をnj(j=1
〜5)で表す。
The radius of curvature of the first lens surface counting from the object side is R,
(i・1~10), the distance on the optical axis between the 1st and i+1th lens surfaces is D, (1=1~9), the material of the jth lens counting from the object side. Let the refractive index be nj (j=1
~5).

またに1.に2. K3. K4.に5をもってそれぞ
れ、条件(1)〜(V)の各パラメーターを表す。
Also 1. 2. K3. K4. 5 represents each parameter of conditions (1) to (V), respectively.

また各実施例とも入射光束は主走査対応方向に関しては
平行光束であり、偏向反射面と第ルンズ面との間の光軸
上距離をり。とする。
Further, in each embodiment, the incident light beam is a parallel light beam in the direction corresponding to the main scanning, and the distance on the optical axis between the deflection reflection surface and the lens surface is equal to the distance between the deflection reflection surface and the lens surface. shall be.

最初に挙げる実施例1〜3は請求項2のレンズ構成によ
る実施例である。
Examples 1 to 3 mentioned first are examples based on the lens configuration of claim 2.

実施例1 f=50,2 0248度、 Kl =0.848.に
2=−0,259゜K3=−0,359、に4=0.0
17.に5=1.82802i    RHD、   
、j    n、0       12、690 1  38.247  5.984  1  1.51
3902  30.573  13.056 3 −12.927  5.440  2  1.83
4864 −17.975  0.870 5−105.846  8.704  3  1.82
8026 −34.648  0.544 7 2003.630  6.528  4  1.7
99298 −106.038 実施例2 f=50,2θ=48度、K、 =0.818. K2
=−0,252゜K3=−0,367、に4=0.01
7.に5=1.828021    R+     D
lJ    njQ        11.720 1  44.541  5.984  1  1.51
3902  31.768  13.056 3 −12.587  5.440  2  1.61
4204 −18.353  0.870 5 −77.306  8.704  3  1.82
8026 −32.149  0.544 7−588.653  6.528  4  1.79
9298 −74.204 実施例3 f=50,2θ=48度、K、=0.778.に2=−
0,263゜K3=−0,371、に4=0.017.
に5”1.799291    RID r    J
    njo        8、456 1  29.446  5.984  1  1.51
3902  25.097  16.320 3  −13.153   5.4404  −18.
557   0.8705  −69.614   8
.7046  −31.194   0.5447  
238.045   6.5288 −130.703 次ぎに挙げる実施例4゜ 構成による実施例である。
Example 1 f = 50, 2 0248 degrees, Kl = 0.848. 2=-0,259°K3=-0,359, 4=0.0
17. 5=1.82802i RHD,
, j n, 0 12, 690 1 38.247 5.984 1 1.51
3902 30.573 13.056 3 -12.927 5.440 2 1.83
4864 -17.975 0.870 5-105.846 8.704 3 1.82
8026 -34.648 0.544 7 2003.630 6.528 4 1.7
99298 -106.038 Example 2 f=50, 2θ=48 degrees, K, =0.818. K2
=-0,252°K3=-0,367, 4=0.01
7. 5=1.828021 R+D
lJ njQ 11.720 1 44.541 5.984 1 1.51
3902 31.768 13.056 3 -12.587 5.440 2 1.61
4204 -18.353 0.870 5 -77.306 8.704 3 1.82
8026 -32.149 0.544 7-588.653 6.528 4 1.79
9298 -74.204 Example 3 f=50, 2θ=48 degrees, K, =0.778. 2=-
0,263°K3=-0,371, 4=0.017.
5”1.799291 RID r J
njo 8, 456 1 29.446 5.984 1 1.51
3902 25.097 16.320 3 -13.153 5.4404 -18.
557 0.8705 -69.614 8
.. 7046 -31.194 0.5447
238.045 6.5288 -130.703 The following example has a 4° configuration.

実施例4 f=50,2θ=48度、KI=0.536.に2”−
0,260゜K3ニー0.360 、に4”0.017
.に5”1.82802i    R,Di    J
    njo        11、286 1  30.834  4.896 2 −35.417  2.089 3  24.409  12.832 4 −i3.024  3.264 5 −18.012  0.870 6 −36.364  8.704 1.82802 1.83486 1.82802 1.74601 1.79929 1.79929 1.83486 5は請求項3のレンズ 7  −27.399    0.8708  300
.145   9.792    5   1.828
02実施例5 f=50,2θ:48度、K1=0.811. K2=
−0,250゜Ks” 0.342 、 K4”0.0
17. K5:1.828021    RI    
 Di    jn、0       12、134 1  53.194  4.896  1  1.79
4652 380.799  1.629  2  1
.614203  32.428  13.056 4 −12.497  3.264  3  1.83
4865 −17.088  0.870 6 −51.338  8.160  4  1.82
8027 −27.436  0.870 8−463.494  9.792  5  1.82
8029 −60.789 最後に挙げる実施例6,7は請求項4のレンズ構成によ
る実施例である。
Example 4 f=50, 2θ=48 degrees, KI=0.536. 2”-
0,260°K3 knee 0.360, 4” 0.017
.. 5”1.82802i R, Di J
njo 11, 286 1 30.834 4.896 2 -35.417 2.089 3 24.409 12.832 4 -i3.024 3.264 5 -18.012 0.870 6 -36.364 8.704 1.82802 1.83486 1.82802 1.74601 1.79929 1.79929 1.83486 5 is the lens 7 of claim 3 -27.399 0.8708 300
.. 145 9.792 5 1.828
02 Example 5 f=50, 2θ: 48 degrees, K1=0.811. K2=
-0,250°Ks” 0.342, K4”0.0
17. K5:1.828021 RI
Di jn, 0 12, 134 1 53.194 4.896 1 1.79
4652 380.799 1.629 2 1
.. 614203 32.428 13.056 4 -12.497 3.264 3 1.83
4865 -17.088 0.870 6 -51.338 8.160 4 1.82
8027 -27.436 0.870 8-463.494 9.792 5 1.82
8029 -60.789 The last examples 6 and 7 are examples based on the lens configuration of claim 4.

実施例6 f=50 、2θ=48度、K□=0.558. K2
=−0,252゜K3=−0,344、K4=0.01
7. K5=1.82802iRt       Dt
     Jn。
Example 6 f=50, 2θ=48 degrees, K□=0.558. K2
=-0,252°K3=-0,344, K4=0.01
7. K5=1.82802iRtDt
Jn.

010.732 1  66.716   4.896   1   1
.828022−127.315   1.632 3−271.999   1.629   2   1
.746014  37.791   10.9315
 −12.587   3.264   3   1.
834866  −17.197   0.8707 
 −36.166   9.556   4   1.
828028  −27.223   0.8709 
400.541   9.792   5   1.8
280210 −62.349 実施例7 f=50,2θ=48度、K、=0.511. K2=
−0,251゜K3=−0,344、に4”0.017
.に5=1.828021    R;     D 
、J    n=0       12、456 1  62.955  4.896  1  1.82
8022  701.244   1.6323  2
17.599   1.629   2   1614
204   33.247   10.9315  −
12.552   3.264   3   1.83
4866  −17.206   0.8707  −
32.289   6.528   4   1.82
8028  −25.196   0.8709 11
91.683   9.792   5   1.82
80210 −50.379 実施例1〜7に関する収差図を第6図乃至第12図に順
次示す。非点収差における破線はメリディオナル、実線
はサジタルである。収差は各実施例とも良好に補正され
ている。
010.732 1 66.716 4.896 1 1
.. 828022-127.315 1.632 3-271.999 1.629 2 1
.. 746014 37.791 10.9315
-12.587 3.264 3 1.
834866 -17.197 0.8707
-36.166 9.556 4 1.
828028 -27.223 0.8709
400.541 9.792 5 1.8
280210 -62.349 Example 7 f=50, 2θ=48 degrees, K,=0.511. K2=
-0,251°K3=-0,344, 4"0.017
.. 5=1.828021 R; D
, J n=0 12, 456 1 62.955 4.896 1 1.82
8022 701.244 1.6323 2
17.599 1.629 2 1614
204 33.247 10.9315 -
12.552 3.264 3 1.83
4866 -17.206 0.8707 -
32.289 6.528 4 1.82
8028 -25.196 0.8709 11
91.683 9.792 5 1.82
80210 -50.379 Aberration diagrams for Examples 1 to 7 are shown in FIGS. 6 to 12 in sequence. The broken line in astigmatism is meridional, and the solid line is sagittal. Aberrations are well corrected in each example.

[発明の効果] 以上、本発明によればテレセントリックなfθレンズを
提供できる。
[Effects of the Invention] As described above, according to the present invention, a telecentric fθ lens can be provided.

このfθレンズは諸収差が良好に補正され、テレセント
リックであるので走査面とfθレンズの距離が光軸方向
にずれても適性なfθ特性を実現できる。またレンズ最
終面から走査面までの間隔が大きいので面倒れ補正レン
ズとともに使用することができる。
Since this f.theta. lens has various aberrations well corrected and is telecentric, it is possible to realize suitable f.theta. characteristics even if the distance between the scanning surface and the f.theta. lens is shifted in the optical axis direction. Furthermore, since the distance from the final lens surface to the scanning surface is large, it can be used together with a surface tilt correction lens.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明のfθレンズのレンズ構成
を説明するための図、第4図及び第5図は本発明のfθ
レンズの使用の1例を説明する図、第6図ないし第12
図は各実施例に関する収差図である。 G1. 、 、第1群の負メニスカスレンズ G2.、
、第2非点状券 FNo:13.5 コマ目×及 θ=Z4゜ ナθ苧乎11−1
1 to 3 are diagrams for explaining the lens configuration of the fθ lens of the present invention, and FIGS. 4 and 5 are diagrams for explaining the lens configuration of the fθ lens of the present invention.
Figures 6 to 12 illustrating an example of how the lens is used
The figures are aberration diagrams for each example. G1. , , 1st group negative meniscus lens G2. ,
, 2nd astigmatism ticket FNo.: 13.5 Frame x and θ = Z4゜Naθ苧义11-1

Claims (1)

【特許請求の範囲】 1、光源装置からの光束を偏向装置により等角速度的に
偏向させ、偏向光束を結像レンズ系と面倒れ補正レンズ
とにより走査面上に光スポットとして結像させて光走査
を行う光走査装置に於いて結像レンズ系として用いられ
るレンズ系であつて、物体側から像側へ向って第1乃至
第4群を順次配してなり、 第2群は物体側に凹面を向けた負メニスカスレンズ、第
3群は物体側に凹面を向けた正メニスカスレンズ、第4
群は像側レンズ面が凸面である正レンズであり、 全系の合成焦点距離をf、第3群の焦点距離をf_3、
第2群レンズの物体側および像側のレンズ面の曲率半径
をそれぞれR_ I _ I _ I 、R_ I _V、第2、第
3群間の軸上空気間隔をD_ I _V、第3群レンズの
材質の屈折率をn_ I _ I _ I とするとき、これら
が( I )0.4<f/f_3<0.95 ( I I )−0.3<R_ I _ I _ I /f<−0.
2( I I I )−0.4<R_ I _V/f<−0.3
( I V)0<D_ I _V/f<0.06 (V)1.6<n_ I _ I _ I なる条件を満足することを特徴とするテレセントリック
なfθレンズ。 2、請求項1に於いて、 第1群が物体側に凸面を向けた負メニスカスレンズであ
ることを特徴とする4群4枚構成のテレセントリックな
fθレンズ。 3、請求項1に於いて、 第1群が物体側に凸面を向けた正レンズと、この正レン
ズの像側に接合され像側に凹面を向けた負レンズとで構
成されることを特徴とする4群5枚構成のテレセントリ
ックなfθレンズ。 4、請求項1に於いて、 第1群が物体側に凸面を向けた正レンズと、この正レン
ズの像側に配備され像側に凹面を向けた負レンズとで構
成されることを特徴とする4群5枚構成のテレセントリ
ックなfθレンズ。
[Scope of Claims] 1. A light beam from a light source device is deflected at a constant angular velocity by a deflection device, and the deflected light beam is imaged as a light spot on a scanning surface by an imaging lens system and a surface tilt correction lens to generate light. A lens system used as an imaging lens system in an optical scanning device that performs scanning, in which first to fourth groups are sequentially arranged from the object side to the image side, and the second group is on the object side. The third group is a negative meniscus lens with the concave surface facing the object side, and the fourth group is a positive meniscus lens with the concave surface facing the object side.
The group is a positive lens whose image side lens surface is convex, and the composite focal length of the entire system is f, the focal length of the third group is f_3,
The radius of curvature of the object-side and image-side lens surfaces of the second group lens is R_ I _ I _ I and R_ I _V, respectively. The axial air distance between the second and third groups is D_ I _V, and the third group lens is When the refractive index of the material is n_ I _ I _ I, these are (I)0.4<f/f_3<0.95 (II)-0.3<R_ I _ I _ I /f<- 0.
2(III)-0.4<R_I_V/f<-0.3
A telecentric fθ lens that satisfies the following condition: (IV)0<D_I_V/f<0.06 (V)1.6<n_I_I_I. 2. A telecentric f-theta lens having four elements in four groups, as claimed in claim 1, wherein the first group is a negative meniscus lens with a convex surface facing the object side. 3. Claim 1 is characterized in that the first group is composed of a positive lens with a convex surface facing the object side, and a negative lens cemented to the image side of the positive lens and having a concave surface facing the image side. Telecentric f-theta lens with 5 elements in 4 groups. 4. Claim 1 is characterized in that the first group is composed of a positive lens with a convex surface facing the object side, and a negative lens disposed on the image side of the positive lens with a concave surface facing the image side. Telecentric f-theta lens with 5 elements in 4 groups.
JP2208419A 1990-08-06 1990-08-06 Telecentric fθ lens Expired - Fee Related JP3034565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208419A JP3034565B2 (en) 1990-08-06 1990-08-06 Telecentric fθ lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208419A JP3034565B2 (en) 1990-08-06 1990-08-06 Telecentric fθ lens

Publications (2)

Publication Number Publication Date
JPH0493910A true JPH0493910A (en) 1992-03-26
JP3034565B2 JP3034565B2 (en) 2000-04-17

Family

ID=16555919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208419A Expired - Fee Related JP3034565B2 (en) 1990-08-06 1990-08-06 Telecentric fθ lens

Country Status (1)

Country Link
JP (1) JP3034565B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324015B1 (en) 1999-08-10 2001-11-27 Sumitomo Electric Industries, Ltd. fθ lens
WO2004068746A1 (en) * 2003-01-31 2004-08-12 Mitsubishi Denki Kabushiki Kaisha Optical antenna
KR100616643B1 (en) * 2004-12-21 2006-08-28 삼성전기주식회사 Lens System For Subminiature Camera Module
JP2007156481A (en) * 2005-12-07 2007-06-21 Palo Alto Research Center Inc Multiple beam scanning system and image forming apparatus
EP2851726A1 (en) * 2013-08-29 2015-03-25 Fujifilm Corporation Scanning optical system, optical scanning apparatus, and radiation image readout apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324015B1 (en) 1999-08-10 2001-11-27 Sumitomo Electric Industries, Ltd. fθ lens
EP1081525A3 (en) * 1999-08-10 2003-07-23 Sumitomo Electric Industries, Ltd. F-theta lens
WO2004068746A1 (en) * 2003-01-31 2004-08-12 Mitsubishi Denki Kabushiki Kaisha Optical antenna
US7151882B2 (en) 2003-01-31 2006-12-19 Mitsubishi Denki Kabushiki Kaisha Optical antenna
KR100616643B1 (en) * 2004-12-21 2006-08-28 삼성전기주식회사 Lens System For Subminiature Camera Module
JP2007156481A (en) * 2005-12-07 2007-06-21 Palo Alto Research Center Inc Multiple beam scanning system and image forming apparatus
EP2851726A1 (en) * 2013-08-29 2015-03-25 Fujifilm Corporation Scanning optical system, optical scanning apparatus, and radiation image readout apparatus

Also Published As

Publication number Publication date
JP3034565B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP2718735B2 (en) Fθ lens system in optical scanning device
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP2550153B2 (en) Optical scanning device
JP2804512B2 (en) Fθ lens system in optical scanning device
JPH0493910A (en) Telecentric ftheta lens
JP2945097B2 (en) Telecentric fθ lens
JPH07119897B2 (en) Optical scanning device
JPS62265615A (en) Optical scanner
JP3437331B2 (en) Optical scanning optical system and laser beam printer including the same
JP2738857B2 (en) Fθ lens system in optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP2511904B2 (en) Optical beam scanning device
JPS61175607A (en) Scanning optical system
JP2986949B2 (en) Imaging lens system in optical scanning device
JP2834793B2 (en) Fθ lens system in optical scanning device
JP2583856B2 (en) Optical beam scanning device
JP2938550B2 (en) Ftheta lens and linear image forming lens
JP2774546B2 (en) Fθ lens system in optical scanning device
JP2927846B2 (en) Fθ lens system in optical scanning device
JP2718743B2 (en) Fθ lens system in optical scanning device
JP2790839B2 (en) Fθ lens system in optical scanning device
JP2877390B2 (en) Fθ lens system in optical scanning device
JP3266350B2 (en) fθ lens and optical scanning device
JPH0364724A (en) F-theta lens
JP3364525B2 (en) Scanning imaging lens and optical scanning device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees