JP2774546B2 - Fθ lens system in optical scanning device - Google Patents

Fθ lens system in optical scanning device

Info

Publication number
JP2774546B2
JP2774546B2 JP1032139A JP3213989A JP2774546B2 JP 2774546 B2 JP2774546 B2 JP 2774546B2 JP 1032139 A JP1032139 A JP 1032139A JP 3213989 A JP3213989 A JP 3213989A JP 2774546 B2 JP2774546 B2 JP 2774546B2
Authority
JP
Japan
Prior art keywords
lens
scanning
sub
scanning direction
toric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1032139A
Other languages
Japanese (ja)
Other versions
JPH02146015A (en
Inventor
靖 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP1032139A priority Critical patent/JP2774546B2/en
Publication of JPH02146015A publication Critical patent/JPH02146015A/en
Application granted granted Critical
Publication of JP2774546B2 publication Critical patent/JP2774546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光走査装置におけるfθレンズ系に関す
る。
The present invention relates to an fθ lens system in an optical scanning device.

[従来の技術] 光走査装置は、光束の走査により情報の書き込みや読
み取りを行う装置として知られ、レーザープリンターや
ファクシミリ等に使用されている。
2. Description of the Related Art An optical scanning device is known as a device for writing and reading information by scanning a light beam, and is used for a laser printer, a facsimile, and the like.

このような光走査装置のうちに、光源からの光束を主
走査対応方向に長い線状に結像させ、その線状の結像位
置の近傍に反射面を有する回転多面鏡により上記光束を
等角速度的に偏向し、この偏向光束を結像レンズ系によ
り走査面上にスポット状に結像させて走査面を光走査す
る方式の装置がある。
In such an optical scanning device, a light beam from a light source is formed into a long linear image in a direction corresponding to the main scanning, and the light beam is equalized by a rotating polygon mirror having a reflecting surface near the linear image forming position. There is an apparatus of a system which deflects at an angular velocity, forms an image of a spot of this deflected light beam on a scanning surface by an imaging lens system, and optically scans the scanning surface.

回転多面鏡を用いる光走査装置には、面倒れの問題が
あり、また、偏向される光束は角速度が一定となるの
で、走査面の走査が定速的に行われる様に工夫する必要
がある。fθレンズ系は、この、走査面の定速的な走査
を光学的に実現する様にしたレンズ系であり、入射角θ
をもって入射する光束の像高が焦点距離をfとしてfθ
となるようにするfθ機能を有する。
An optical scanning device using a rotary polygon mirror has a problem of surface tilt, and the angular velocity of the deflected light beam is constant. Therefore, it is necessary to devise a method to scan the scanning surface at a constant speed. . The fθ lens system is a lens system that optically realizes the constant-speed scanning of the scanning surface, and the incident angle θ
The image height of the luminous flux incident with f is fθ where f is the focal length.
Fθ function to make

また、面倒れの問題を解決する方法としては、回転多
面鏡と走査面との間に設けられるレンズ系をアナモフィ
ック系とし、副走査方向に関して、回転多面鏡の反射位
置と走査面とを共役関係に結び付ける方法が知られてい
る。
As a method for solving the problem of surface tilt, an anamorphic lens system provided between the rotating polygon mirror and the scanning plane is used, and the reflection position of the rotating polygon mirror and the scanning plane are conjugated in the sub-scanning direction. There is a known way to link them.

[発明が解決しようとする課題] fθレンズ系自体をアナモフィックとし、定速的な走
査と面倒れの問題の解決とを図ったものとしては、特開
昭59−147316号公報に開示されたものが知られている。
このレンズ系は偏向角が大きいが像面湾曲に関して、回
転多面鏡による入射瞳位置の変動による影響が検討され
ていない。
[Problems to be Solved by the Invention] The f-theta lens system itself is made anamorphic, and a technique for solving the problem of constant-speed scanning and tilting is disclosed in Japanese Patent Application Laid-Open No. Sho 59-147316. It has been known.
Although this lens system has a large deflection angle, the effect of the change in the position of the entrance pupil by the rotating polygon mirror has not been studied with respect to the field curvature.

また、特開昭61−245129号公報開示のものは像面湾曲
に対する上記入射瞳位置の変動の問題についても面倒れ
に起因する走査線のピッチむらの除去に関しても十分な
検討がなされていない。
Further, the one disclosed in Japanese Patent Application Laid-Open No. 61-245129 does not sufficiently examine the problem of the above-mentioned fluctuation of the entrance pupil position due to the curvature of field, nor the removal of the scanning line pitch unevenness due to the surface tilt.

本発明は、上述した事情に鑑みてなされたものであっ
て、回転多面鏡の回転にともなう入射瞳位置の変動によ
る主・副走査方向の像面湾曲の十分な補正と、回転多面
鏡における面倒れの問題の解決を可能ならしめた新規な
fθレンズ系の提供を目的とする。
The present invention has been made in view of the above-described circumstances, and has been made in view of the above-described circumstances, and has been made in view of the above circumstances. It is an object of the present invention to provide a novel fθ lens system which can solve these problems.

[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.

本発明のfθレンズ系は、「光源からの略平行な光束
を主走査対応方向に長い線状に結像させ、その線状の結
像位置の近傍に反射面を有する回転多面鏡により上記光
束を等角速度的に偏向し、この偏向光束を結像レンズ系
により走査面上にスポット状に結像させて走査面を光走
査する光走査装置において、回転多面鏡により偏向され
た光束を走査面上に結像させるレンズ系」であって、副
走査方向に関して回転多面鏡の反射位置と走査面とを幾
何光学的に略共役関係に結び付ける機能を有し、主走査
方向に関してはfθ機能を有する。
The fθ lens system according to the present invention is configured such that “a substantially parallel light beam from the light source is formed into a long linear image in the main scanning corresponding direction, and the light beam is formed by a rotary polygon mirror having a reflecting surface near the linear image forming position. Is deflected at a uniform angular velocity, and the light beam deflected by the rotating polygon mirror is scanned by the scanning polygon in an optical scanning device that optically scans the scanning surface by imaging the deflected light beam into a spot on the scanning surface by an imaging lens system. Has a function of geometrically optically coupling the reflection position of the rotary polygonal mirror and the scanning plane in a substantially conjugate relationship with respect to the sub-scanning direction, and has an fθ function with respect to the main scanning direction. .

このfθレンズ系は、回転多面鏡の側から走査面側へ
向かって第1、第2の順に配備される第1および第2の
レンズにより構成される2群・2枚構成であって、上記
第1のレンズは「主・副走査方向ともに負の屈折力を持
つアナモフィックな単レンズ」であり、第2のレンズは
「主・副走査方向とも正の屈折力を持つアナモフィック
な単レンズ」である。
The fθ lens system has a two-group, two-lens configuration including first and second lenses provided in a first and second order from the side of the rotary polygon mirror toward the scanning surface. The first lens is an “anamorphic single lens having a negative refractive power in both the main and sub-scanning directions”, and the second lens is an “anamorphic single lens having a positive refractive power in both the main and sub-scanning directions”. is there.

上記第1のレンズは、一方の面が球面、他方の面がシ
リンダー面もしくはトーリック面または変形トーリック
面で形成され、上記第2のレンズは一方の面がトーリッ
ク面、他方の面がトーリック面もしくは変形トーリック
面で形成される。
The first lens has one surface formed of a spherical surface, the other surface formed of a cylinder surface or a toric surface, or a modified toric surface, and the second lens has one surface of a toric surface and the other surface of a toric surface or It is formed with a deformed toric surface.

回転多面鏡の側から走査面に向かってレンズ面を順
次、第1ないし第4レンズ面とし第iレンズ面(i=1
〜4)の曲率半径を偏向面内でRiX,副走査方向でRiY
第1、第2のレンズの屈折率をn1,n2とするとき、これ
らは、 (I) −3.5<[{(1/R3X)−(1/R4X)}n2] /[{(1/R1X)−(1/R2X)}n1]<−2.
0 (II) −2.5<[{(1/R3Y)−(1/R4Y)}n2] /[{(1/R1Y)−(1/R2Y)}n1]<−1.
0 なる条件を満足する。
The lens surfaces are sequentially referred to as first to fourth lens surfaces from the side of the rotary polygon mirror toward the scanning surface, and the i-th lens surface (i = 1)
4), the radius of curvature R iX in the deflection plane, R iY in the sub-scanning direction,
When the refractive indices of the first and second lenses are n 1 and n 2 , they are as follows: (I) −3.5 <[{(1 / R 3X ) − (1 / R 4X )] n 2 ] / [ {(1 / R 1X ) − (1 / R 2X )} n 1 ] <− 2.
0 (II) -2.5 <[{ (1 / R 3Y) - (1 / R 4Y)} n 2] / [{(1 / R 1Y) - (1 / R 2Y)} n 1] <- 1.
0 is satisfied.

また、上記変形トーリック面は、光軸上の副走査方向
の曲率半径をRiY0、主走査方向における光軸からの距離
をHiとするとき、 (但し、複号はRiX>0のとき−,RiX<0のとき+)を
満足する曲面である。
Further, the deformed toric surface, when the radius of curvature in the sub-scanning direction on the optical axis is R iY0 , and the distance from the optical axis in the main scanning direction is H i , (However, the compound sign is a curved surface that satisfies − when R iX > 0, and + when R iX <0).

以下の説明に於いて、「偏向面」とは回転多面鏡によ
る理想的な偏向光束の主光線の掃引により形成される平
面である。レンズ光軸を含み上記偏向面に直交する平面
を以下、「偏向直交面」と称する。
In the following description, the “deflection surface” is a plane formed by sweeping the principal ray of an ideal deflection light beam by a rotating polygon mirror. A plane that includes the optical axis of the lens and that is orthogonal to the deflecting surface is hereinafter referred to as a “deflection orthogonal surface”.

上記レンズ面の曲率に関してRiXは、偏向面上に於け
る曲率半径であり、RiYは光軸に平行で且つ偏向面に直
交する面内での曲率半径である。また、変形トーリック
面を特定するパラメーターの一つである上記RiY0は偏向
直交面内での曲率半径である。
Regarding the curvature of the lens surface, R iX is a radius of curvature on the deflection surface, and R iY is a radius of curvature in a plane parallel to the optical axis and orthogonal to the deflection surface. In addition, RiO, which is one of the parameters for specifying the deformed toric surface, is the radius of curvature in the plane orthogonal to the deflection.

[作用] 上記条件(I),(II)は以下の如き意味を有する。
即ち、条件(I)は、主走査方向の像面湾曲とリニアリ
ティ即ちfθ特性とを良好に保つための条件であり、上
限を越えると主走査方向の像面湾曲がオーバーとなり、
fθ特性がアンダーとなる。また、下限を越えると像面
湾曲がアンダーとなり、fθ特性はオーバーとなる。
[Operation] The above conditions (I) and (II) have the following meanings.
That is, the condition (I) is a condition for maintaining good field curvature in the main scanning direction and linearity, that is, fθ characteristics. When the upper limit is exceeded, the field curvature in the main scanning direction becomes excessive.
The fθ characteristics are under. If the lower limit is exceeded, the curvature of field will be under, and the fθ characteristic will be over.

条件(II)は副走査方向の像面湾曲量とコマ収差を良
好に補正する為の条件である。
The condition (II) is a condition for favorably correcting the amount of field curvature in the sub-scanning direction and coma.

条件(II)の上限を越えると副走査方向の像面湾曲が
オーバーとなり、外向きのコマ収差が発生する。下限を
越えると副走査方向の像面湾曲はアンダーとなり内向き
のコマ収差が発生する。
When the value exceeds the upper limit of the condition (II), the curvature of field in the sub-scanning direction becomes excessive, and outward coma occurs. If the lower limit is exceeded, the curvature of field in the sub-scanning direction becomes under, and inward coma occurs.

変形トーリック面は、副走査方向の像面湾曲を良好に
補正するために採用されている。
The deformed toric surface is employed to satisfactorily correct the curvature of field in the sub-scanning direction.

以下、図面を参照しながら説明する。 This will be described below with reference to the drawings.

第1図は、本発明のfθレンズ系を用いた光走査装置
の1例を説明図的に略示している。また、第2図は、第
1図の光学配置を副走査方向から見た状態、即ち偏向面
内での様子を示している。
FIG. 1 schematically illustrates an example of an optical scanning device using the fθ lens system of the present invention. FIG. 2 shows a state of the optical arrangement of FIG. 1 viewed from the sub-scanning direction, that is, a state in a deflection plane.

光源もしくは光源と集光装置とからなる光源装置1か
らの略平行な光束は線像結像光学系たるシリンダーレン
ズ2により、回転多面鏡3の反射面4の近傍に、偏向面
と略平行な線像として結像する。
A substantially parallel luminous flux from a light source or a light source device 1 including a light source and a light condensing device is substantially parallel to a deflection surface near a reflection surface 4 of a rotary polygon mirror 3 by a cylinder lens 2 serving as a line image forming optical system. An image is formed as a line image.

回転多面鏡3により反射された光束は、本発明のfθ
レンズ系により、走査面7上にスポット状に結像され、
回転多面鏡3の矢印方向への等速回転に従い、走査面7
を等速的に走査する。
The light beam reflected by the rotating polygon mirror 3 is fθ of the present invention.
The lens system forms a spot-like image on the scanning surface 7,
The scanning surface 7 follows the rotation of the rotary polygon mirror 3 at a constant speed in the direction of the arrow.
Are scanned at a constant speed.

fθレンズ系は第1のレンズ5と第2のレンズ6とに
より構成され、レンズ5は回転多面鏡3の側、レンズ6
は走査面7の側にそれぞれ配設される。偏向面内で見る
と第2図に示すように、レンズ5,6によるfθレンズ系
は光源側の無限遠と走査面7の位置とを幾何光学的な共
役関係に結び付けている。
The fθ lens system includes a first lens 5 and a second lens 6, and the lens 5 is located on the side of the rotary polygon mirror 3 and the lens 6
Are disposed on the scanning surface 7 side, respectively. As viewed in the deflection plane, as shown in FIG. 2, the fθ lens system including the lenses 5 and 6 links the infinity on the light source side and the position of the scanning surface 7 to a geometric optic conjugate relationship.

これに対し、偏向直交面内で見ると、即ち副走査方向
に関してはfθレンズ系は回転多面鏡3の反射位置と走
査面7とを幾何光学的な略共役関係に結び付けている。
従って、第3図に示すように反射面4が符号4′で示す
ように面倒れを生じてもfθレンズ系による、走査面7
上の結像位置は副走査方向(第3図上下方向)には殆ど
移動しない。従って面倒れは補正される。
On the other hand, when viewed in the plane orthogonal to the deflection, that is, in the sub-scanning direction, the fθ lens system links the reflection position of the rotary polygon mirror 3 and the scanning surface 7 to a substantially geometrical optically conjugate relationship.
Therefore, even if the reflecting surface 4 is tilted as shown by reference numeral 4 'as shown in FIG.
The upper imaging position hardly moves in the sub-scanning direction (vertical direction in FIG. 3). Therefore, the tilting is corrected.

さて、回転多面鏡3が回転すると、反射面4は軸3Aを
中心として回転するため、第4図に示すように、反射面
の回転に伴い線像の結像位置Pと反射面4との間に位置
ずれΔXが生する。このときfθレンズ系による線像の
共役像の位置P′と走査面7とのずれ量ΔX′はfθレ
ンズ系の副走査方向の横倍率をβとして、周知の如く ΔX′=βΔX で与えられる。
Now, when the rotating polygon mirror 3 rotates, the reflecting surface 4 rotates about the axis 3A, and as shown in FIG. A displacement ΔX occurs between them. At this time, the shift amount ΔX ′ between the position P ′ of the conjugate image of the line image by the fθ lens system and the scanning surface 7 is represented by ΔX ′ = β 2 ΔX as is known, where β is the lateral magnification of the fθ lens system in the sub-scanning direction. Given.

偏向面内で、fθレンズ系のレンズ光軸と偏向光束の
主光線とのなす角をθとする時、θと上記ΔXとの関係
を示したのが第5図及び第6図である。第5図は固有入
射角α(回転多面鏡への入射光束の主光線とfθレンズ
系の光軸のなす角:第7図参照)を90度とし、回転多面
鏡3の内接円半径Rをパラメーターとして描いている。
また、第6図では、上記内接円半径Rを40mmとし、入射
角αをパラメーターとして描いている。
FIGS. 5 and 6 show the relationship between θ and ΔX when the angle between the lens optical axis of the fθ lens system and the principal ray of the deflected light beam is θ in the deflection plane. FIG. 5 shows that the specific incident angle α (the angle between the principal ray of the light beam incident on the rotating polygon mirror and the optical axis of the fθ lens system: see FIG. 7) is 90 degrees, and the inscribed circle radius R of the rotating polygon mirror 3 is R. Is drawn as a parameter.
In FIG. 6, the radius R of the inscribed circle is set to 40 mm, and the incident angle α is used as a parameter.

第5,6図から分かるように、ΔXは、内接円半径Rが
大きいほど、また、固有入射角αが小さいほど大きくな
る。
As can be seen from FIGS. 5 and 6, ΔX increases as the radius R of the inscribed circle increases and as the specific incident angle α decreases.

また、反射面の回転に伴う線像の位置と反射面との相
対的な位置ずれは、偏向面内で2次元的に生じ、且つレ
ンズ光軸に対しても非対称に移動する。従って、第1図
の如き光走査装置ではfθレンズ系の主・副走査方向の
像面湾曲を良好に補正する必要がある。また、主走査方
向に関してはfθ特性が良好に補正されねばならないこ
とは言うまでもない。
Further, the relative displacement between the position of the line image and the reflection surface due to the rotation of the reflection surface occurs two-dimensionally in the deflection surface and moves asymmetrically with respect to the lens optical axis. Therefore, in the optical scanning device as shown in FIG. 1, it is necessary to satisfactorily correct the field curvature of the fθ lens system in the main and sub scanning directions. Needless to say, the fθ characteristic must be corrected well in the main scanning direction.

ここで、前述の固有入射角αにつき説明すると、第7
図において、符号aは回転多面鏡に入射する光束の主光
線を示し、符号bは回転多面鏡3による反射光束がfθ
レンズ系の光軸と平行に成ったときの主光線を示してい
る。主光線a,bの交点を原点として図のごとくX,Y軸を定
め、回転多面鏡3の回転軸位置座標をXp,Ypとする。
Here, the above-described specific incident angle α will be described.
In the figure, the symbol a indicates the principal ray of the light beam incident on the rotating polygon mirror, and the symbol b indicates the light beam reflected by the rotating polygon mirror 3 is fθ.
It shows the principal ray when it is parallel to the optical axis of the lens system. The X and Y axes are determined as shown in the figure with the intersection of the principal rays a and b as the origin, and the coordinates of the rotation axis position of the rotary polygon mirror 3 are Xp and Yp.

固有入射角αは一般に、図の如く主光線a,bの交角と
して定義される。
The specific incident angle α is generally defined as the angle of intersection of the principal rays a and b as shown in the figure.

前述した、線像位置と反射面との位置ずれ量のΔXの
変動をなるべく少なくする為には周知のごとく、 0<Xp<Rcos(α/2) 0<Yp<Rsin(α/2) なる条件をXp,Ypに課せばよい。
In order to minimize the variation of ΔX of the displacement between the line image position and the reflecting surface as described above, 0 <Xp <Rcos (α / 2) 0 <Yp <Rsin (α / 2) Conditions may be imposed on Xp and Yp.

また、第8図には、本発明の特徴の一端をなす変形ト
ーリック面を説明図的に示す。
FIG. 8 is an explanatory diagram showing a deformed toric surface forming one end of the feature of the present invention.

この変形トーリック面は、第8図に示すように副走査
方向の曲率半径が光軸部分で小さく、光軸を主走査方向
へ離れるに従って、副走査方向の曲率半径が次第に大き
くなるような面であり、解析的には、前述の(III)式
を満足する。従って、変形トーリック面はRiXとRiY0
を与えれば一義的に定まる。
The deformed toric surface is such that the radius of curvature in the sub-scanning direction is small at the optical axis portion as shown in FIG. 8, and the radius of curvature in the sub-scanning direction gradually increases as the optical axis moves away from the main scanning direction. It satisfies the above-mentioned equation (III) analytically. Therefore, the deformed toric surface is uniquely determined if R iX and R iY0 are given.

[実施例] 以下、具体的な実施例を5例挙げる。[Examples] Hereinafter, five specific examples will be given.

各実施例において、fMはfθレンズ系の主走査方向に
関する合成焦点距離、即ち偏向面に平行な面内における
合成焦点距離を表し、この値は100に規格化される。ま
た、fSは偏向直交面内での合成焦点距離即ち副走査方向
に関する合成焦点距離を表す。2θは偏向角、αは固有
入射角を示す。RiXは回転多面鏡の側から数えてi番目
のレンズ面の偏向面内の曲率半径、RiYはi番目のレン
ズ面の偏向直交面内の曲率半径、diはi番目のレンズ面
間距離、d0は回転多面鏡の反射面から第1レンズ面まで
の距離、njはj番目のレンズの屈折率、Rは回転多面鏡
の内接円半径を示す。
In each embodiment, f M represents a combined focal length of the fθ lens system in the main scanning direction, that is, a combined focal length in a plane parallel to the deflection surface, and this value is normalized to 100. Further, f S represents the composite focal length of the synthesis focal distance or the sub-scanning direction in the deflection plane perpendicular. 2θ indicates the deflection angle, and α indicates the specific incident angle. R iX is the radius of curvature of the i-th lens surface in the deflection plane counted from the side of the rotating polygon mirror, R iY is the radius of curvature of the i-th lens surface in the plane orthogonal to the deflection, and d i is the distance between the i-th lens surfaces. The distance, d 0 is the distance from the reflecting surface of the rotating polygon mirror to the first lens surface, n j is the refractive index of the j-th lens, and R is the radius of the inscribed circle of the rotating polygon mirror.

さらに、K1=[{(1/R3X)−(1/R4X)}n2]/
[{(1/R1X)−(1/R2X)}n1],K2=[{(1/R3Y)−
(1/R4Y)}n2]/[{(1/R1Y)−(1/R2Y)}n1]を
表している。
Further, K 1 = [{(1 / R 3X ) − (1 / R 4X )} n 2 ] /
[{(1 / R 1X ) − (1 / R 2X )} n 1 ], K 2 = [{(1 / R 3Y ) −
(1 / R 4Y )} n 2 ] / [{(1 / R 1Y ) − (1 / R 2Y )} n 1 ].

実施例 1 fM=100,fS=24.254,2θ=65.6゜,α=60゜, R=14.085,K1=−3.261,K2=−1.034,d0=7.027 この実施例に於いては、第1面がトーリック面、第2
面が球面、第3面、第4面がトーリック面である。
Example 1 f M = 100, f S = 24.254, 2θ = 65.6 °, α = 60 °, R = 14.085, K1 = −3.261, K2 = −1.034, d 0 = 7.027 In this embodiment, the first surface is a toric surface,
The surface is a spherical surface, and the third and fourth surfaces are toric surfaces.

実施例 2 fM=100,fS=23.35,2θ=65.6゜,α=60゜, R=14.085,K1=−3.261,K2=−1.236,d0=7.027 この実施例に於いては、第1面が球面、第2、第4面
がトーリック面であり、*印を付けた第3面が変形トー
リック面である。第3面の変形トーリック面におけるR
3Yは、一般式(III)中に於けるR3Y0であることは言う
までもない。
Example 2 f M = 100, f S = 23.35, 2θ = 65.6 °, α = 60 °, R = 14.085, K1 = −3.261, K2 = −1.236, d 0 = 7.027 In this embodiment, the first surface is a spherical surface, the second and fourth surfaces are toric surfaces, and the third surface marked * is a deformed toric surface. R on the deformed toric surface of the third surface
Needless to say, 3Y is R 3Y0 in the general formula (III).

実施例 3 fM=100,fS=23.00,2θ=65.6゜,α=60゜, R=14.085,K1=−2.901,K2=−1.25,d0=7.317 この実施例に於いては、第1面がシリンダー面、第2
面が球面、第3面、第4面がトーリック面である。
Example 3 f M = 100, f S = 23.00, 2θ = 65.6 °, α = 60 °, R = 14.085, K1 = −2.901, K2 = −1.25, d 0 = 7.317 In this embodiment, the first surface is a cylinder surface and the second surface is a second surface.
The surface is a spherical surface, and the third and fourth surfaces are toric surfaces.

実施例 4 fM=100,fS=24.615,2θ=65.6゜,α=60゜, R=14.085,K1=−3.261,K2=−1.689,d0=7.027 この実施例に於いては、第1面が球面、第3、第4面
がトーリック面であり、*印を付けた第2面が変形トー
リック面で、R2Yは、一般式(III)中に於けるR2Y0であ
る。
Example 4 f M = 100, f S = 24.615, 2θ = 65.6 °, α = 60 °, R = 14.085, K1 = −3.261, K2 = −1.689, d 0 = 7.027 In this embodiment, the first surface is a spherical surface, the third and fourth surfaces are toric surfaces, the second surface marked with * is a deformed toric surface, and R 2Y is represented by the general formula (III). R2Y0 in

実施例 5 fM=100,fS=23.338,2θ=65.6゜,α=60゜, R=14.085,K1=−3.261,K2=−1.147,d0=7.027 この実施例に於いては、第2面が球面、第3、第4面
がトーリック面であり、*印を付けた第1面が変形トー
リック面で、R1Yは、一般式(III)中に於けるR1Y0であ
る。
Example 5 f M = 100, f S = 23.338, 2θ = 65.6 °, α = 60 °, R = 14.085, K1 = −3.261, K2 = −1.147, d 0 = 7.027 In this embodiment, the second surface is a spherical surface, the third and fourth surfaces are toric surfaces, the first surface marked with * is a deformed toric surface, and R 1Y is represented by the general formula (III). R 1Y0 in

なお、fMの具体的な数値は、上記実施例1〜5を通じ
てfM=220.1mmである。
The specific numeric value of f M is a f M = 220.1mm through the fifth embodiments.

第9図に、実施例1に関する収差図を示す。第10図な
いし第13図には、実施例2ないし5に関する収差図を示
す。像面湾曲の図における実線は副走査方向の結像位置
を示し、破線は主走査方向の結像位置を示す。像面湾曲
は回転多面鏡の回転に伴う入射瞳位置の変動により非対
照的であるので全偏向領域にわたって示してある。
FIG. 9 shows an aberration diagram relating to the first embodiment. 10 to 13 show aberration diagrams for Examples 2 to 5. The solid line in the figure of curvature of field indicates the image forming position in the sub-scanning direction, and the broken line indicates the image forming position in the main scanning direction. The field curvature is shown over the entire deflection region since it is asymmetrical due to the variation of the entrance pupil position with the rotation of the rotating polygon mirror.

また、第14図ないし第18図に、各実施例における結像
性能を表すスポットダイヤグラムを示す。光軸を中心に
最大偏向角を1として、偏向角0,±0.7,±1のものを示
す。
FIG. 14 to FIG. 18 show spot diagrams representing the imaging performance in each embodiment. Assuming that the maximum deflection angle is 1 around the optical axis, the deflection angles are 0, ± 0.7, ± 1.

[発明の効果] 以上、本発明によれば光走査装置に於ける新規なfθ
レンズ系を提供できる。このレンズ系は上記の如く、像
面湾曲が小さいので高密度の書き込みが可能であり、面
倒れ補正に長尺のシリンダーレンズを必要としないの
で、光走査装置をコンパクトに構成することが可能とな
る。
[Effects of the Invention] As described above, according to the present invention, a novel fθ in the optical scanning device
A lens system can be provided. As described above, this lens system has a small curvature of field, so that high-density writing is possible, and since a long cylinder lens is not required for correcting surface tilt, it is possible to make the optical scanning device compact. Become.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のfθレンズ系を使用した光走査装置
の概要を示す概略斜視図、第2図乃至第3図は、本発明
のfθレンズを説明するための図、第4図乃至第7図
は、回転多面鏡の回転にもとづく入射瞳位置の変動とそ
の対応策を説明するための図、第8図は変形トーリック
面を説明するための図、第9図乃至第13図は収差図、第
14図乃至第18図は、スポットダイヤグラムを示す図であ
る。 5……第1のレンズ、6……第2のレンズ
FIG. 1 is a schematic perspective view showing an outline of an optical scanning device using the fθ lens system of the present invention, FIGS. 2 to 3 are diagrams for explaining the fθ lens of the present invention, and FIGS. FIG. 7 is a diagram for explaining the change of the entrance pupil position based on the rotation of the rotary polygon mirror and a countermeasure thereof, FIG. 8 is a diagram for explaining the deformed toric surface, and FIGS. Aberration diagram, No.
FIG. 14 to FIG. 18 are diagrams showing spot diagrams. 5 ... first lens, 6 ... second lens

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源からの略平行な光束を主走査対応方向
に長い線状に結像させ、その線状の結像位置の近傍に反
射面を有する回転多面鏡により上記光束を等角速度的に
偏向し、この偏向光束を結像レンズ系により走査面上に
スポット状に結像させて走査面を光走査する光走査装置
において、回転多面鏡により偏向された光束を走査面上
に結像させるレンズ系であって、 副走査方向に関しては回転多面鏡の反射位置と走査面と
を略共役関係に結び付ける機能を有し、主走査方向に関
してはfθ機能を有し、 回転多面鏡の側から走査面側へ向かって第1、第2の順
に配備される、第1および第2のレンズにより構成され
る2群・2枚構成であって、 上記第1のレンズは主・副走査方向ともに負の屈折力を
持つアナモフィックな単レンズであり、上記第2のレン
ズは主・副走査方向とも正の屈折力を持つアナモフィッ
クな単レンズであり、 上記第1のレンズは、一方の面が球面、他方の面がシリ
ンダー面もしくはトーリック面または変形トーリック面
で形成され、上記第2のレンズは一方の面がトーリック
面、他方の面がトーリック面もしくは変形トーリック面
で形成され、 回転多面鏡の側から走査面に向かってレンズ面を順次、
第1ないし第4レンズ面とし第iレンズ面(i=1〜
4)の曲率半径を偏向面内でRiX、副走査方向でRiY、第
1、第2のレンズの屈折率をn1,n2とするとき、これら
が、 (I) −3.5<[{(1/R3X)−(1/R4X)}n2] /[{(1/R1X)−(1/R2X)}n1]<−2.0 (II) −2.5<[{(1/R3Y)−(1/R4Y)}n2] /[{(1/R1Y)−(1/R2Y)}n1]<−1.0 なる条件を満足し、 上記変形トーリック面は、光軸上の副走査方向の曲率半
径をRiY0、主走査方向における光軸からの距離をHiとす
るとき、 (但し、複号はRiX>0のとき−,RiX<0のとき+)を
満足する曲面であることを特徴とする、fθレンズ系。
A substantially parallel light beam from a light source is formed into a long linear image in a direction corresponding to main scanning, and the light beam is subjected to uniform angular velocity by a rotary polygon mirror having a reflecting surface near the linear image forming position. In a light scanning device that optically scans the scanning surface by forming an image of the deflected light beam in a spot shape on the scanning surface by the imaging lens system, the light beam deflected by the rotary polygon mirror is imaged on the scanning surface. A lens system that has a function of linking the reflection position of the rotating polygonal mirror and the scanning plane in a substantially conjugate relationship with respect to the sub-scanning direction, has an fθ function with respect to the main scanning direction, and has a function from the side of the rotating polygonal mirror. A two-group, two-lens configuration including first and second lenses arranged in a first and second order toward the scanning surface side, wherein the first lens is used in both the main and sub-scanning directions. Anamorphic single lens with negative refractive power, The second lens is an anamorphic single lens having a positive refractive power in both the main and sub-scanning directions. The first lens has a spherical surface on one surface and a cylinder surface or toric surface or a deformed toric on the other surface. The second lens has one surface formed of a toric surface and the other surface formed of a toric surface or a deformed toric surface, and sequentially forms a lens surface from a rotating polygon mirror toward a scanning surface.
The first to fourth lens surfaces and the i-th lens surface (i = 1 to
When the radius of curvature of 4) is R iX in the deflecting plane, R iY in the sub-scanning direction, and the refractive indices of the first and second lenses are n 1 and n 2 , these are represented by (I) −3.5 <[ {(1 / R 3X) - (1 / R 4X)} n 2] / [{(1 / R 1X) - (1 / R 2X)} n 1] <- 2.0 (II) -2.5 <[{( 1 / R 3Y ) − (1 / R 4Y )} n 2 ] / [{(1 / R 1Y ) − (1 / R 2Y )} n 1 ] <− 1.0 Satisfies the condition: When the radius of curvature in the sub-scanning direction on the optical axis is R iY0 , and the distance from the optical axis in the main scanning direction is H i , (However, the compound sign is a curved surface that satisfies − if R iX > 0, and + if R iX <0).
JP1032139A 1988-08-19 1989-02-10 Fθ lens system in optical scanning device Expired - Fee Related JP2774546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032139A JP2774546B2 (en) 1988-08-19 1989-02-10 Fθ lens system in optical scanning device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20608088 1988-08-19
JP63-206080 1988-08-19
JP1032139A JP2774546B2 (en) 1988-08-19 1989-02-10 Fθ lens system in optical scanning device

Publications (2)

Publication Number Publication Date
JPH02146015A JPH02146015A (en) 1990-06-05
JP2774546B2 true JP2774546B2 (en) 1998-07-09

Family

ID=26370665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032139A Expired - Fee Related JP2774546B2 (en) 1988-08-19 1989-02-10 Fθ lens system in optical scanning device

Country Status (1)

Country Link
JP (1) JP2774546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031303B2 (en) * 2006-09-11 2012-09-19 キヤノン株式会社 Image reading device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350814A (en) * 1986-08-21 1988-03-03 Minolta Camera Co Ltd Surface tilt correcting and scanning optical system
JP2716428B2 (en) * 1986-07-14 1998-02-18 ミノルタ株式会社 Surface tilt correction scanning optical system

Also Published As

Publication number Publication date
JPH02146015A (en) 1990-06-05

Similar Documents

Publication Publication Date Title
JPH0782157B2 (en) Scanning optical system with surface tilt correction function
US6512623B1 (en) Scanning optical device
JP2718735B2 (en) Fθ lens system in optical scanning device
JP2776465B2 (en) Fθ lens system in optical scanning device
JP3061829B2 (en) Fθ lens system in optical scanning device
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP2804512B2 (en) Fθ lens system in optical scanning device
JP2550153B2 (en) Optical scanning device
JP2738857B2 (en) Fθ lens system in optical scanning device
JP2774546B2 (en) Fθ lens system in optical scanning device
JPH07119897B2 (en) Optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP2702516B2 (en) fθ lens
JP3034565B2 (en) Telecentric fθ lens
JP2834793B2 (en) Fθ lens system in optical scanning device
JP2986949B2 (en) Imaging lens system in optical scanning device
JP2774586B2 (en) Fθ lens system in optical scanning device
JP2927846B2 (en) Fθ lens system in optical scanning device
JP2718743B2 (en) Fθ lens system in optical scanning device
JP2790845B2 (en) Fθ lens system in optical scanning device
JP2877457B2 (en) Fθ lens system in optical scanning device
JP2877390B2 (en) Fθ lens system in optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP2790839B2 (en) Fθ lens system in optical scanning device
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees