JP2927846B2 - Fθ lens system in optical scanning device - Google Patents

Fθ lens system in optical scanning device

Info

Publication number
JP2927846B2
JP2927846B2 JP1337313A JP33731389A JP2927846B2 JP 2927846 B2 JP2927846 B2 JP 2927846B2 JP 1337313 A JP1337313 A JP 1337313A JP 33731389 A JP33731389 A JP 33731389A JP 2927846 B2 JP2927846 B2 JP 2927846B2
Authority
JP
Japan
Prior art keywords
lens
scanning
image
sub
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1337313A
Other languages
Japanese (ja)
Other versions
JPH03196112A (en
Inventor
靖 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP1337313A priority Critical patent/JP2927846B2/en
Publication of JPH03196112A publication Critical patent/JPH03196112A/en
Application granted granted Critical
Publication of JP2927846B2 publication Critical patent/JP2927846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光走査装置におけるfθレンズ系に関する。Description: TECHNICAL FIELD The present invention relates to an fθ lens system in an optical scanning device.

[従来の技術] 光走査装置は、光束の走査により情報の書き込みや読
み取りを行う装置として知られ、レーザープリンターや
ファクシミリ等に使用されている。
2. Description of the Related Art An optical scanning device is known as a device for writing and reading information by scanning a light beam, and is used for a laser printer, a facsimile, and the like.

このような光走査装置のうちに、光源装置からの略平
行な光束を主走査対応方向に長い線像に結像させ、その
線像の結像位置の近傍に反射面を有する回転多面鏡によ
り上記光束を等角速度的に偏向させ、この偏向光束を結
像レンズ系により走査面上にスポット状に結像させて走
査面を光走査する方式の装置がある。
Among such optical scanning devices, a substantially parallel light flux from the light source device is formed into a long linear image in the main scanning corresponding direction, and a rotating polygon mirror having a reflecting surface near an image forming position of the linear image is used. There is an apparatus of a system that deflects the light beam at a constant angular velocity, forms an image of the deflected light beam in a spot shape on a scanning surface by an imaging lens system, and optically scans the scanning surface.

回転多面鏡を用いる光走査装置には所謂面倒れの問題
があり、また偏向される光束は回転多面鏡の角速度が一
定であるため通常のf・tanθレンズを用いたのでは走
査が定速的に行われない。fθレンズ系は走査面の定速
的な走査を光学的に実現する様にしたレンズ系であり、
レンズ光軸に対してθなる角をもって入射する光束の像
高が焦点距離をfとしてfθとなるようにするfθ機能
を有する。
An optical scanning device using a rotating polygon mirror has a problem of so-called tilting. In addition, since a deflected light beam has a constant angular velocity of the rotating polygon mirror, scanning is performed at a constant speed using a normal f-tan θ lens. Is not done. The fθ lens system is a lens system that optically realizes constant-speed scanning of the scanning surface,
An fθ function is provided so that the image height of a light beam incident at an angle θ with respect to the lens optical axis is fθ where f is the focal length.

また面倒れの問題を解決する方法としては、回転多面
鏡と走査面との間に設けられるレンズ系をアナモフィッ
ク系とし、副走査方向に関して、回転多面鏡の反射位置
と走査面とを共役関係に結び就ける方法が知られてい
る。
As a method for solving the problem of surface tilt, the lens system provided between the rotating polygon mirror and the scanning plane is an anamorphic system, and the reflection position of the rotating polygon mirror and the scanning plane are conjugated in the sub-scanning direction. There are known ways to tie.

[発明が解決しようとする課題] fθレンズ系自体をアナモフィックとし、定速的な走
査と面倒れの問題の解決とを図ったものは種々知られて
いる。例えば特開昭63−19617号公報には2枚構成のf
θレンズ系が開示されている。
[Problems to be Solved by the Invention] There are various known fθ lens systems that use an anamorphic lens to perform constant-speed scanning and solve the problem of surface tilt. For example, Japanese Patent Application Laid-Open No. 63-19617 discloses a two-piece f
A θ lens system is disclosed.

しかしこのfθレンズ系は像面湾曲の補正が必ずしも
十分ではなく、走査面上に於ける結像スポットの径が走
査位置によりかなり大きく変動するので高密度の光走査
の実現が困難である。
However, this fθ lens system does not always sufficiently correct the curvature of field, and the diameter of the image spot on the scanning surface varies considerably depending on the scanning position, so that it is difficult to realize high-density optical scanning.

本発明は上述した事情に鑑みてなされたものであっ
て、主・副走査方向の像面湾曲の十分な補正と回転多面
鏡における面倒れの問題の解決とを可能ならしめた新規
なfθレンズ系の提供を目的とする。
The present invention has been made in view of the above-described circumstances, and is a novel fθ lens capable of sufficiently correcting the field curvature in the main and sub-scanning directions and solving the problem of surface tilt in a rotating polygon mirror. The purpose is to provide a system.

[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.

本発明のfθレンズ系は、第1図に示すように「光源
装置1からの略平行な光束を主走査対応方向に長い線像
に結像させ、その線像の結像位置の近傍に反射面4を有
する回転多面鏡3により上記光束を等角速度的に偏向さ
せ、この偏向光束を結像レンズ系により走査面7上にス
ポット状に結像させて走査面7を略等速的に光走査する
光走査装置において、回転多面鏡3により偏向された光
束を走査面7上に結像させる結像レンズ系」であって、
「副走査方向に関しては、回転多面鏡の反射位置と走査
面とを幾何光学的に略共役な関係に結び付ける機能」を
持ち、「主走査方向に関してはfθ機能」を有する。
As shown in FIG. 1, the fθ lens system according to the present invention is configured such that “a substantially parallel light beam from the light source device 1 is formed into a long line image in the main scanning corresponding direction, and reflected near the image forming position of the line image. The light beam is deflected at a constant angular velocity by the rotary polygon mirror 3 having the surface 4, and the deflected light beam is focused on the scanning surface 7 in the form of a spot by the imaging lens system, so that the scanning surface 7 is substantially uniformly illuminated. In the optical scanning device for scanning, an image forming lens system for forming an image of the light beam deflected by the rotating polygon mirror 3 on the scanning surface 7 "
It has a “function of linking the reflection position of the rotary polygon mirror and the scanning surface to a substantially optically conjugate relationship in the sub-scanning direction”, and has an “fθ function in the main scanning direction”.

また、このfθレンズ系は回転多面鏡の側から走査面
側へ向かって第1、第2の順に配備される、第1のレン
ズ5および第2のレンズ6により構成される2群・2枚
構成であり、第1,2のレンズ5,6ともアナモフィックであ
る。
This fθ lens system is provided in a first and second order from the side of the rotary polygon mirror toward the scanning surface, and is composed of a first lens 5 and a second lens 6 in two groups and two lenses. The first and second lenses 5 and 6 are anamorphic.

即ち第1のレンズ5は、主・副走査方向に就いて物体
側に凹面を向けたアナモフィックなメニスカスレンズで
あって少なくとも1面がトーリック面である。第2のレ
ンズ6は、主・副走査方向とともに正の屈折力を持つア
ナモフィックなレンズで、物体側が凹のシリンダー面、
像側がトーリック面で構成される。
That is, the first lens 5 is an anamorphic meniscus lens having a concave surface facing the object side in the main and sub scanning directions, and at least one surface is a toric surface. The second lens 6 is an anamorphic lens having a positive refracting power along with the main and sub-scanning directions.
The image side is constituted by a toric surface.

第1,第2のレンズ5,6の主走査方向の焦点距離をそれ
ぞれf1m,f2m、第1のレンズ5の物体側および像側のレ
ンズ面の副走査方向の曲率半径をそれぞれr1Y,r2Y、主
走査方向に於ける全系の合成焦点距離をfmとするとき、
これらは、 (I) f1m/fm>2 (II) f2m/fm>1.2 (III) −0.05(100/fm)<{(1/r1Y)−(1/r2Y)}<0.0(100/fm) なる条件を満足する。
The focal lengths of the first and second lenses 5 and 6 in the main scanning direction are f 1m and f 2m , respectively, and the radii of curvature of the object-side and image-side lens surfaces of the first lens 5 in the sub-scanning direction are r 1Y , respectively. when r 2Y, the combined focal length in the main scanning direction in the entire system and f m,
They, (I) f 1m / f m> 2 (II) f 2m / f m> 1.2 (III) -0.05 (100 / f m) <{(1 / r 1Y) - (1 / r 2Y)} <satisfies 0.0 (100 / f m) following condition.

なお、第1図で符号2は線像を結像させるためのシリ
ンダーレンズを示している。
In FIG. 1, reference numeral 2 denotes a cylinder lens for forming a line image.

[作用] 上記条件に付き説明する。[Operation] The above conditions will be described.

条件(I)は、主走査方向の像面湾曲とfθ特性とを
良好に補正するための条件である。
The condition (I) is a condition for favorably correcting the field curvature in the main scanning direction and the fθ characteristic.

条件(II)は、副走査方向の像面湾曲を良好に補正す
るための条件である。
Condition (II) is a condition for favorably correcting the curvature of field in the sub-scanning direction.

条件(III)は、副走査方向の像面間での結像性能を
補正するための条件であり、上限を越えると高い像高位
置でスポットダイヤグラムが外向きになり、下限を越え
ると逆に内向きになる。
Condition (III) is a condition for correcting the imaging performance between image planes in the sub-scanning direction. When the upper limit is exceeded, the spot diagram becomes outward at a high image height position, and when the lower limit is exceeded, the spot diagram is reversed. Turn inward.

ここで光走査のあらましを第1図乃至第5図を参照し
て説明する。
Here, an outline of the optical scanning will be described with reference to FIGS.

第1図に於いて、光源もしくは光源と集光装置とから
なる光源装置1からの平行光束は線像結像光学系たるシ
リンダーレンズ2により、回転多面鏡3の反射面4の近
傍に線像として結像する。この線像の長手方向は主走査
対応方向(第1図で図面に平行な方向)である。
In FIG. 1, a parallel light beam from a light source or a light source device 1 comprising a light source and a light condensing device is converted into a linear image near a reflecting surface 4 of a rotary polygon mirror 3 by a cylinder lens 2 as a line image forming optical system. As an image. The longitudinal direction of this line image is a main scanning corresponding direction (a direction parallel to the drawing in FIG. 1).

回転多面鏡3により反射された光束は、fθレンズ系
により走査面7上にスポット状に結像され、回転多面鏡
3の矢印方向への等速回転に従い走査面7を等速的に走
査する。
The light beam reflected by the rotary polygon mirror 3 is imaged into a spot on the scanning surface 7 by the fθ lens system, and scans the scanning surface 7 at a constant speed according to the constant rotation of the rotary polygon mirror 3 in the arrow direction. .

fθレンズ系を構成する第1のレンズ5と第2のレン
ズ6のうちレンズ5は回転多面鏡3の側、レンズ6は走
査面7の側にそれぞれ配設される。
Among the first lens 5 and the second lens 6 constituting the fθ lens system, the lens 5 is disposed on the rotating polygon mirror 3 side, and the lens 6 is disposed on the scanning plane 7 side.

第1図の面内、即ち主走査対応方向に就いてはレンズ
5,6によるfθレンズ系は光源装置側の無限遠と走査面
7の位置とを幾何光学的な共役関係に結び付けている。
In the plane of FIG. 1, that is, in the main scanning corresponding direction, a lens
The fθ lens system according to 5, 6 links the infinity on the light source device side and the position of the scanning plane 7 to a geometrical conjugate relationship.

これに対し、副走査方向即ち第1図の図面に直交する
方向に関してはfθレンズ系は回転多面鏡3の反射位置
と走査面7とを幾何光学的に略共役な関係に結び付けて
いる。従って第2図に示すように反射面4が符号4′で
示すように面倒れを生じてもfθレンズ系による走査面
7上の結像位置は副走査方向(第2図上下方向)には殆
ど移動しない。従って面倒れは補正される。
On the other hand, in the sub-scanning direction, that is, in the direction orthogonal to the drawing of FIG. 1, the fθ lens system links the reflection position of the rotary polygon mirror 3 and the scanning surface 7 to a geometrically optically conjugate relationship. Therefore, even if the reflecting surface 4 is tilted as shown by reference numeral 4 'as shown in FIG. 2, the imaging position on the scanning surface 7 by the fθ lens system is in the sub-scanning direction (vertical direction in FIG. 2). Hardly move. Therefore, the tilting is corrected.

回転多面鏡3が回転すると反射面4は回転軸と離れて
いるため、第3図に示すように反射面4の回転に伴い線
像の結像位置Pと反射面4との間に位置ずれΔXが生
じ、fθレンズ系による線像の共役像の位置P′は走査
面7からΔX′だけずれる。このずれ量ΔX′はfθレ
ンズ系の副走査方向の横倍率をβとして、周知の如くΔ
X′=βΔXで与えられる。
When the rotating polygon mirror 3 rotates, the reflecting surface 4 is separated from the rotation axis, so that the position is shifted between the image forming position P of the line image and the reflecting surface 4 with the rotation of the reflecting surface 4 as shown in FIG. ΔX occurs, and the position P ′ of the conjugate image of the line image by the fθ lens system is shifted from the scanning plane 7 by ΔX ′. As is well known, the deviation amount ΔX ′ is expressed by Δ assuming that the lateral magnification of the fθ lens system in the
X ′ = β 2 ΔX.

第1図の面内で、fθレンズ系のレンズ光軸bと偏向
光束の主光線とのなす角をθとする時、θと上記ΔXと
の関係を示したのが第4図及び第5図である。第4図は
後述する固有入射角αを90度とし、回転多面鏡3の内接
円半径Rをパラメーターとして描いている。また第5図
では上記内接円半径Rを40mmとし、固有入射角αをパラ
メーターとして描いている。
FIG. 4 and FIG. 5 show the relationship between θ and ΔX when the angle between the optical axis b of the fθ lens system and the principal ray of the deflected light beam is θ in the plane of FIG. FIG. FIG. 4 illustrates a specific incident angle α described later as 90 degrees and the radius R of the inscribed circle of the rotary polygon mirror 3 as a parameter. In FIG. 5, the radius R of the inscribed circle is set to 40 mm, and the specific incident angle α is used as a parameter.

第4,5図から分かるように、ΔXは内接円半径Rが大
きいほど、また固有入射角αが小さいほど大きくなる。
As can be seen from FIGS. 4 and 5, ΔX increases as the radius R of the inscribed circle increases and as the specific incident angle α decreases.

ここで前述の固有入射角αにつき説明すると、第1図
において符号aは回転多面鏡3に入射する光束の主光線
を示し、符号bはfθレンズ系の光軸を示している。固
有入射角αは図の如く主光線aと光軸bの交角として定
義される。主光線aと光軸bの交点の位置を原点として
図のごとくX,Y軸を定め、回転多面鏡3の回転軸位置の
座標をXc,Ycとする。
Here, the specific incident angle α will be described. In FIG. 1, reference symbol a indicates a principal ray of a light beam incident on the rotary polygon mirror 3, and reference symbol b indicates an optical axis of the fθ lens system. The specific incident angle α is defined as the intersection angle between the principal ray a and the optical axis b as shown in the figure. The X and Y axes are determined as shown in the figure with the position of the intersection of the principal ray a and the optical axis b as the origin, and the coordinates of the rotation axis position of the rotary polygon mirror 3 are Xc and Yc.

前述の、線像位置と反射面との位置ずれ量ΔXの変動
をなるべく少なくする為には周知のごとく、回転多面鏡
の内接円半径をRとして 0<Xc<Rcos(α/2) 0<Yp<Rsin(α/2) なる条件をXc,Ycに課せばよい。
In order to minimize the variation of the displacement ΔX between the line image position and the reflecting surface, as known, the radius of the inscribed circle of the rotary polygon mirror is defined as R 0 <Xc <Rcos (α / 2) 0 The condition of <Yp <Rsin (α / 2) may be imposed on Xc and Yc.

また、入射光束の主光線aが有効主走査領域外に存在
し、走査面6からの戻り光がゴースト光として走査面の
主走査領域に再入射しないようにするには、回転多面鏡
3の面数をN、偏向角をθとして上記αに対し、 θ<α<(4π/N)−θ なる条件を課すれば良い。
In order to prevent the principal ray a of the incident light beam from existing outside the effective main scanning area and prevent the return light from the scanning surface 6 from re-entering the main scanning area on the scanning surface as ghost light, the rotating polygon mirror 3 must be used. Assuming that the number of surfaces is N and the deflection angle is θ, a condition of θ <α <(4π / N) −θ may be imposed on the above α.

反射面の回転に伴う線像の位置と反射面との相対的な
位置ずれは、2次元的に生じ且つレンズ光軸に対しても
非対象に移動する。従って第1図の如き光走査装置では
fθレンズ系の主・副走査方向の像面湾曲を良好に補正
する必要がある。また主走査方向に関してはfθ特性が
良好に補正されねばならないことは言うまでもない。
The relative displacement between the position of the line image and the reflection surface due to the rotation of the reflection surface occurs two-dimensionally and moves asymmetrically with respect to the lens optical axis. Therefore, in the optical scanning device as shown in FIG. 1, it is necessary to satisfactorily correct the field curvature of the fθ lens system in the main and sub scanning directions. Needless to say, the fθ characteristic must be well corrected in the main scanning direction.

[実施例] 以下、具体的な実施例を3例挙げる。[Examples] Hereinafter, three specific examples will be given.

各実施例においてfmはfθレンズ系の主走査方向に関
する合成焦点距離を表し、この値は100に規格化され
る。またfSは副走査方向の合成焦点距離、2θは偏向角
(単位:度)、αは固有入射角(単位:度)、R′は回
転多面鏡の内接円半径を表す。
F m in each example represents a combined focal length in the main scanning direction of the fθ lens system, this value is normalized to 100. The f S is the composite focal length in the sub-scanning direction, 2 [Theta] is the deflection angle (in degrees), alpha-specific incidence angle (in degrees), R 'represents a radius of an inscribed circle of the rotating polygon mirror.

第1図に示すように、rjx(i=1〜4)は回転多面
鏡の側から数えてi番目のレンズ面の主走査方向の曲率
半径、riY(i=1〜4)はi番目のレンズ面の副走査
方向の曲率半径、di(i=1〜3)はi番目のレンズ面
間距離を示す。また、d0は回転多面鏡の反射面から第1
レンズ面までの距離、nj(j=1〜2)はj番目のレン
ズの屈折率を表す。
As shown in FIG. 1, r jx (i = 1 to 4) is the radius of curvature of the i-th lens surface in the main scanning direction counted from the rotating polygon mirror, and r iY (i = 1 to 4) is i. The radius of curvature of the i-th lens surface in the sub-scanning direction, d i (i = 1 to 3) indicates the distance between the i-th lens surfaces. D 0 is the first value from the reflection surface of the rotating polygon mirror.
The distance to the lens surface, n j (j = 1 to 2), represents the refractive index of the j-th lens.

さらにK1,K2,K3をもってそれぞれ、上記条件(I)〜
(III)に於ける各パラメーター、即ち(f1m/fm),(f
2m/fm),{(1/r1Y)−(1/r2Y)}の値を表す。
Further, K 1 , K 2 , and K 3 are used for the above conditions (I) to
Each parameter in (III), that is, (f 1m / f m ), (f
2m / f m), - it represents the value of {(1 / r 1Y) ( 1 / r 2Y)}.

実施例 1 fm=100,fS=24.973,α=60,2θ=64.0,K1=2.664, K2=1.404,K3=−0.018,R′=13.963,d0=21.812 i riX riY di j ni 1 −74.467 −14.893 3.838 1 1.76605 2 −55.778 −55.778 33.831 3 ∞ −70.230 8.609 2 1.76605 4 −107.567 −19.857 実施例 2 fm=100,fS=28.287,α=60,2θ=64.0,K1=2.664, K2=1.404,K3=−0.013,R′=13.963,d0=21.812 i riX riY di j ni 1 −74.467 −11.170 3.838 1 1.76605 2 −55.778 −18.617 33.831 3 ∞ −76.604 8.609 2 1.76605 4 −107.567 −20.990 実施例 3 fm=100,fS=30.403,α=60,2θ=64.0,K1=2.664, K2=1.404,K3=−0.012,R′=13.963,d0=21.812 i riX riY di j ni 1 −74.467 −8.191 3.838 1 1.76605 2 −55.778 −11.170 33.831 3 ∞ −90.820 8.609 2 1.76605 4 −107.567 −22.692 第6図乃至第8図に、実施例1乃至3の収差図・fθ
特性図を、また第9図乃至第11図に、実施例1〜3の有
効走査域におけるスポットダイヤグラムを示す。
Example 1 f m = 100, f S = 24.973, α = 60, 2θ = 64.0, K 1 = 2.664, K 2 = 1.404, K 3 = −0.018, R ′ = 13.963, d 0 = 21.812 ir iX r iY d i j n i 1 −74.467 −14.893 3.838 1 1.76605 2 −55.778 −55.778 33.831 3 ∞ −70.230 8.609 2 1.76605 4 −107.567 −19.857 Example 2 f m = 100, f S = 28.287, α = 60,2θ = 64.0, K 1 = 2.664, K 2 = 1.404, K 3 = -0.013, R '= 13.963, d 0 = 21.812 i r iX r iY d i j n i 1 -74.467 -11.170 3.838 1 1.76605 2 -55.778 - 18.617 33.831 3 ∞ −76.604 8.609 2 1.76605 4 −107.567 −20.990 Example 3 f m = 100, f S = 30.403, α = 60, 2θ = 64.0, K 1 = 2.664, K 2 = 1.404, K 3 = −0.012 , R '= 13.963, d 0 = 21.812 i r iX r iY d i j n i 1 -74.467 -8.191 3.838 1 1.76605 2 -55.778 -11.170 33.831 3 ∞ -90.820 8.609 2 1.76605 4 -107.567 -22.692 Figure 6 to FIG. 8 shows aberration diagrams of Examples 1 to 3 and fθ.
9 to 11 show characteristic diagrams, and spot diagrams in the effective scanning area of the first to third embodiments.

像面湾曲の図に於いて実線は副走査方向、破線は主走
査方向のものを示す。像面湾曲は有効偏向角全域で示
す。なおfmの具体的な数値は、実施例1〜3ともfm=26
8.574である。
In the field curvature diagram, the solid line indicates the sub-scanning direction, and the broken line indicates the main scanning direction. The field curvature is shown over the entire effective deflection angle. Note specific numerical values of f m are Examples 1-3 both f m = 26
8.574.

各実施例とも収差が良好であり特に、像面湾曲は主・
副走査方向とも良好に補正されている。またfθ特性も
良好である。
Each of the embodiments has good aberration.
The correction is well performed in both the sub-scanning direction. Also, the fθ characteristics are good.

[発明の効果] 以上、本発明によれば新規なfθレンズ系を提供でき
る。このfθレンズ系は上述の如き構成となっているの
で回転多面鏡の面倒れを良好に補正しつつ主・副走査方
向の像面湾曲を良好に補正して光走査を実現でき、従っ
て高密度の光走査が可能になる。
[Effects of the Invention] As described above, according to the present invention, a novel fθ lens system can be provided. Since this fθ lens system has the above-described configuration, it is possible to satisfactorily correct the surface tilt of the rotating polygon mirror and satisfactorily correct the field curvature in the main and sub-scanning directions to realize optical scanning. Optical scanning becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のfθレンズ系を用いる光走査装置を
説明するための図、第2図乃至第5図は光走査を説明す
るための図、第6図乃至第8図は各実施例に対する収差
図・fθ特性図、第9図乃至第11図は各実施例に対する
スポットダイヤグラムである。 1……光源装置、2……シリンダーレンズ、3……回転
多面鏡、5,6……fθレンズ系を構成する第1および第
2レンズ
FIG. 1 is a diagram for explaining an optical scanning device using the fθ lens system of the present invention, FIGS. 2 to 5 are diagrams for explaining optical scanning, and FIGS. 9 to 11 are aberration diagrams and fθ characteristic diagrams for the examples, and are spot diagrams for the respective examples. DESCRIPTION OF SYMBOLS 1 ... Light source device, 2 ... Cylinder lens, 3 ... Rotating polygon mirror, 5, 6 ... 1st and 2nd lens which comprises ftheta lens system

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02B 26/10 G02B 13/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) G02B 26/10 G02B 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により走査
面上にスポット状に結像させて走査面を略等速的に光走
査する光走査装置において、回転多面鏡により偏向され
た光束を走査面上に結像させる結像レンズ系であって、 副走査方向に関して回転多面鏡の反射位置と走査面とを
幾何光学的に略共役な関係に結び付ける機能を持つとと
もに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から走査面側へ向かって第1、第2の順
に配備される、第1および第2のレンズにより構成され
る2群・2枚構成であり、 第1のレンズは、主・副走査方向に就いて物体側に凹面
を向けたアナモフィックなメニスカスレンズであって少
なくとも1面がトーリック面であり、 第2のレンズは、主・副走査方向ともに正の屈折力を持
つアナモフィックなレンズで、物体側が凹のシリンダー
面、像側がトーリック面であり、 第1,第2のレンズの主走査方向の焦点距離をそれぞれf
1m,f2m、第1のレンズの物体側および像側のレンズ面の
副走査方向の曲率半径をそれぞれr1Y,r2Y、主走査方向
に於ける全系の合成焦点距離をfmとするとき、これら
が、 (I) f1m/fm>2 (II) f2m/fm>1.2 (III) −0.05(100/fm)<{(1/r1Y)−(1/r2Y)}<0.0(100/fm) なる条件を満足することを特徴とするfθレンズ系。
1. A method according to claim 1, further comprising the step of: forming a substantially parallel light beam from the light source device into a long linear image in the direction corresponding to the main scanning; In a light scanning apparatus that optically scans the scanning surface at a substantially constant speed by forming an image of the deflected light beam in a spot shape on the scanning surface by the imaging lens system, the light beam deflected by the rotating polygon mirror is deflected. An imaging lens system for forming an image on a scanning surface, having a function of connecting a reflection position of a rotary polygonal mirror and a scanning surface to a substantially optically conjugate relationship with respect to the sub-scanning direction, and fθ with respect to the main scanning direction. A first lens group, a second lens group, and a second lens group having a first lens and a second lens arranged in the first and second order from the side of the rotary polygon mirror toward the scanning surface. Lens has a concave surface on the object side in the main and sub-scanning directions. The second lens is an anamorphic lens having a positive refractive power in both the main and sub-scanning directions, a concave cylinder surface on the object side and an image side on the image side. The focal length of the first and second lenses in the main scanning direction is f
1 m, f 2m, first lens on the object side and the image side lens surface in the sub-scanning direction of the radius of curvature of each r 1Y, r 2Y, a combined focal length of the entire system in the main scanning direction is f m when they are, (I) f 1m / f m> 2 (II) f 2m / f m> 1.2 (III) -0.05 (100 / f m) <{(1 / r 1Y) - (1 / r 2Y )} <0.0 (fθ lens system that satisfies the 100 / f m) following condition.
JP1337313A 1989-12-26 1989-12-26 Fθ lens system in optical scanning device Expired - Fee Related JP2927846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337313A JP2927846B2 (en) 1989-12-26 1989-12-26 Fθ lens system in optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337313A JP2927846B2 (en) 1989-12-26 1989-12-26 Fθ lens system in optical scanning device

Publications (2)

Publication Number Publication Date
JPH03196112A JPH03196112A (en) 1991-08-27
JP2927846B2 true JP2927846B2 (en) 1999-07-28

Family

ID=18307456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337313A Expired - Fee Related JP2927846B2 (en) 1989-12-26 1989-12-26 Fθ lens system in optical scanning device

Country Status (1)

Country Link
JP (1) JP2927846B2 (en)

Also Published As

Publication number Publication date
JPH03196112A (en) 1991-08-27

Similar Documents

Publication Publication Date Title
JP2718735B2 (en) Fθ lens system in optical scanning device
JP3061829B2 (en) Fθ lens system in optical scanning device
JP2804512B2 (en) Fθ lens system in optical scanning device
JP2550153B2 (en) Optical scanning device
JP2927846B2 (en) Fθ lens system in optical scanning device
JP2702516B2 (en) fθ lens
JP3034565B2 (en) Telecentric fθ lens
JP2738857B2 (en) Fθ lens system in optical scanning device
JP2986949B2 (en) Imaging lens system in optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP3034648B2 (en) Optical scanning optical system and optical scanning device
JP2774546B2 (en) Fθ lens system in optical scanning device
JP2834793B2 (en) Fθ lens system in optical scanning device
JP2790845B2 (en) Fθ lens system in optical scanning device
JP2718743B2 (en) Fθ lens system in optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP2790839B2 (en) Fθ lens system in optical scanning device
JP2774586B2 (en) Fθ lens system in optical scanning device
JP2877390B2 (en) Fθ lens system in optical scanning device
JP2877457B2 (en) Fθ lens system in optical scanning device
JP3441008B2 (en) Scanning imaging lens and optical scanning device
JP2856491B2 (en) Fθ lens for optical scanning device
JP3243030B2 (en) Scanning imaging lens and optical scanning device
JP2840354B2 (en) Fθ lens system in optical scanning device
JP4445059B2 (en) Scanning imaging lens and optical scanning device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees