JP2877390B2 - Fθ lens system in optical scanning device - Google Patents

Fθ lens system in optical scanning device

Info

Publication number
JP2877390B2
JP2877390B2 JP29717089A JP29717089A JP2877390B2 JP 2877390 B2 JP2877390 B2 JP 2877390B2 JP 29717089 A JP29717089 A JP 29717089A JP 29717089 A JP29717089 A JP 29717089A JP 2877390 B2 JP2877390 B2 JP 2877390B2
Authority
JP
Japan
Prior art keywords
polygon mirror
deflection
scanned
orthogonal
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29717089A
Other languages
Japanese (ja)
Other versions
JPH03155517A (en
Inventor
彰久 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to US07/454,691 priority Critical patent/US5015050A/en
Publication of JPH03155517A publication Critical patent/JPH03155517A/en
Application granted granted Critical
Publication of JP2877390B2 publication Critical patent/JP2877390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光走査装置におけるfθレンズ系に関す
る。
The present invention relates to an fθ lens system in an optical scanning device.

[従来の技術] 光走査装置は、光束の走査により情報の書き込みや読
み取りを行う装置として知られ、レーザープリンターや
ファクシミリ等に使用されている。
2. Description of the Related Art An optical scanning device is known as a device for writing and reading information by scanning a light beam, and is used for a laser printer, a facsimile, and the like.

このような光走査装置のうちに「光源装置からの略平
行な光束を主走査対応方向に長い線像に結像させ、その
結像の結像位置の近傍に反射面を有する回転多面鏡によ
り上記光束を等角速度的に偏向させ、この偏向光束を結
像レンズ系により被走査面上にスポット状に結像させて
被走査面を光走査する」方式の装置がある。
Among such optical scanning devices, `` a substantially parallel light beam from the light source device is formed into a long line image in the main scanning corresponding direction, and a rotating polygon mirror having a reflecting surface near the image forming position of the image is used. There is an apparatus of the type "deflecting the light beam at a uniform angular velocity, forming an image of the deflected light beam in a spot shape on the surface to be scanned by an imaging lens system, and optically scanning the surface to be scanned".

回転多面鏡を用いる光走査装置には所謂面倒れの問題
があり、また偏向される光束は回転多面鏡の角速度が一
定であるため通常のf・tanθレンズを用いたのでは被
走査面の走査が等速的に行われない。そこで等速走査す
るための工夫が必要となる。fθレンズ系は被走査面の
定速的な走査を光学的に実現する様にしたレンズ系であ
り、レンズ光軸に対してθなる角をもって入射する光束
の像高が焦点距離をfとしてfθとなるようにするfθ
機能を有する。
An optical scanning device using a rotary polygon mirror has a problem of so-called tilting, and a light beam to be deflected has a constant angular velocity of the rotary polygon mirror. Is not performed at a constant speed. Therefore, a device for scanning at a constant speed is required. The fθ lens system is a lens system that optically realizes constant-speed scanning of the surface to be scanned. The image height of a light beam incident at an angle of θ with respect to the lens optical axis is represented by fθ where f is the focal length. Fθ
Has functions.

また面倒れの問題を解決する方法としては、回転多面
鏡と被走査面との間に設けられるレンズ系をアナモフィ
ック系とし、副走査方向に関して、回転多面鏡の反射位
置と被走査面とを共役関係に結び付ける方法が知られて
いる。
In order to solve the problem of surface tilt, the lens system provided between the rotating polygon mirror and the surface to be scanned is an anamorphic system, and the reflection position of the rotating polygon mirror and the surface to be scanned are conjugated in the sub-scanning direction. There are known ways to connect to relationships.

[発明が解決しようとする課題] fθレンズ系自体をアナモフィックとし、定速的な走
査と面倒れの問題の解決とを図ったものは種々知られて
いる。例えば、特開昭63−19617号公報に2枚構成のも
のが開示されている。
[Problems to be Solved by the Invention] There are various known fθ lens systems that use an anamorphic lens to perform constant-speed scanning and solve the problem of surface tilt. For example, Japanese Patent Laid-Open Publication No. 63-19617 discloses a two-sheet configuration.

しかしこのfθレンズ系は像面湾曲の補正が必ずしも
十分ではなく、被走査面上に於ける結像スポットの径が
走査位置によりかなり大きく変動するので高密度の光走
査の実現が困難である。また特開昭61−120112号公報に
は像面湾曲を良好に補正するために所謂鞍型トーリック
面を使用した2枚構成のfθレンズ系が開示されている
が、このfθレンズ系は非球面を2面用いているために
加工が難しいという問題がある。
However, the fθ lens system does not always sufficiently correct the curvature of field, and the diameter of the image spot on the surface to be scanned fluctuates considerably depending on the scanning position, so that it is difficult to realize high-density optical scanning. Japanese Patent Application Laid-Open No. 61-120112 discloses a two-element fθ lens system using a so-called saddle-shaped toric surface in order to satisfactorily correct field curvature, but this fθ lens system has an aspherical surface. There is a problem that processing is difficult because two surfaces are used.

本発明は上述した事情に鑑みてなされたものであっ
て、主・副走査方向の像面湾曲の十分な補正と、回転多
面鏡における面倒れの問題の解決とを可能ならしめた新
規なfθレンズ系の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a novel fθ that enables sufficient correction of curvature of field in the main and sub-scanning directions and a solution to the problem of surface tilt in a rotating polygon mirror. The purpose is to provide a lens system.

[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.

請求項1〜6のfθレンズ系は何れも、「光源装置か
らの略平行な光束を主走査対応方向に長い線像に結像さ
せ、その線像の結像位置の近傍に反射面を有する回転多
面鏡により上記光束を等角速度的に偏向させ、この偏向
光束を結像レンズ系により被走査面上にスポット状に結
像させて被走査面を略等速的に光走査する光走査装置に
おいて、回転多面鏡により偏向された光束を被走査面上
に結像させる結像レンズ系」であって、「副走査方向に
関しては、回転多面鏡の反射位置と被走査面とを幾何光
学的に略共役な関係に結び付ける機能」を持ち、「主走
査方向に関してはfθ機能」を有する。
The fθ lens system according to any one of claims 1 to 6, "forms a substantially parallel light flux from the light source device into a long line image in the main scanning corresponding direction, and has a reflecting surface near the image forming position of the line image. An optical scanning device that deflects the light beam at a constant angular velocity by a rotating polygon mirror, forms an image of the deflected light beam in a spot shape on the surface to be scanned by an imaging lens system, and optically scans the surface to be scanned at a substantially constant speed. , An imaging lens system for forming an image of a light beam deflected by the rotating polygonal mirror on the surface to be scanned '', wherein in the sub-scanning direction, the reflection position of the rotating polygonal mirror and the surface to be scanned are geometrically , And a “fθ function with respect to the main scanning direction”.

また、これら6種のfθレンズ系は何れも、回転多面
鏡の側から被走査面側へ向かって第1、第2の順に配備
される第1および第2のレンズにより構成される2群・
2枚構成であり、また回転多面鏡の側から数えて各レン
ズ面を第1乃至第4面とするとき、これらの4つのレン
ズ面の内に「樽型トーリック面」を使用している点に於
いて共通している。
Each of these six types of fθ lens systems is composed of a first lens group and a second lens element arranged in the first and second order from the rotating polygon mirror toward the surface to be scanned.
It is a two-element configuration, and when each lens surface is defined as the first to fourth surfaces counted from the rotating polygon mirror, a “barrel-shaped toric surface” is used among these four lens surfaces. In common.

回転多面鏡により理想的に偏向される光束を考えたと
き、この理想的な偏向光束の主光線が掃引することによ
り形成される仮想的な平面を「偏向面」と称する。また
結像光学系即ちfθレンズの光軸に平行で、偏向面に直
交する面を「偏向直交面」と称する。
Considering a light beam that is ideally deflected by the rotating polygon mirror, a virtual plane formed by sweeping the principal ray of the ideal deflected light beam is referred to as a “deflection surface”. A plane parallel to the optical axis of the imaging optical system, that is, the fθ lens, and orthogonal to the deflecting surface is referred to as a “deflection orthogonal surface”.

請求項1のfθレンズ系では、各レンズ面の偏向面内
での形状が第1面から第4面に向かって順次、円弧、直
線、直線、円弧であり、偏向面に平行な面内では第1の
レンズが負、第2のレンズが正の屈折力を持つ。
In the fθ lens system according to the first aspect, the shape of each lens surface in the deflecting surface is an arc, a straight line, a straight line, and an arc sequentially from the first surface to the fourth surface, and in a plane parallel to the deflecting surface. The first lens has a negative refractive power and the second lens has a positive refractive power.

そして第1面は偏向直交面内の曲率半径が光軸を離れ
るに従い小さくなる凹の樽型トーリック面、第2面は偏
向直交面内にのみ屈折力を持つ凸のシリンダー面もしく
は平面、第3面は偏向直光面内にのみ屈折力を持つ凹の
シリンダー面、第4面は偏向直交面内に強い曲率を持つ
凸のトーリック面である。
The first surface is a concave barrel-shaped toric surface in which the radius of curvature in the plane orthogonal to the deflection becomes smaller as the distance from the optical axis increases, the second surface is a convex cylinder surface or plane having a refractive power only in the plane orthogonal to the deflection, and the third surface. The surface is a concave cylinder surface having a refracting power only in the deflecting direct light surface, and the fourth surface is a convex toric surface having a strong curvature in the deflecting orthogonal surface.

偏向直交面内における合成焦点距離をfS、光軸を含む
偏向直交面内に於ける第3面の曲率半径をそれぞれr′
とするとき、これらは 1.6≦|r′3/fS|≦3.1 (1−I) なる条件を満足する。
The composite focal length in the orthogonal plane of deflection is f s , and the radius of curvature of the third surface in the orthogonal plane including the optical axis is r ′.
When they are 3 , these satisfy the condition of 1.6 ≦ | r ′ 3 / f S | ≦ 3.1 (1-I).

請求項2のfθレンズ系では、各レンズ面の偏向面内
での形状が第1面から第4面に向かって順次、円弧、直
線、直線、円弧であり、偏向面に平行な面内では第1の
レンズが負、第2のレンズが正の屈折力を持つ。
In the fθ lens system according to the second aspect, the shape of each lens surface in the deflecting surface is an arc, a straight line, a straight line, and an arc sequentially from the first surface to the fourth surface, and in a plane parallel to the deflecting surface. The first lens has a negative refractive power and the second lens has a positive refractive power.

そして第1面は偏向直交面内の曲率半径が光軸を離れ
るに従い小さくなる凹の樽型トーリック面、第2面は偏
向直交面内にのみ屈折力を持つ凹のシリンダー面、第3
面は偏向直交面内にのみ屈折力を持つ凹のシリンダ面、
第4面は偏向直交面内に強い曲率を持つ凸のトーリック
面である。
The first surface is a concave barrel-shaped toric surface in which the radius of curvature in the plane orthogonal to the deflection becomes smaller as the distance from the optical axis increases, the second surface is a concave cylinder surface having a refractive power only in the plane orthogonal to the deflection, and the third surface.
The surface is a concave cylinder surface that has refractive power only in the plane orthogonal to the deflection,
The fourth surface is a convex toric surface having a strong curvature in a plane orthogonal to the deflection.

偏向直交面内における合成焦点距離をfS、光軸を含む
偏向直交面内に於ける第1,第2,第3,第4面の曲率半径を
それぞれr′1,r′2,r′3,r′とするとき、これらは <2.0<|[{(1/r′)−(1/r′)} −{(1/r′)−(1/r′)}]・fS|<9.8 (2−I) なる条件を満足する。
The combined focal length in the orthogonal plane of deflection is f S , and the radii of curvature of the first, second, third, and fourth surfaces in the orthogonal plane including the optical axis are r ′ 1 , r ′ 2 , r ′, respectively. 3 , r ′ 4 , they are <2.0 <| [{(1 / r ′ 1 ) − (1 / r ′ 2 )} − {(1 / r ′ 3 ) − (1 / r ′ 4 ) }] · F S | <9.8 (2-I)

請求項3のfθレンズ系では、各レンズ面の偏向面内
での形状が第1面から第4面に向かって順次、円弧、円
弧、直線、円弧であり、偏向面に平行な面内では第1の
レンズが正もしくは負、第2のレンズが正の屈折力を持
つ。
In the fθ lens system according to the third aspect, the shape of each lens surface in the deflecting surface is an arc, an arc, a straight line, and an arc sequentially from the first surface to the fourth surface, and in a plane parallel to the deflecting surface. The first lens has a positive or negative refractive power, and the second lens has a positive refractive power.

そして第1面は球面、第2面は偏向直交面内の曲率半
径が光軸を離れるに従い小さくなる凸の樽型トーリック
面、第3面は偏向直交面内にのみ屈折力を持つ凹のシリ
ンダー面、第4面は偏向直交面内に強い曲率を持つ凸の
トーリック面である。
The first surface is a spherical surface, the second surface is a convex barrel-shaped toric surface in which the radius of curvature in the plane orthogonal to the deflection decreases as the distance from the optical axis increases, and the third surface is a concave cylinder having a refractive power only in the plane orthogonal to the deflection. The fourth surface is a convex toric surface having a strong curvature in a plane orthogonal to the deflection.

偏向直交面内における合成焦点距離をfS、光軸を含む
偏向直交面内ち於ける第2,第4面の曲率半径をそれぞれ
r′2,r′とするとき、これらは 0.3<|r′2/r′4|<1.0 (3−I) 0.03<|r′2/fS|<0.54 (3−II) なる条件を満足する。
When the composite focal length in the orthogonal plane of deflection is f S , and the radii of curvature of the second and fourth surfaces in the orthogonal plane including the optical axis are r ′ 2 and r ′ 4 , these are 0.3 <| r ′ 2 / r ′ 4 | <1.0 (3-I) 0.03 <| r ′ 2 / f S | <0.54 (3-II)

請求項4のfθレンズ系では、各レンズ面の偏向面内
での形状が第1面から第4面に向かって順次、直線、円
弧、直線、円弧であり、偏向面に平行な面内では第1の
レンズが負、第2のレンズが正の屈折力を持つ。
In the fθ lens system according to the fourth aspect, the shape of each lens surface in the deflecting surface is a straight line, an arc, a straight line, and an arc sequentially from the first surface to the fourth surface, and in a plane parallel to the deflecting surface. The first lens has a negative refractive power and the second lens has a positive refractive power.

そして第1面は平面、第2面は偏向直交面内の曲率半
径が光軸から離れるに従い小さくなる凹の樽型トーリッ
ク面、第3面は偏向直交面内にのみ屈折力を持つ凹のシ
リンダー面、第4面は偏向直交面内に強い曲率を持つ凸
のトーリック面である。
The first surface is a plane, the second surface is a concave barrel-shaped toric surface in which the radius of curvature in the plane orthogonal to the deflection becomes smaller as the distance from the optical axis increases, and the third surface is a concave cylinder having a refractive power only in the plane orthogonal to the deflection. The fourth surface is a convex toric surface having a strong curvature in a plane orthogonal to the deflection.

偏向直交面内における合成焦点距離・横倍率をそれぞ
れfS,β、光軸を含む偏向直交面内に於ける第3,第4面
の曲率半径をそれぞれr′3,r′とするとき、これら
は 0.4<|{(1/r′)−(1/r′)}・fS・β|<
2.0 (4−I) なる条件を満足する。
When the combined focal length and lateral magnification in the deflection orthogonal plane are f S and β, respectively, and the radii of curvature of the third and fourth surfaces in the deflection orthogonal plane including the optical axis are r 3 and r 4 , respectively. these are 0.4 <| {(1 / r '3) - (1 / r' 4)} · f S · β | <
2.0 (4-I) The following condition is satisfied.

請求項5のfθレンズ系では、各レンズ面の偏向面内
での形状が第1面から第4面に向かって順次、円弧、円
弧、直線、円弧であり、偏向面に平行な面内では第1の
レンズが負、第2のレンズが正の屈折力を持つ。
In the fθ lens system according to claim 5, the shape of each lens surface in the deflecting surface is an arc, an arc, a straight line, and an arc sequentially from the first surface to the fourth surface, and in a plane parallel to the deflecting surface. The first lens has a negative refractive power and the second lens has a positive refractive power.

そして第1面は偏向直交面内の曲率半径が光軸を離れ
るに従い小さくなる凹の樽型トーリック面、第2面は凸
の球面、第3面は偏向直交面内にのみ屈折力を持つ凹の
シリンダー面、第4面は偏向直交面内に強い曲率を持つ
凸のトーリック面である。
The first surface is a concave barrel-shaped toric surface in which the radius of curvature in the plane perpendicular to the deflection becomes smaller as the distance from the optical axis is increased, the second surface is a convex spherical surface, and the third surface is a concave surface having a refractive power only in the plane orthogonal to the deflection. And the fourth surface are convex toric surfaces having a strong curvature in the plane orthogonal to the deflection.

偏向直交面内における合成焦点距離・横倍率をそれぞ
れfS,β、光軸を含む偏向直交面内に於ける第3,第4面
の曲率半径をそれぞれr′3,r′とするとき、これら
が 0.1<|{(1/r′)−(1/r′)}・fS・β|<
5.4 (5−I) なる条件を満足する。
When the combined focal length and lateral magnification in the deflection orthogonal plane are f S and β, respectively, and the radii of curvature of the third and fourth surfaces in the deflection orthogonal plane including the optical axis are r 3 and r 4 , respectively. And 0.1 <| {(1 / r ′ 3 ) − (1 / r ′ 4 )} · f S · β | <
5.4 (5-I) The following condition is satisfied.

請求項6のfθレンズ系では、各レンズ面の偏向面内
での形状が第1面から第4面に向かって順次、直線、円
弧、円弧、円弧であり、偏向面に平行な面内では第1、
第2のレンズとも正の屈折力を持つ。
In the fθ lens system according to claim 6, the shape of each lens surface in the deflecting surface is a straight line, an arc, an arc, and an arc sequentially from the first surface to the fourth surface, and in a plane parallel to the deflecting surface. First,
The second lens also has a positive refractive power.

そして第1面は偏向直交面内にのみ屈折力を持つ凹の
シリンダー面、第2面は偏向直交面内の曲線半径が光軸
を離れるに従い小さくなる凸の樽型トーリック面、第3
面は凹の球面、第4面は偏向直交面内に強い曲率を持つ
凸のトーリック面である。
The first surface is a concave cylinder surface having a refractive power only in the plane orthogonal to the deflection, the second surface is a convex barrel-shaped toric surface in which the radius of the curve in the plane orthogonal to the deflection becomes smaller as the distance from the optical axis increases,
The surface is a concave spherical surface, and the fourth surface is a convex toric surface having a strong curvature in a plane orthogonal to the deflection.

偏向直交面内における合成焦点距離をfS、光軸を含む
偏向直交面内に於ける第1,第2面の曲率半径をそれぞれ
r′1,r′とするとき、これらが 0.5<|{(1/r′)−(1/r′)}・fS|<3.8
(6−I) なる条件を満足する。
Assuming that the combined focal length in the plane orthogonal to the deflection is f s , and the radii of curvature of the first and second surfaces in the plane orthogonal to the deflection including the optical axis are r ′ 1 and r ′ 2 , these are 0.5 <| {(1 / r ′ 1 ) − (1 / r ′ 2 )} · f S | <3.8
(6-I) The following condition is satisfied.

ここで第1図を参照して、本発明のfθレンズ系の各
レンズ面を説明する。
Here, each lens surface of the fθ lens system of the present invention will be described with reference to FIG.

第1図(I)乃至(VI)は、順次請求項1〜6のfθ
レンズ系の形状を示している。
FIGS. 1 (I) to 1 (VI) show fθ in the claims 1 to 6 in sequence.
3 shows the shape of a lens system.

第1図各図に於いて、図の左側は回転多面鏡の側、右
側は被走査面の側であり、従ってレンズは左側が第1の
レンズ、右側が第2のレンズを表しており、レンズ面は
左から右へ向かって順次第1乃至第4面である。
In each figure of FIG. 1, the left side of the figure is the side of the rotating polygonal mirror, and the right side is the side of the surface to be scanned. Therefore, the left lens represents the first lens and the right side represents the second lens. The lens surfaces are first to fourth surfaces sequentially from left to right.

また、第1図各図の上側の図は、fθレンズ系の偏向
面内でのレンズ形状を表し、下側の図は光軸を含む偏向
直交面内でのレンズ形状を表している。偏向面はその被
走査面との交線が理想的な主走査方向に対応するので、
第1図の上の図は「主」と表示してある。同時に、上記
偏向直交面は副走査方向と対応するので第1図の下の図
は「副」と表示してある。
In addition, the upper part of each drawing in FIG. 1 shows the lens shape in the deflection plane of the fθ lens system, and the lower part shows the lens shape in the deflection orthogonal plane including the optical axis. Since the crossing line of the deflection surface with the scanned surface corresponds to the ideal main scanning direction,
The upper part of FIG. 1 is labeled "main". At the same time, since the plane orthogonal to the deflection corresponds to the sub-scanning direction, the lower drawing of FIG. 1 is indicated as "sub".

第1図各図にはまた、偏向面・偏向直交面内における
各レンズの機能が「凸」であるか「凹」であるかを表示
してある。
FIG. 1 also shows whether the function of each lens in the deflecting plane / deflection orthogonal plane is “convex” or “concave”.

第1図(I)の下の図に於いて、第1のレンズの第2
面は、直線(実線)と円弧(破線)が表示されている
が、これは請求項1のfθレンズ系に於いて、第2面
が、「平面」もしくは「偏向直交面内にのみ屈折力を持
つ凸のシリンダー面」であることに対応している。
In the lower view of FIG. 1 (I), the second lens of the first lens
The surface is represented by a straight line (solid line) and an arc (dashed line). In the fθ lens system according to the first aspect, the second surface has a refractive power only within a “plane” or “deflection orthogonal plane”. With a convex cylinder surface ".

[作用] 以下、各請求項のfθレンズ系に関する条件を説明す
る。
[Operation] Hereinafter, conditions regarding the fθ lens system of each claim will be described.

請求項1〜6のようなレンズ面構成によりfθレンズ
糸を構成すると主・副走査方向の像面湾曲の良好な補正
が可能になる。
When the fθ lens thread is configured with the lens surface configuration as described in claims 1 to 6, excellent correction of the field curvature in the main and sub scanning directions can be performed.

「面倒れ」を補正し、主走査方向の像面湾曲を良好に
補正した状態に於いて、副走査方向の像面湾曲をも良好
に補正するためには、各fθレンズ系とも対応する請求
項に記載された条件を満足しなければならない。
In a state in which “surface tilt” is corrected and the field curvature in the main scanning direction is satisfactorily corrected, in order to satisfactorily correct the field curvature in the sub-scanning direction, each fθ lens system is also required. The conditions described in section must be satisfied.

請求項1のfθレンズ系に対する条件(1−I)は面
倒れを補正し、主走査方向の像面湾曲を良好に補正した
状態で副走査方向の像面湾曲を良好に補正するための条
件であり、この条件(1−I)の下限を越えると副走査
方向の像面湾曲はオーバー側に著しく発生し、上限を越
えるとアンダー側に著しく発生する。
The condition (1-I) for the fθ lens system according to claim 1 is a condition for satisfactorily correcting field curvature in the sub-scanning direction while correcting field tilt and satisfactorily correcting field curvature in the main scanning direction. When the lower limit of the condition (1-I) is exceeded, the curvature of field in the sub-scanning direction is significantly generated on the over side, and when the upper limit is exceeded, it is significantly generated on the under side.

請求項2のfθレンズ系にあっては、条件(2−I)
の下限を越えると副走査方向の像面湾曲はオーバー側に
著しく発生し、上限を越えるとアンダー側に著しく発生
する。
In the fθ lens system according to claim 2, the condition (2-I) is satisfied.
If the lower limit is exceeded, the curvature of field in the sub-scanning direction will significantly occur on the over side, and if it exceeds the upper limit, it will significantly occur on the under side.

請求項3のfθレンズ系にあっては、条件(3−I)
下限を越えると副走査方向の像面湾曲はオーバー側に著
しく発生し、上限を越えるとアンダー側に著しく発生す
る。また条件(3−II)の上限を越えると副走査方向の
像面湾曲はオーバー側に、また下限を越えるとアンダー
側に著しく発生する。
In the fθ lens system according to claim 3, the condition (3-I) is satisfied.
If the lower limit is exceeded, the curvature of field in the sub-scanning direction will significantly occur on the over side, and if it exceeds the upper limit, it will significantly occur on the under side. When the value exceeds the upper limit of the condition (3-II), the curvature of field in the sub-scanning direction is remarkably generated on the over side, and when the value exceeds the lower limit, the image surface is remarkably generated on the under side.

請求項4のfθレンズ系にあっては、条件(4−I)
の下限を越えると副走査方向の像面湾曲はオーバー側に
著しく発生し、上限を越えるとアンダー側に著しく発生
する。
In the fθ lens system according to claim 4, the condition (4-1) is satisfied.
If the lower limit is exceeded, the curvature of field in the sub-scanning direction will significantly occur on the over side, and if it exceeds the upper limit, it will significantly occur on the under side.

請求項5のfθレンズ系にあっては、条件(5−I)
の下限を越えると副走査方向の像面湾曲はオーバー側に
著しく発生し、上限を越えるとアンダー側に著しく発生
する。
In the fθ lens system according to claim 5, the condition (5-I) is satisfied.
If the lower limit is exceeded, the curvature of field in the sub-scanning direction will significantly occur on the over side, and if it exceeds the upper limit, it will significantly occur on the under side.

請求項6のfθレンズ系にあっては、条件(6−I)
の下限を越えると副走査方向の像面湾曲はアンダー側に
発生し、上限を越えるとオーバー側に発生する。
In the fθ lens system according to claim 6, the condition (6-I) is satisfied.
If the lower limit is exceeded, the field curvature in the sub-scanning direction occurs on the under side, and if the upper limit is exceeded, it occurs on the over side.

従って、請求項1〜6のfθレンズ系とも、各条件を
外れると結像性能が低下し、副走査方向の光スポット径
の変動が大きくなり良好な光走査を実現するのが困難と
なる。逆に、上記各条件を満足する場合は、樽型トーリ
ック面の「副走査方向の像面湾曲補正機能」が良好に発
揮される。
Therefore, in each of the fθ lens systems according to the first to sixth aspects, if the respective conditions are not satisfied, the imaging performance is degraded, the fluctuation of the light spot diameter in the sub-scanning direction becomes large, and it becomes difficult to realize good optical scanning. Conversely, when each of the above conditions is satisfied, the "field curvature correction function in the sub-scanning direction" of the barrel-shaped toric surface is favorably exhibited.

次に第2図を参照すると、この図はfθレンズ系を用
いた光走査装置の1例を説明図的に略示している。ま
た、第3図は、第2図の光学配置を副走査方向から見た
状態、即ち偏向面内での様子を示している。
Next, referring to FIG. 2, this figure schematically illustrates an example of an optical scanning apparatus using an fθ lens system. FIG. 3 shows the optical arrangement of FIG. 2 as viewed from the sub-scanning direction, that is, the state in the deflection plane.

第2図に於いて、光源もしけは光源と集光装置とから
なる光源装置1からの平行光束は線像結像光学系たるシ
リンダーレンズ2により、回転多面鏡3の反射面3aの近
傍に偏向面と略平行な線像LIとして結像する。この線像
LIの長手方向は主走査対応方向である。
In FIG. 2, a parallel light beam from a light source device 1 comprising a light source and a light source and a light condensing device is brought into the vicinity of a reflecting surface 3a of a rotary polygon mirror 3 by a cylinder lens 2 which is a line image forming optical system. An image is formed as a line image LI substantially parallel to the deflection surface. This line image
The longitudinal direction of the LI is a main scanning corresponding direction.

回転多面鏡3により反射された光束は、fθレンズ系
により被走査面6上にスポット状に結像され、回転多面
鏡3の矢印方向への等速回転に従い被走査面6を等速的
に走査する。
The light beam reflected by the rotating polygon mirror 3 is formed into an image of a spot on the surface 6 to be scanned by the fθ lens system. Scan.

fθレンズ系は第1のレンズ4と第2のレンズ5とに
より構成され、レンズ4は回転多面鏡3の側、レンズ5
は被走査面6の側にそれぞれ配設される。偏向面内で見
ると第3図に示すように、レンズ4,5によるfθレンズ
系は光源装置1側の無限遠と被走査面6の位置とを幾何
光学的な共役関係に結び付けている。
The fθ lens system includes a first lens 4 and a second lens 5, and the lens 4 is located on the side of the rotary polygon mirror 3 and the lens 5.
Are disposed on the side of the surface 6 to be scanned. As viewed in the deflection plane, as shown in FIG. 3, the fθ lens system including the lenses 4 and 5 links the infinity on the light source device 1 side and the position of the surface 6 to be scanned to a geometric conjugate relationship.

これに対し偏向直交面内で見ると、即ち副走査方向に
関してはfθレンズ系は回転多面鏡3の反射位置と被走
査面6とを幾何光学的に略共役な関係に結び付けてい
る。従って、第4図に示すように反射面3aが符号3a′で
示すように面倒れを生じてもfθレンズ系による被走査
面6上の結像位置は、副走査方向(第4図上下方向)に
は殆ど移動しない。従って面倒れは補正される。
On the other hand, when viewed in the plane orthogonal to the deflection, that is, in the sub-scanning direction, the fθ lens system links the reflection position of the rotary polygon mirror 3 and the surface 6 to be scanned to a substantially optically conjugate relationship. Therefore, even if the reflection surface 3a is tilted as shown by the reference numeral 3a 'as shown in FIG. 4, the image position on the surface 6 to be scanned by the fθ lens system is in the sub-scanning direction (vertical direction in FIG. 4). Hardly move to). Therefore, the tilting is corrected.

さて、回転多面鏡3が回転すると反射面3aは軸3Aを中
心として回転するため、第5図に示すように反射面の回
転に伴い線像の結像位置Pと反射面3aとの間に位置ずれ
ΔXが生じ、fθレンズ系による線像の共役像の位置
P′は被走査面6からΔX′だけずれる。このずれ量Δ
X′はfθレンズ系の副走査方向の横倍率をβとして、
周知の如くΔX′=β・ΔXで与えられる。
When the rotary polygon mirror 3 rotates, the reflecting surface 3a rotates about the axis 3A. Therefore, as shown in FIG. 5, the reflecting surface 3a rotates between the imaging position P of the line image and the reflecting surface 3a. A position shift ΔX occurs, and the position P ′ of the conjugate image of the line image by the fθ lens system is shifted from the scanned surface 6 by ΔX ′. This deviation amount Δ
X ′ is β, where x is the lateral magnification of the fθ lens system in the sub-scanning direction.
As is well known, it is given by ΔX ′ = β 2 × ΔX.

偏向面内で、fθレンズ系のレンズ光軸と偏向光束の
主光線とのなす角をθとする時、θと上記ΔXとの関係
を示したのが第6図及び第7図である。第6図は固有入
射角α(第8図参照)を90度とし、回転多面鏡3の内接
円半径R′をパラメーターとして描いている。また、第
7図では上記内接円半径R′を40mmとし、固有入射角α
をパラメーターとして描いている。第6,7図から分かる
ように、ΔXは内接円半径R′が大きいほど、また固有
入射角αが小さいほど大きくなる。
FIGS. 6 and 7 show the relationship between θ and ΔX when the angle between the lens optical axis of the fθ lens system and the principal ray of the deflected light beam is θ in the deflection plane. FIG. 6 depicts the specific incident angle α (see FIG. 8) as 90 degrees and the radius R ′ of the inscribed circle of the rotating polygon mirror 3 as a parameter. In FIG. 7, the radius R 'of the inscribed circle is 40 mm, and the specific incident angle α
Is drawn as a parameter. As can be seen from FIGS. 6 and 7, ΔX increases as the radius of the inscribed circle R ′ increases and as the specific incident angle α decreases.

また、反射面の回転に伴う線像の位置と反射面との相
対的な位置ずれは、偏向面内で2次元的に生じ、且つレ
ンズ光軸に対しても非対象に移動する。従って、第2図
の如き光走査装置ではfθレンズ系の主、副走査方向の
像面湾曲を良好に補正する必要がある。また、主走査方
向に関してはfθ特性が良好に補正されねばならないこ
とは言うまでもない。
Further, the relative displacement between the position of the line image and the reflecting surface due to the rotation of the reflecting surface occurs two-dimensionally in the deflecting surface and moves asymmetrically with respect to the lens optical axis. Therefore, in the optical scanning device as shown in FIG. 2, it is necessary to satisfactorily correct the field curvature of the fθ lens system in the main and sub scanning directions. Needless to say, the fθ characteristic must be corrected well in the main scanning direction.

ここで前述の固有入射角αにつき説明すると、第8図
において、符号aは回転多面鏡に入射する光束の主光線
を示し、符号bはfθレンズ系の光軸を示している。固
有入射角αは、図の如く主光線aと光軸bの交角として
定義される。
Here, the specific incident angle α will be described. In FIG. 8, a symbol a indicates a principal ray of a light beam incident on the rotating polygon mirror, and a symbol b indicates an optical axis of the fθ lens system. The specific incident angle α is defined as the intersection angle between the principal ray a and the optical axis b as shown in the figure.

主光線aと光軸bの交点の位置を原点として図のごと
くX,Y軸を定め、回転多面鏡3の回転軸位置の座標をXC,
YCとする。
The X and Y axes are determined as shown in the figure, using the position of the intersection of the principal ray a and the optical axis b as the origin, and the coordinates of the rotational axis position of the rotary polygon mirror 3 are represented by X C ,
Y C.

前述した、線像位置と反射面との位置ずれ量のΔXの
変動をなるべく少なくする為には周知のごとく、Rを回
転多面鏡の外接円半径として 0<Xc<Rcos(α/2) 0<Yp<Rsin(α/2) なる条件をXC,YCに課せばよい。
As is well known, R is defined as the radius of the circumscribed circle of the rotary polygon mirror, as described above, in order to minimize the variation in ΔX of the positional shift amount between the line image position and the reflecting surface, as described above. 0 <Xc <Rcos (α / 2) The condition of <Yp <Rsin (α / 2) may be imposed on X C and Y C.

また、入射光束の主光線aが有効主走査領域外に存在
し、被走査面6からの戻り光がゴースト光として被走査
面の主走査領域に再入射しないようにするには、回転多
面鏡3の面数をN、偏向角をθとして、上記αに対し、 θ<α<(4π/N)−θ なる条件を課すれば良い。
In order to prevent the principal ray a of the incident light beam from existing outside the effective main scanning area and prevent the return light from the scanned surface 6 from re-entering the main scanning area on the scanned surface as ghost light, a rotating polygon mirror must be used. Assuming that the number of surfaces is N and the deflection angle is θ, a condition of θ <α <(4π / N) −θ may be imposed on α.

次に、本発明の特徴の一端をなす樽型トーリック面に
付き説明する。
Next, the barrel-shaped toric surface forming one end of the features of the present invention will be described.

良く知られているようにトーリック面とは、円弧を
「この円弧を含む平面内にあって円弧の曲率中心を通ら
ない直線」の回りに回転して得られる面である。
As is well known, a toric surface is a surface obtained by rotating an arc around a "straight line that is within a plane containing the arc and does not pass through the center of curvature of the arc".

第9図を参照するとAVBを通る曲線は位置C1を曲率中
心とする円弧である。この円弧を、円弧と同一面内にあ
る直線X1Y1を軸として回転させると第10図に示すような
樽型の曲面TTが得られる。この面TTが樽型トーリック面
である、この面TTをレンズ面として使用する際に凸面と
して使用する場合と凹面として使用する場合とが可能で
ある。
Curve passing through AVB Referring to FIG. 9 is a circular arc whose center of curvature position C 1. When this arc is rotated around a straight line X 1 Y 1 which is in the same plane as the arc, a barrel-shaped curved surface TT as shown in FIG. 10 is obtained. This surface TT is a barrel-shaped toric surface. When this surface TT is used as a lens surface, it can be used as a convex surface or as a concave surface.

請求項1,2,5のfθレンズ系では第1面に凹の樽型ト
ーリック面が使用され、請求項3,6のfθレンズ系では
第2面に凸の樽型トーリック面が、請求項4のfθレン
ズ系では第2面に凹の樽型トーリック面が使用される。
In the fθ lens systems of claims 1, 2, and 5, a barrel-shaped toric surface having a concave surface on the first surface is used. In the fθ lens systems of claims 3 and 6, a barrel-shaped toric surface having a convex surface on the second surface is provided. In the fθ lens system No. 4, a concave barrel-shaped toric surface is used for the second surface.

なお、請求項1〜6のfθレンズ系に於いて第4面に
共通して使用される「凸のトーリック面」では円弧が光
軸を含む偏向直交面内にあり、回転軸はこの面内で副走
査方向に平行で、円弧の曲率中心に関して円弧と反対側
にある。従って、このトーリック面は光軸を含む偏向直
交面内に強い曲率を持つ。
Incidentally, in the "convex toric surface" commonly used for the fourth surface in the fθ lens system of claims 1 to 6, the arc is in the plane orthogonal to the deflection including the optical axis, and the rotation axis is in this plane. Are parallel to the sub-scanning direction and are on the opposite side of the arc with respect to the center of curvature of the arc. Therefore, this toric surface has a strong curvature in a plane orthogonal to the deflection including the optical axis.

X1Y1軸に直交する面内における樽型トーリック面の曲
率半径を見ると、これはC2点を軸方向に離れるに従って
小さくなっており、この曲率半径は軸X1Y1と円弧AVBと
の距離に等しい。
Looking at the radius of curvature of the barrel-shaped toric surface in X 1 Y 1 perpendicular to the axis to the plane, which is smaller with increasing distance to C 2 points in the axial direction, the radius of curvature the axis X 1 Y 1 and arc AVB Equal to the distance to

本発明では、各請求項のfθレンズ系とも「樽型トー
リック面」に於いて、軸X1Y1の方向を偏向面内で主走査
方向と平行にするのである。
In the present invention, the direction of the axis X 1 Y 1 is made parallel to the main scanning direction within the deflection plane in the “barrel-shaped toric surface” in each of the fθ lens systems of the respective claims.

[実施例] 以下、各請求項のfθレンズ系に就き、具体的な実施
例を挙げる。
[Examples] Specific examples will be given below for the fθ lens system of each claim.

各実施例においてfMはfθレンズ系の主走査方向に関
する合成焦点距離、即ち偏向面に平行な面内における合
成焦点距離を表し、この値は100に規格化される。
In each embodiment, f M represents a combined focal length in the main scanning direction of the fθ lens system, that is, a combined focal length in a plane parallel to the deflection surface, and this value is normalized to 100.

またfSは偏向直交面内での合成焦点距離即ち副走査方
向に関する合成焦点距離を表す。2θは偏向角(単位:
度)、αは固有入射角(単位:度)、βは偏向直交面内
の横倍率を表す。
The f S represents the composite focal length of the synthesis focal distance or the sub-scanning direction in the deflection plane perpendicular. 2θ is the deflection angle (unit:
Degree), α is a specific incident angle (unit: degree), and β is a lateral magnification in a plane orthogonal to the deflection.

rixは回転多面鏡の側から数えてi番目のレンズ面の
偏向面内の曲率半径、即ち第1図各図で「主」と表示さ
れた図に現れたレンズ面形状の曲率半径、riYはi番目
のレンズ面の偏向直交面内の曲率半径、即ち第1図各図
で「副」と表示された図に現れたレンズ面形状の曲率半
径であり、r1Y,r2Y,r3Y,r4Yは上述した各条件に関連し
てr′1,r′2,r′3,r′として説明したものである。
r ix is the radius of curvature in the deflection plane of the i-th lens surface counted from the side of the rotating polygon mirror, that is, the radius of curvature of the lens surface shape appearing in the figures indicated as “main” in each of FIGS. iY is the radius of curvature of the i-th lens surface in the plane orthogonal to the deflection, that is, the radius of curvature of the lens surface shape that appears in the figure indicated as “sub” in each of FIGS. 1 and 2 , and r 1Y , r 2Y , r 3Y and r 4Y have been described as r ′ 1 , r ′ 2 , r ′ 3 and r ′ 4 in relation to the above-mentioned conditions.

また樽型トーリック面に関して、rixは第9図のVC1
の距離、riYはVC2間の距離を表す。diはi番目のレンズ
面間距離、doは回転多面鏡の反射面から第1レンズ面ま
での距離、njはj番目のレンズの屈折率を表す。
Regarding the barrel-shaped toric surface, r ix represents the distance between VC 1 and riY represents the distance between VC 2 in FIG. d i is the i-th lens surface distance, d o is the distance from the reflecting surface of the rotary polygon mirror to the first lens surface, n j denotes the refractive index of the j-th lens.

実施例1〜9は請求項1のfθレンズ系に関する実施
例である。
Embodiments 1 to 9 are embodiments relating to the fθ lens system of claim 1.

実施例10〜18は請求項2のfθレンズ系に関する実施
例である。
Embodiments 10 to 18 are embodiments relating to the fθ lens system of claim 2.

実施例19〜21は請求項3のfθレンズ系に関する実施
例である。
Embodiments 19 to 21 are embodiments relating to the fθ lens system of claim 3.

実施例22〜24は請求項4のfθレンズ系に関する実施
例である。
Embodiments 22 to 24 are embodiments relating to the fθ lens system of claim 4.

実施例25〜34は請求項5のfθレンズ系に関する実施
例である。
Embodiments 25 to 34 are embodiments relating to the fθ lens system of claim 5.

実施例35〜38は請求項6のfθレンズ系に関する実施
例である。
Embodiments 35 to 38 are embodiments relating to the fθ lens system of claim 6.

請求項1のfθレンズ系に関する実施例1〜9の各々
に於いて、K1は上述の条件(1−I)に於けるパラメー
ター、即ち、|r′3/fS|を表している。
In each of the first to ninth embodiments relating to the fθ lens system of the first aspect , K 1 represents a parameter under the above-mentioned condition (1-I), that is, | r ′ 3 / f S |.

実施例 1 fM=100,fS=16.59,β=−2.009,α=54,2θ=63.1 K1=3.073,do=7.816 i rix riY di j ni 1 −112.654 −3.607 5.531 1 1.71221 2 ∞ ∞ 10.943 3 ∞ −50.986 6.373 2 1.67500 4 −46.055 −10.39 第11図に、実施例1に関する収差図・fθ特性を示
す。
Example 1 f M = 100, f S = 16.59, β = -2.009, α = 54,2θ = 63.1 K 1 = 3.073, d o = 7.816 i r ix r iY d i j n i 1 -112.654 -3.607 5.531 1 1.71221 2 ∞ ∞ 10.943 3 ∞ -50.986 6.373 2 1.67500 4 -46.055 -10.39 FIG. 11 shows aberration diagrams and fθ characteristics of the first embodiment.

以下の各実施例とも像面湾曲図は、回転多面鏡の回転
に伴うものであり、破線は主走査方向のもの、実線が副
走査方向のものを表している。
In each of the following embodiments, the curvature of field is associated with the rotation of the rotary polygon mirror, and the broken lines indicate the main scanning direction and the solid lines indicate the sub-scanning direction.

また、fθ特性は理想像高をfM・θ、実際の像高をh
とするとき、(h−fM・θ)・100/(fM・θ)で定義さ
れる。
In the fθ characteristic, the ideal image height is f M · θ, and the actual image height is h M
When a is defined by (h-f M · θ) · 100 / (f M · θ).

実施例 2 fM=100,fS=21.695,β=−3.963,α=54,2θ=63.1 K1=1.868,do=7.816 i rix riY di j ni 1 −112.654 −96.199 5.531 1 1.71221 2 ∞ ∞ 10.943 3 ∞ −40.524 6.373 2 1.67500 4 −46.055 −11.295 第12図に、実施例2に関する収差図・fθ特性を示
す。
Example 2 f M = 100, f S = 21.695, β = -3.963, α = 54,2θ = 63.1 K 1 = 1.868, d o = 7.816 i r ix r iY d i j n i 1 -112.654 -96.199 5.531 1 1.71221 2 ∞ ∞ 10.943 3 ∞ -40.524 6.373 2 1.67500 4 -46.055 -11.295 FIG. 12 shows aberration diagrams and fθ characteristics of the second embodiment.

実施例 3 fM=100,fS=21.634,β=−3.565,α=54,2θ=63.1 K1=2.023,do=7.816 i rix riY di j ni 1 −112.654 −24.05 5.531 1 1.71221 2 ∞ ∞ 10.943 3 ∞ −43.771 6.373 2 1.67500 4 −46.055 −11.159 第13図に、実施例3に関する収差図・fθ特性を示
す。
Example 3 f M = 100, f S = 21.634, β = -3.565, α = 54,2θ = 63.1 K 1 = 2.023, d o = 7.816 i r ix r iY d i j n i 1 -112.654 -24.05 5.531 1 1.71221 2 ∞ ∞ 10.943 3 ∞ -43.771 6.373 2 1.67500 4 -46.055 -11.159 FIG. 13 shows aberration diagrams and fθ characteristics of the third embodiment.

実施例 4 fM=100,fS=20.345,β=−3.682,α=54,2θ=63.4 K1=1.814,do=5.411 i rix riY di j ni 1 −113.348 −18.037 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −36.916 6.012 2 1.67500 4 −46.536 −10.702 第14図に、実施例4に関する収差図・fθ特性を示
す。
Example 4 f M = 100, f S = 20.345, β = -3.682, α = 54,2θ = 63.4 K 1 = 1.814, d o = 5.411 i r ix r iY d i j n i 1 -113.348 -18.037 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −36.916 6.012 2 1.67500 4 −46.536 -10.702 FIG. 14 shows aberration diagrams and fθ characteristics of Example 4.

実施例 5 fM=100,fS=17.419,β=−2.788,α=54,2θ=63.4 K1=2.209,do=5.411 i rix riY di j ni 1 −113.348 −5.531 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −38.48 6.012 2 1.67500 4 −46.536 −10.434 第15図に、実施例5に関する収差図・fθ特性を示
す。
Example 5 f M = 100, f S = 17.419, β = -2.788, α = 54,2θ = 63.4 K 1 = 2.209, d o = 5.411 i r ix r iY d i j n i 1 -113.348 -5.531 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −38.48 6.012 2 1.67500 4 −46.536 -10.434 FIG. 15 shows aberration diagrams and fθ characteristics of the fifth embodiment.

実施例 6 fM=100,fS=20.967,β=−4.088,α=54,2θ=63.4 K1=1.703,do=5.411 i rix riY di j ni 1 −113.348 −60.125 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −35.714 6.012 2 1.67500 4 −46.536 −10.798 第16図に、実施例6に関する収差図・fθ特性を示
す。
Example 6 f M = 100, f S = 20.967, β = -4.088, α = 54,2θ = 63.4 K 1 = 1.703, d o = 5.411 i r ix r iY d i j n i 1 -113.348 -60.125 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −35.714 6.012 2 1.67500 4 −46.536 -10.798 FIG. 16 shows aberration diagrams and fθ characteristics of the sixth embodiment.

実施例 7 fM=100,fS=21.051,β=−4.175,α=54,2θ=63.4 K1=1.679,do=5.411 i rix riY di j ni 1 −113.348 −108.224 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −35.353 6.012 2 1.67500 4 −46.536 −10.811 第17図に、実施例7に関する収差図・fθ特性を示
す。
Example 7 f M = 100, f S = 21.051, β = -4.175, α = 54,2θ = 63.4 K 1 = 1.679, d o = 5.411 i r ix r iY d i j n i 1 -113.348 -108.224 4.209 1 1.71221 2 ∞ ∞ 13.468 3 ∞ −35.353 6.012 2 1.67500 4 −46.536 −10.811 FIG. 17 shows aberration diagrams and fθ characteristics of the seventh embodiment.

実施例 8 fM=100,fS=19.704,β=−2.71,α=54,2θ=63.1 K1=2.374,do=7.816 i rix riY di j ni 1 −112.654 −6.012 5.531 1 1.71221 2 ∞ −51.707 10.943 3 ∞ −46.777 6.373 2 1.67500 4 −46.055 −10.841 第18図に、実施例8に関する収差図・fθ特性を示
す。
Example 8 f M = 100, f S = 19.704, β = -2.71, α = 54,2θ = 63.1 K 1 = 2.374, d o = 7.816 i r ix r iY d i j n i 1 -112.654 -6.012 5.531 1 1.71221 2 ∞ -51.707 10.943 3 ∞ -46.777 6.373 2 1.67500 4 -46.055 -10.841 FIG. 18 shows aberration diagrams and fθ characteristics of the eighth embodiment.

実施例 9 fM=100,fS=18.803,β=−3.69,α=54,2θ=63.4 K1=1.746,do=5.416 i rix riY di j ni 1 −113.348 −5.531 4.209 1 1.71221 2 ∞ −12.025 13.468 3 ∞ −44.853 6.012 2 1.67500 4 −46.536 −10.841 第19図に、実施例9に関する収差図・fθ特性を示
す。
Example 9 f M = 100, f S = 18.803, β = -3.69, α = 54,2θ = 63.4 K 1 = 1.746, d o = 5.416 i r ix r iY d i j n i 1 -113.348 -5.531 4.209 1 1.71221 2 ∞ -12.025 13.468 3 ∞ -44.853 6.012 2 1.67500 4 -46.536 -10.841 FIG. 19 shows aberration diagrams and fθ characteristics of the ninth embodiment.

実施例とも、収差が良好であり特に、像面湾曲は主・
副走査方向とも極めて良好に補正されている。またfθ
特性も良好である。
In each of the embodiments, the aberration is good, and particularly, the field curvature is mainly
It is corrected very well in the sub-scanning direction. Fθ
The characteristics are also good.

請求項2のfθレンズ系に関する以下の実施例10〜18
に於いてはK1をもって上記条件(2−I)におけるパラ
メーター|[{(1/r′)−(1/r′)}−{(1/
r′)−(1−r′)}]・fS|を表す。
The following Examples 10 to 18 relating to the fθ lens system according to claim 2
Parameters in the condition (2-I) with a K 1 is at the | [{(1 / r ' 1) - (1 / r' 2)} - {(1 /
r ′ 3 ) − (1-r ′ 4 )}] · f S |.

実施例 10 fM=100,fS=20.938,β=−3.757,α=54,2θ=63.4 K1=2.27,do=5.411 i rix riY di j ni 1 −113.349 −48.100 4.209 1 1.71221 2 ∞ 48.100 13.468 3 ∞ −37.277 6.012 2 1.67500 4 −46.536 −10.670 第20図に、実施例10に関する収差図・fθ特性を示
す。
Example 10 f M = 100, f S = 20.938, β = -3.757, α = 54,2θ = 63.4 K 1 = 2.27, d o = 5.411 i r ix r iY d i j n i 1 -113.349 -48.100 4.209 1 1.71221 2 ∞ 48.100 13.468 3 ∞ −37.277 6.012 2 1.67500 4 −46.536 -10.670 FIG. 20 shows aberration diagrams and fθ characteristics of Example 10.

実施例 11 fM=100,fS=17.314,β=−2.700,α=54,2θ=63.4 K1=4.47,do=5.411 i rix riY di j ni 1 −113.349 −6.012 4.209 1 1.71221 2 ∞ 48.100 13.468 3 ∞ −39.081 6.012 2 1.67500 4 −46.536 −10.364 第21図に、実施例11に関する収差図・fθ特性を示
す。
Example 11 f M = 100, f S = 17.314, β = -2.700, α = 54,2θ = 63.4 K 1 = 4.47, d o = 5.411 i r ix r iY d i j n i 1 -113.349 -6.012 4.209 1 1.71221 2 ∞ 48.100 13.468 3 ∞ −39.081 6.012 2 1.67500 4 −46.536 -10.364 FIG. 21 shows aberration diagrams and fθ characteristics of Example 11.

実施例 12 fM=100,fS=19.113,β=−2.589,α=54,2θ=63.4 K1=4.47,do=5.411 i rix riY di j ni 1 −113.349 −120.249 4.209 1 1.71221 2 ∞ 6.012 13.468 3 ∞ −40.283 6.012 2 1.67500 4 −46.536 −10.036 第22図に、実施例12に関する収差図・fθ特性を示
す。
Example 12 f M = 100, f S = 19.113, β = -2.589, α = 54,2θ = 63.4 K 1 = 4.47, d o = 5.411 i r ix r iY d i j n i 1 -113.349 -120.249 4.209 1 1.71221 2 ∞ 6.012 13.468 3 ∞ −40.283 6.012 2 1.67500 4 −46.536 −10.036 FIG. 22 shows aberration diagrams and fθ characteristics of Example 12.

実施例 13 fM=100,fS=17.280,β=−1.972,α=54,2θ=63.1 K1=5.72,do=7.816 i rix riY di j ni 1 −112.654 −6.012 5.531 1 1.71221 2 ∞ 12.025 10.943 3 ∞ −56.156 6.373 2 1.67500 4 −46.055 −10.087 第23図に、実施例13に関する収差図・fθ特性を示
す。
Example 13 f M = 100, f S = 17.280, β = -1.972, α = 54,2θ = 63.1 K 1 = 5.72, d o = 7.816 i r ix r iY d i j n i 1 -112.654 -6.012 5.531 1 1.71221 2 ∞ 12.025 10.943 3 ∞ −56.156 6.373 2 1.67500 4 −46.055 −10.087 FIG. 23 shows aberration diagrams and fθ characteristics of the thirteenth embodiment.

実施例 14 fM=100,fS=20.452,β=−2.258,α=54,2θ=63.1 K1=5.53,do=7.816 i rix riY di j ni 1 −112.654 −48.100 5.531 1 1.71221 2 ∞ 6.012 10.943 3 ∞ −58.201 6.373 2 1.67500 4 −46.055 −9.957 第24図に、実施例14に関する収差図・fθ特性を示
す。
Example 14 f M = 100, f S = 20.452, β = -2.258, α = 54,2θ = 63.1 K 1 = 5.53, d o = 7.816 i r ix r iY d i j n i 1 -112.654 -48.100 5.531 1 1.71221 2 ∞ 6.012 10.943 3 ∞ −58.201 6.373 2 1.67500 4 −46.055 −9.957 FIG. 24 shows aberration diagrams and fθ characteristics of Example 14.

実施例 15 fM=100,fS=18.502,β=−1.824,α=54,2θ=63.0 K1=6.91,do=7.816 i rix riY di j ni 1 −112.654 −120.249 5.531 1 1.71221 2 ∞ 3.607 10.943 3 ∞ −57.118 6.373 2 1.67500 4 −46.055 −9.498 第25図に、実施例15に関する収差図・fθ特性を示
す。
Example 15 f M = 100, f S = 18.502, β = -1.824, α = 54,2θ = 63.0 K 1 = 6.91, d o = 7.816 i r ix r iY d i j n i 1 -112.654 -120.249 5.531 1 1.71221 2 ∞ 3.607 10.943 3 ∞ −57.118 6.373 2 1.67500 4 −46.055 −9.498 FIG. 25 shows aberration diagrams and fθ characteristics of Example 15.

実施例 16 fM=100,fS=13.341,β=−1.210,α=54,2θ=63.0 K1=7.34,do=9.019 i rix riY di j ni 1 −109.496 −6.012 6.133 1 1.71221 2 ∞ 3.487 9.740 3 ∞ −78.162 6.373 2 1.67500 4 −45.454 −9.084 第26図に、実施例16に関する収差図・fθ特性を示
す。
Example 16 f M = 100, f S = 13.341, β = -1.210, α = 54,2θ = 63.0 K 1 = 7.34, d o = 9.019 i r ix r iY d i j n i 1 -109.496 -6.012 6.133 1 1.71221 2 ∞ 3.487 9.740 3 ∞ −78.162 6.373 2 1.67500 4 −45.454 −9.084 FIG. 26 shows aberration diagrams and fθ characteristics of Example 16.

実施例 17 fM=100,fS=17.411,β=−1.507,α=54,2θ=63.0 K1=8.09,do=9.019 i rix riY di j ni 1 −109.496 −48.100 6.133 1 1.71221 2 ∞ 2.886 9.740 3 ∞ −79.605 6.373 2 1.67500 4 −45.454 −9.082 第27図に、実施例17に関する収差図・fθ特性を示
す。
Example 17 f M = 100, f S = 17.411, β = -1.507, α = 54,2θ = 63.0 K 1 = 8.09, d o = 9.019 i r ix r iY d i j n i 1 -109.496 -48.100 6.133 1 1.71221 2 ∞ 2.886 9.740 3 ∞ −79.605 6.373 2 1.67500 4 −45.454 −9.082 FIG. 27 shows aberration diagrams and fθ characteristics of Example 17.

実施例 18 fM=100,fS=17.712,β=−1.519,α=54,2θ=63.0 K1=9.61,do=9.019 i rix riY di j ni 1 −109.496 −120.249 6.133 1 1.71221 2 ∞ 2.766 9.740 3 ∞ −79.485 6.373 2 1.67500 4 −45.454 −9.059 第28図に、実施例18に関する収差図・fθ特性を示
す。
Example 18 f M = 100, f S = 17.712, β = -1.519, α = 54,2θ = 63.0 K 1 = 9.61, d o = 9.019 i r ix r iY d i j n i 1 -109.496 -120.249 6.133 1 1.71221 2 ∞ 2.766 9.740 3 ∞ −79.485 6.373 2 1.67500 4 −45.454 −9.059 FIG. 28 shows aberration diagrams and fθ characteristics of Example 18.

実施例10〜18とも、収差が良好であり特に、像面湾曲
は主・副走査方向とも極めて良好に補正されている。ま
たfθ特性も良好である。
In all of the tenth to eighteenth embodiments, the aberration is good, and particularly, the curvature of field is corrected very well in both the main and sub-scanning directions. Also, the fθ characteristics are good.

請求項3のfθレンズ系に関する以下の実施例19〜21
に於いては、K1をもって上記条件(3−I)における|
r′2/r′4|を、K2をもって条件(3−II)に於け|r′2/
fS|を表す。
The following Examples 19 to 21 relating to the fθ lens system according to claim 3
In the above condition (3-I) with K 1
and orchestra to the conditions (3-II) with a K 2 | | r '2 / r' 4 r '2 /
f S |

実施例 19 fM=100,fS=17.991,β=−6.127,α=54,2θ=63.1 K1=0.752,K2=0.421,do=7.816 i rix riY di j ni 1 −16.358 −16.358 3.968 1 1.71221 2 −18.398 −7.582 14.67 3 ∞ −14.069 4.329 2 1.67500 4 −69.023 −10.087 第29図に、実施例19に関する収差図・fθ特性を示
す。
Example 19 f M = 100, f S = 17.991, β = -6.127, α = 54,2θ = 63.1 K 1 = 0.752, K 2 = 0.421, d o = 7.816 i r ix r iY d i j n i 1 −16.358 −16.358 3.968 1 1.71221 2 −18.398 −7.582 14.67 3 ∞−14.069 4.329 2 1.67500 4 −69.023 −10.087 FIG. 29 shows aberration diagrams and fθ characteristics of the nineteenth embodiment.

実施例 20 fM=100,fS=151.4,β=−4.846,α=54,2θ=63.7 K1=0.339,K2=0.0349,do=3.607 i rix riY di j ni 1 −30.303 −30.303 3.487 1 1.71221 2 −29.341 −5.291 38.961 3 ∞ −33.61 6.012 2 1.67500 4 −80.794 −15.619 第30図に、実施例20に関する収差図・fθ特性を示
す。
Example 20 f M = 100, f S = 151.4, β = -4.846, α = 54,2θ = 63.7 K 1 = 0.339, K 2 = 0.0349, d o = 3.607 i r ix r iY d i j n i 1 −30.303 −30.303 3.487 1 1.71221 2 −29.341 −5.291 38.961 3 ∞ −33.61 6.012 2 1.67500 4 −80.794 −15.619 FIG. 30 shows aberration diagrams and fθ characteristics of Example 20.

実施例 21 fM=100,fS=21.774,β=−4.478,α=54,2θ=63.1 K1=0.98,K2=0.53,do=12.025 i rix riY di j ni 1 −25.373 −25.373 6.133 1 1.71221 2 −27.778 −11.424 11.905 3 ∞ −15.067 6.012 2 1.67500 4 −75.242 −11.671 第31図に、実施例21に関する収差図・fθ特性を示
す。
Example 21 f M = 100, f S = 21.774, β = -4.478, α = 54,2θ = 63.1 K 1 = 0.98, K 2 = 0.53, d o = 12.025 i r ix r iY d i j n i 1 −25.373 −25.373 6.133 1 1.71221 2 −27.778 −11.424 11.905 3 −1−15.067 6.012 2 1.67500 4 −75.242 −11.671 FIG. 31 shows aberration diagrams and fθ characteristics of Example 21.

実施例19〜21とも、収差が良好であり特に、像面湾曲
は主・副走査方向とも極めて良好に補正されている。ま
たfθ特性も良好である。
In all of Examples 19 to 21, the aberration is good, and particularly, the curvature of field is corrected very well in both the main and sub scanning directions. Also, the fθ characteristics are good.

請求項4のfθレンズ系に関する以下の実施例22〜24
に於いて、K1をもって条件(4−I)におけるパラメー
ター|{(1/r′)−(1/r′)}・fS・β|を表
す。
The following Examples 22 to 24 relating to the fθ lens system according to claim 4.
, K 1 represents a parameter | {(1 / r ′ 3 ) − (1 / r ′ 4 )} · f S · β | in the condition (4-I).

実施例 22 fM=100,fS=17.459,β=−1.354,α=54,2θ=60.6 K1=1.51,do=7.816 i rix riY di j ni 1 ∞ ∞ 2.645 1 1.71221 2 190.636 −6.012 20.563 3 ∞ −61.327 4.329 2 1.67500 4 −53.391 −12.45 第32図に、実施例22に関する収差図・fθ特性図を示
す。
Example 22 f M = 100, f S = 17.459, β = -1.354, α = 54,2θ = 60.6 K 1 = 1.51, d o = 7.816 i r ix r iY d i j n i 1 ∞ ∞ 2.645 1 1.71221 2 190.636 -6.012 20.563 3 ∞ -61.327 4.329 2 1.67500 4 -53.391 -12.45 FIG. 32 shows aberration diagrams and fθ characteristics of Example 22.

実施例 23 fM=100,fS=17.851,β=−1.936,α=54,2θ=60.6 K1=1.94,do=3.607 i rix riY di j ni 1 ∞ ∞ 6.012 1 1.71221 2 180.374 6.012 19.48 3 ∞ −48.1 9.62 2 1.67500 4 −53.212 −13.001 第33図に、実施例23に関する収差図・fθ特性図を示
す。
Example 23 f M = 100, f S = 17.851, β = -1.936, α = 54,2θ = 60.6 K 1 = 1.94, d o = 3.607 i r ix r iY d i j n i 1 ∞ ∞ 6.012 1 1.71221 2 180.374 6.012 19.48 3 4 -48.1 9.62 2 1.67500 4 -53.212 -13.001 FIG. 33 shows aberration diagrams and fθ characteristic diagrams for Example 23.

実施例 24 fM=100,fS=10.085,β=−0.603,α=54,2θ=63.4 K1=0.41,do=12.025 i rix riY di j ni 1 ∞ ∞ 6.012 1 1.74405 2 195.345 1.864 16.691 3 ∞ −127.464 9.62 2 1.70217 4 −55.176 −13.194 第34図に、実施例24に関する収差図・fθ特性図を示
す。
Example 24 f M = 100, f S = 10.085, β = -0.603, α = 54,2θ = 63.4 K 1 = 0.41, d o = 12.025 i r ix r iY d i j n i 1 ∞ ∞ 6.012 1 1.74405 2 195.345 1.864 16.691 3 ∞ -127.464 9.62 2 1.70217 4 −55.176 -13.194 FIG. 34 shows aberration diagrams and fθ characteristic diagrams of Example 24.

実施例22〜24とも、収差が良好であり特に、像面湾曲
は主・副走査方向とも極めて良好に補正されている。ま
たfθ特性も良好である。
In all of Examples 22 to 24, the aberration is good, and particularly, the curvature of field is corrected very well in both the main and sub scanning directions. Also, the fθ characteristics are good.

請求項5のfθレンズ系に関する以下の実施例25〜34
に於いてはK1をもって条件(5−I)におけるパラメー
ター|{(1/r′)−(1/r′)}・fS・β|を表
す。
The following Examples 25 to 34 relating to the fθ lens system according to claim 5
In the above, K 1 represents the parameter | {(1 / r ′ 3 ) − (1 / r ′ 4 )} · f S · β | in the condition (5-I).

実施例 25 fM=100,fS=14.385,β=−1.542,α=54,2θ=63.7 K1=0.96,do=3.607 i rix riY di j ni 1 −30.303 −6.012 3.487 1 1.71221 2 −29.341 −29.341 38.961 3 ∞ −57.72 6.012 2 1.675 4 −80.794 −16.497 第35図に、実施例25に関する収差図・fθ特性図を示
す。
Example 25 f M = 100, f S = 14.385, β = -1.542, α = 54,2θ = 63.7 K 1 = 0.96, d o = 3.607 i r ix r iY d i j n i 1 -30.303 -6.012 3.487 1 1.71221 2 −29.341 −29.341 38.961 3 ∞−57.72 6.012 2 1.675 4 −80.794 −16.497 FIG. 35 shows aberration diagrams and fθ characteristics of Example 25.

実施例 26 fM=100,fS=3.616,β=−0.701,α=54,2θ=63.7 K1=0.11,do=3.607 i rix riY di j ni 1 −30.303 −1.202 3.487 1 1.71221 2 −29.341 −29.341 38.961 3 ∞ −57.72 6.012 2 1.675 4 −80.794 −16.216 第36図に、実施例26に関する収差図・fθ特性図を示
す。
Example 26 f M = 100, f S = 3.616, β = -0.701, α = 54,2θ = 63.7 K 1 = 0.11, d o = 3.607 i r ix r iY d i j n i 1 -30.303 -1.202 3.487 1 1.71221 2 −29.341 −29.341 38.961 3 ∞ −57.72 6.012 2 1.675 4 −80.794 -16.216 FIG. 36 shows aberration diagrams and fθ characteristics of Example 26.

実施例 27 fM=100,fS=29.686,β=−1.988,α=54,2θ=63.7 K1=2.72,do=3.607 i rix riY di j ni 1 −30.303 −24.05 3.487 1 1.71221 2 −29.341 −29.341 38.961 3 ∞ −57.118 6.012 2 1.675 4 −80.794 −16.611 第37図に、実施例27に関する収差図・fθ特性図を示
す。
Example 27 f M = 100, f S = 29.686, β = -1.988, α = 54,2θ = 63.7 K 1 = 2.72, d o = 3.607 i r ix r iY d i j n i 1 -30.303 -24.05 3.487 1 1.71221 2 −29.341 −29.341 38.961 3 ∞ −57.118 6.012 2 1.675 4 −80.794 −16.611 FIG. 37 shows aberration diagrams and fθ characteristics of Example 27.

実施例 28 fM=100,fS=9.014,β=−0.702,α=54,2θ=63.1 K1=0.48,do=12.025 i rix riY di j ni 1 −25.373 −1.202 6.133 1 1.71221 2 −27.778 −27.778 11.905 3 ∞ −44.372 6.012 2 1.675 4 −75.242 −10.222 第38図に、実施例28に関する収差図・fθ特性図を示
す。
Example 28 f M = 100, f S = 9.014, β = -0.702, α = 54,2θ = 63.1 K 1 = 0.48, d o = 12.025 i r ix r iY d i j n i 1 -25.373 -1.202 6.133 1 1.71221 2 -27.778 -27.778 11.905 3 ∞ -44.372 6.012 2 1.675 4 -75.242 -10.222 FIG. 38 shows aberration diagrams and fθ characteristics of Example 28.

実施例 29 fM=100,fS=24.389,β=−2.771,α=54,2θ=63.1 K1=3.68,do=12.025 i rix riY di j ni 1 −25.373 −12.025 6.133 1 1.71221 2 −27.778 −27.778 11.905 3 ∞ −32.948 6.012 2 1.675 4 −75.242 −11.794 第39図に、実施例29に関する収差図・fθ特性図を示
す。
Example 29 f M = 100, f S = 24.389, β = -2.771, α = 54,2θ = 63.1 K 1 = 3.68, d o = 12.025 i r ix r iY d i j n i 1 -25.373 -12.025 6.133 1 1.71221 2 -27.778 -27.778 11.905 3 ∞ -32.948 6.012 2 1.675 4 -75.242 -11.794 FIG. 39 shows aberration diagrams and fθ characteristics of Example 29.

実施例 30 fM=100,fS=23.789,β=−3.768,α=54,2θ=63.1 K1=4.06,do=12.025 i rix riY di j ni 1 −25.373 −60.125 6.133 1 1.71221 2 −27.778 −27.778 11.905 3 ∞ −31.265 6.012 2 1.675 4 −75.242 −12.943 第40図に、実施例30に関する収差図・fθ特性図を示
す。
Example 30 f M = 100, f S = 23.789, β = -3.768, α = 54,2θ = 63.1 K 1 = 4.06, d o = 12.025 i r ix r iY d i j n i 1 -25.373 -60.125 6.133 1 1.71221 2 −27.778 −27.778 11.905 3 ∞−31.265 6.012 2 1.675 4 −75.242 −12.943 FIG. 40 shows aberration diagrams and fθ characteristics of Example 30.

実施例 31 fM=100,fS=23.381,β=−3.979,α=54,2θ=63.1 K1=4.04,do=12.025 i rix riY di j ni 1 −25.373 −144.299 6.133 1 1.71221 2 −27.778 −27.778 11.905 3 ∞ −31.145 6.012 2 1.675 4 −75.242 −13.239 第41図に、実施例31に関する収差図・fθ特性図を示
す。
Example 31 f M = 100, f S = 23.381, β = -3.979, α = 54,2θ = 63.1 K 1 = 4.04, d o = 12.025 i r ix r iY d i j n i 1 -25.373 -144.299 6.133 1 1.71221 2 -27.778 -27.778 11.905 3 ∞ -31.145 6.012 2 1.675 4 -75.242 -13.239 FIG. 41 shows aberration diagrams and fθ characteristics of Example 31.

実施例 32 fM=100,fS=21.59,β=−4.295,α=54,2θ=63.1 K1=5.05,do=7.816 i rix riY di j ni 1 −16.358 −24.05 3.968 1 1.71221 2 −18.398 −18.398 14.67 3 ∞ −27.537 4.329 2 1.675 4 −69.023 −11.016 第42図に、実施例32に関する収差図・fθ特性図を示
す。
Example 32 f M = 100, f S = 21.59, β = -4.295, α = 54,2θ = 63.1 K 1 = 5.05, d o = 7.816 i r ix r iY d i j n i 1 -16.358 -24.05 3.968 1 1.71221 2 −18.398 −18.398 14.67 3 ∞−27.537 4.329 2 1.675 4 −69.023 −11.016 FIG. 42 shows aberration diagrams and fθ characteristics of Example 32.

実施例 33 fM=100,fS=20.608,β=−2.861,α=54,2θ=63.1 K1=3.67,do=7.816 i rix riY di j ni 1 −16.358 −6.012 3.968 1 1.71221 2 −18.398 −18.398 14.67 3 ∞ −27.778 4.329 2 1.675 4 −69.023 −37.95 第43図に、実施例33に関する収差図・fθ特性図を示
す。
Example 33 f M = 100, f S = 20.608, β = -2.861, α = 54,2θ = 63.1 K 1 = 3.67, d o = 7.816 i r ix r iY d i j n i 1 -16.358 -6.012 3.968 1 1.71221 2 −18.398 −18.398 14.67 3 ∞−27.778 4.329 2 1.675 4 −69.023 −37.95 FIG. 43 shows aberration diagrams and fθ characteristics of Example 33.

実施例 34 fM=100,fS=20.676,β=−5.001,α=54,2θ=63.1 K1=5.25,do=7.816 i rix riY di j ni 1 −16.358 −144.299 3.968 1 1.71221 2 −18.398 −18.398 14.67 3 ∞ −27.778 4.329 2 1.675 4 −69.023 −11.528 第44図に、実施例34に関する収差図・fθ特性図を示
す。
Example 34 f M = 100, f S = 20.676, β = -5.001, α = 54,2θ = 63.1 K 1 = 5.25, d o = 7.816 i r ix r iY d i j n i 1 -16.358 -144.299 3.968 1 1.71221 2 -18.398 -18.398 14.67 3 ∞ -27.778 4.329 2 1.675 4 -69.023 -11.528 FIG. 44 shows aberration diagrams and fθ characteristics of Example 34.

実施例25〜34とも、収差が良好であり特に、像面湾曲
は主・副走査方向とも極めて良好に補正されている。ま
たfθも良好である。
In all of the embodiments 25 to 34, the aberration is good, and particularly, the curvature of field is corrected very well in both the main and sub-scanning directions. Fθ is also good.

請求項6のfθレンズ系に関する以下の実施例35〜48
に於いてはK1をもって上記条件(6−I)におけるパラ
メーター|{(1/r′)−(1/r′)}・fS|を表
す。
The following Examples 35 to 48 relating to the fθ lens system according to Claim 6.
In the formula, K 1 represents the parameter | {(1 / r ′ 1 ) − (1 / r ′ 2 )} · f S | under the above condition (6-I).

実施例 35 fM=100,fS=15.34,β=−3.834,α=54,2θ=60 K1=3.76,do=5.411 i rix riY di j ni 1 ∞ −3.607 1.509 1 1.71221 2 −954.892 −31.264 7.245 3 −36.527 −36.527 4.637 2 1.675 4 −25.487 −7.237 第45図に、実施例35に関する収差図・fθ特性図を示
す。
Example 35 f M = 100, f S = 15.34, β = -3.834, α = 54,2θ = 60 K 1 = 3.76, d o = 5.411 i r ix r iY d i j n i 1 ∞ -3.607 1.509 1 1.71221 2 −954.892 −31.264 7.245 3 −36.527 −36.527 4.637 2 1.675 4 −25.487 −7.237 FIG. 45 shows aberration diagrams and fθ characteristic diagrams relating to Example 35.

実施例 36 fM=100,fS=17.016,β=−4.58,α=54,2θ=60.4 K1=1.95,do=9.018 i rix riY di j ni 1 ∞ −5.05 3.716 1 1.71221 2 −478.035 −12.024 0.602 3 −40.653 −40.653 8.779 2 1.675 4 −28.998 −8.37 第46図に、実施例36に関する収差図・fθ特性図を示
す。
Example 36 f M = 100, f S = 17.016, β = -4.58, α = 54,2θ = 60.4 K 1 = 1.95, d o = 9.018 i r ix r iY d i j n i 1 ∞ -5.05 3.716 1 1.71221 2 −478.035 −12.024 0.602 3 −40.653 −40.653 8.779 2 1.675 4 −28.998 −8.37 FIG. 46 shows aberration diagrams and fθ characteristic diagrams relating to Example 36.

実施例 37 fM=100,fS=14.92,β=−5.528,α=54,2θ=60.4 K1=1.59,do=7.816 i rix riY di j ni 1 ∞ −6.012 3.367 1 1.71221 2 −623.55 −16.654 1.202 3 −36.795 −36.795 6.012 2 1.675 4 −26.335 −7.034 第47図に、実施例37に関する収差図・fθ特性図を示
す。
Example 37 f M = 100, f S = 14.92, β = -5.528, α = 54,2θ = 60.4 K 1 = 1.59, d o = 7.816 i r ix r iY d i j n i 1 ∞ -6.012 3.367 1 1.71221 2 −623.55 −16.654 1.202 3 −36.795 −36.795 6.012 2 1.675 4 −26.335 −7.034 FIG. 47 shows aberration diagrams and fθ characteristic diagrams relating to Example 37.

実施例 38 fM=100,fS=16.104,β=−5.425,α=54,2θ=60.4 K1=0.57,do=9.018 i rix riY di j ni 1 ∞ −26.964 3.716 1 1.71221 2 −478.035 −601.224 0.602 3 −40.653 −40.653 8.779 2 1.675 4 −28.998 −8.329 第48図に、実施例38に関する収差図・fθ特性図を示
す。
Example 38 f M = 100, f S = 16.104, β = -5.425, α = 54,2θ = 60.4 K 1 = 0.57, d o = 9.018 i r ix r iY d i j n i 1 ∞ -26.964 3.716 1 1.71221 2 −478.035 −601.224 0.602 3 −40.653 −40.653 8.779 2 1.675 4 −28.998 −8.329 FIG. 48 shows aberration diagrams and fθ characteristic diagrams relating to Example 38.

実施例35〜38とも、収差が良好であり特に、像面湾曲
は主・副走査方向とも極めて良好に補正されている。ま
たfθ特性も良好である。
In all of Examples 35 to 38, the aberration is good, and particularly, the curvature of field is corrected very well in both the main and sub scanning directions. Also, the fθ characteristics are good.

[発明の効果] 以上、本発明によれば新規なfθレンズ系を提供でき
る。このfθレンズ系は、上述の如き構成となっている
ので、回転多面鏡の面倒れを良好に補正しつつ、主・副
走査方向の像面湾曲を良好に補正して光走査を実現で
き、従って高密度の光走査が可能になる。
[Effects of the Invention] As described above, according to the present invention, a novel fθ lens system can be provided. Since this fθ lens system has the above-described configuration, it is possible to realize optical scanning by satisfactorily correcting surface tilt of the rotating polygon mirror and satisfactorily correcting field curvature in the main and sub scanning directions. Therefore, high-density optical scanning becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のfθレンズ系の形状を説明するため
の図、第2図乃至第8図は光走査装置を説明するための
図、第9図および第10図は樽型トーリック面を説明する
ための図、第11図乃至第48図は、各実施例に関する収差
図・fθ特性図である。 1……光源装置、2……シリンダーレンズ、3……回転
多面鏡、4,5……fθレンズ系を構成する第1および第
2レンズ
FIG. 1 is a view for explaining the shape of the fθ lens system of the present invention, FIGS. 2 to 8 are views for explaining an optical scanning device, and FIGS. 9 and 10 are barrel-shaped toric surfaces. FIGS. 11 to 48 are aberration diagrams and fθ characteristic diagrams relating to each example. DESCRIPTION OF SYMBOLS 1 ... Light source device, 2 ... Cylinder lens, 3 ... Rotating polygon mirror, 4, 5 ... 1st and 2nd lens which comprises ftheta lens system

フロントページの続き (31)優先権主張番号 特願平1−137805 (32)優先日 平1(1989)5月31日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平1−156554 (32)優先日 平1(1989)6月19日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平1−218055 (32)優先日 平1(1989)8月24日 (33)優先権主張国 日本(JP)Continued on the front page (31) Priority claim number Japanese Patent Application No. 1-137805 (32) Priority date Hei 1 (1989) May 31 (33) Priority claim country Japan (JP) (31) Priority claim number Special No. Hei 1-156554 (32) Priority date Hei 1 (1989) June 19 (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 1-218055 (32) Priority date Hei 1 (1989) August 24 (33) Countries claiming priority Japan (JP)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により被走
査面上にスポット状に結像させて被走査面を略等速的に
光走査する光走査装置において、回転多面鏡により偏向
された光束を被走査面上に結像させる結像レンズ系であ
って、 副走査方向に関して回転多面鏡の反射位置と被走査面と
を幾何光学的に略共役な関係に結び付ける機能を持つと
ともに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1、第2の
順に配備される、第1および第2のレンズにより構成さ
れる2群・2枚構成であり、 回転多面鏡により理想的に偏向された光束の主光線の掃
引により形成される面を偏向面、結像レンズ系の光軸に
平行で上記偏向面に直交する面を偏向直交面とすると
き、 上記回転多面鏡の側から数えて各レンズ面を第1乃至第
4面とすると、これらのレンズ面の偏向面内での形状が
第1面から第4面に向かって順次、円弧、直線、直線、
円弧であり、 偏向面に平行な面内では第1のレンズが負、第2のレン
ズが正の屈折力を持ち、 上記第1面は偏向直交面内の曲率半径が光軸を離れるに
従い小さくなる凹の樽型トーリック面、第2面は偏向直
交面内にのみ屈折力を持つ凸のシリンダー面もしくは平
面、第3面は偏向直交面内にのみ屈折力を持つ凹のシリ
ンダー面、第4面は偏向直交面内に強い曲率を持つ凸の
トーリック面であり、 偏向直交面内における合成焦点距離をfS、光軸を含む偏
向直交面内に於ける第3面の曲率半径をそれぞれr′
とするとき、これらが 1.6≦|r′3/fS|≦3.1 (1−I) なる条件を満足することを特徴とするfθレンズ系。
1. A method according to claim 1, further comprising the step of: forming a substantially parallel light beam from the light source device into a long linear image in the direction corresponding to the main scanning, and rotating the light beam at a constant angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the linear image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system that forms an image of a light beam on a surface to be scanned.The imaging lens system has a function of coupling the reflection position of the rotary polygon mirror and the surface to be scanned in a sub-scanning direction to a substantially optically conjugate relationship. A two-group, two-lens configuration having first and second lenses that has an fθ function in the scanning direction and is provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. Of the light beam ideally deflected by the rotating polygon mirror. When a surface formed by sweeping light rays is a deflecting surface, and a surface parallel to the optical axis of the imaging lens system and orthogonal to the deflecting surface is a deflecting orthogonal surface, each lens surface is counted from the rotating polygon mirror side. Assuming the first to fourth surfaces, the shapes of these lens surfaces in the deflection surface are sequentially from the first surface to the fourth surface, such as an arc, a straight line, a straight line, and the like.
The first lens has a negative refractive power and the second lens has a positive refractive power in a plane parallel to the deflecting surface, and the first surface becomes smaller as the radius of curvature in the deflecting orthogonal plane moves away from the optical axis. A concave barrel-shaped toric surface, a second surface is a convex cylinder surface or a plane having a refractive power only in the plane orthogonal to the deflection, a third surface is a concave cylinder surface having a refractive power only in the plane orthogonal to the deflection, and a fourth surface. The surface is a convex toric surface having a strong curvature in the orthogonal plane of deflection. The composite focal length in the orthogonal plane of deflection is f s , and the radius of curvature of the third surface in the orthogonal plane including the optical axis is r. ' 3
Where f satisfies the following condition: 1.6 ≦ | r ′ 3 / f S | ≦ 3.1 (1-I)
【請求項2】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により被走
査面上にスポット状に結像させて被走査面を略等速的に
光走査する光走査装置において、回転多面鏡により偏向
された光束を被走査面上に結像させる結像レンズ系であ
って、 副走査方向に関して回転多面鏡の反射位置と被走査面と
を幾何光学的に略共役な関係に結び付ける機能を持つと
ともに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1、第2の
順に配備される、第1および第2のレンズにより構成さ
れる2群・2枚構成であり、 回転多面鏡により理想的に偏向された光束の主光線の掃
引により形成される面を偏向面、結像レンズ系の光軸に
平行で上記偏向面に直交する面を偏向直交面とすると
き、 上記回転多面鏡の側から数えて各レンズ面を第1乃至第
4面とすると、これらのレンズ面の偏向面内での形状が
第1面から第4面に向かって順次、円弧、直線、直線、
円弧であり、 偏向面に平行な面内では第1のレンズが負、第2のレン
ズが正の屈折力を持ち、 上記第1面は偏向直交面内の曲率半径が光軸を離れるに
従い小さくなる凹の樽型トーリック面、第2面は偏向直
交面内にのみ屈折力を持つ凹のシリンダー面、第3面は
偏向直交面内にのみ屈折力を持つ凹のシリンダー面、第
4面は偏向直交面内に強い曲率を持つ凸のトーリック面
であり、 偏向直交面内における合成焦点距離をfS、光軸を含む偏
向直交面内に於ける第1,第2,第3,第4面の曲率半径をそ
れぞれr′1,r′2,r′3,r′とするとき、これらが 2.0<|[{(1/r′)−(1/r′)} −{(1/r′)−(1/r′)}]・fS|<9.8 (2−I) なる条件を満足することを特徴とするfθレンズ系。
2. The method according to claim 1, wherein the substantially parallel light beam from the light source device is formed into a long line image in the main scanning direction, and the light beam is subjected to a uniform angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the line image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system that forms an image of a light beam on a surface to be scanned.The imaging lens system has a function of coupling the reflection position of the rotary polygon mirror and the surface to be scanned in a sub-scanning direction to a substantially optically conjugate relationship. A two-group, two-lens configuration having first and second lenses that has an fθ function in the scanning direction and is provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. Of the light beam ideally deflected by the rotating polygon mirror. When a surface formed by sweeping light rays is a deflecting surface, and a surface parallel to the optical axis of the imaging lens system and orthogonal to the deflecting surface is a deflecting orthogonal surface, each lens surface is counted from the rotating polygon mirror side. Assuming the first to fourth surfaces, the shapes of these lens surfaces in the deflection surface are sequentially from the first surface to the fourth surface, such as an arc, a straight line, a straight line, and the like.
The first lens has a negative refractive power and the second lens has a positive refractive power in a plane parallel to the deflecting surface, and the first surface becomes smaller as the radius of curvature in the deflecting orthogonal plane moves away from the optical axis. A concave barrel-shaped toric surface, a second surface is a concave cylinder surface having a refractive power only in a plane orthogonal to deflection, a third surface is a concave cylinder surface having a refractive power only in a plane orthogonal to deflection, and a fourth surface is A convex toric surface having a strong curvature in a plane orthogonal to the deflection, the composite focal length in the plane orthogonal to the deflection is f S , and the first, second, third, and fourth planes in the plane orthogonal to the deflection including the optical axis. Assuming that the radii of curvature of the surfaces are r ′ 1 , r ′ 2 , r ′ 3 , r ′ 4 , these are 2.0 <| [{(1 / r ′ 1 ) − (1 / r ′ 2 )} − { (1 / r ′ 3 ) − (1 / r ′ 4 )}] · f S | <9.8 (2-I) An fθ lens system characterized by satisfying the following condition:
【請求項3】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により被走
査面上にスポット状に結像させて被走査面を略等速的に
光走査する光走査装置において、回転多面鏡により偏向
された光束を被走査面上に結像させる結像レンズ系であ
って、 副走査方向に関して回転多面鏡の反射位置と被走査面と
を幾何光学的に略共役な関係に結び付ける機能を持つと
ともに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1、第2の
順に配備される、第1および第2のレンズにより構成さ
れる2群・2枚構成であり、 回転多面鏡により理想的に偏向された光束の主光線の掃
引により形成される面を偏向面、結像レンズ系の光軸に
平行で上記偏向面に直交する面を偏向直交面とすると
き、 上記回転多面鏡の側から数えて各レンズ面を第1乃至第
4図とすると、これらのレンズ面の偏向面内での形状が
第1面から第4面に向かって順次、円弧、円弧、直線、
円弧であり、 偏向面に平行な面内では第1のレンズが正もしくは負、
第2のレンズが正の屈折力を持ち、 上記第1面は球面、第2面は偏向直交面内の曲率半径が
光軸を離れるに従い小さくなる凸の樽型トーリック面、
第3面は偏向直交面内にのみ屈折力を持つ凹のシリンダ
ー面、第4面は偏向直交面内に強い曲率を持つ凸のトー
リック面であり、 偏向直交面内における合成焦点距離をfS、光軸を含む偏
向直交面内に於ける第2,第4面の曲率半径をそれぞれ
r′2,r′とするとき、これらが 0.3<|r′2/r′4|<1.0 (3−I) 0.03<|r′2/fS|<0.54 (3−II) なる条件を満足することを特徴とするfθレンズ系。
3. A substantially parallel light beam from the light source device is formed into a long linear image in the main scanning direction, and the light beam is subjected to a uniform angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the linear image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system that forms an image of a light beam on a surface to be scanned.The imaging lens system has a function of coupling the reflection position of the rotary polygon mirror and the surface to be scanned in a sub-scanning direction to a substantially optically conjugate relationship. A two-group, two-lens configuration having first and second lenses that has an fθ function in the scanning direction and is provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. Of the light beam ideally deflected by the rotating polygon mirror. When a surface formed by sweeping light rays is a deflecting surface, and a surface parallel to the optical axis of the imaging lens system and orthogonal to the deflecting surface is a deflecting orthogonal surface, each lens surface is counted from the rotating polygon mirror side. In FIGS. 1 to 4, the shapes of these lens surfaces in the deflecting surface are sequentially changed from the first surface to the fourth surface in the form of an arc, an arc, a straight line, and the like.
The first lens is positive or negative in a plane parallel to the deflection surface
A second lens having a positive refractive power, the first surface is a spherical surface, and the second surface is a convex barrel-shaped toric surface in which a radius of curvature in a plane orthogonal to the deflection decreases as the distance from the optical axis increases.
Cylindrical surface of the concave third surface having a refractive power only in the deflection plane orthogonal, the fourth surface is a toric surface of a convex having a strong curvature on the deflection plane perpendicular, the combined focal length of the deflection plane orthogonal f S , second in the deflecting perpendicular plane including the optical axis, when the curvature of the fourth surface radius and r '2, r' 4 each, they 0.3 <| r '2 / r ' 4 | <1.0 ( 3-I) 0.03 <| r ′ 2 / f S | <0.54 (3-II) An fθ lens system characterized by satisfying the following condition:
【請求項4】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により被走
査面上にスポット状に結像させて被走査面を略等速的に
光走査する光走査装置において、回転多面鏡により偏向
された光束を被走査面上に結像させる結像レンズ系であ
って、 副走査方向に関して回転多面鏡の反射位置と被走査面と
を幾何光学的に略共役な関係に結び付ける機能を持つと
ともに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1、第2の
順に配備される、第1および第2のレンズにより構成さ
れる2群・2枚構成であり、 回転多面鏡により理想的に偏向された光束の主光線の掃
引により形成される面を偏向面、結像レンズ系の光軸に
平行で上記偏向面に直交する面を偏向直交面とすると
き、 上記回転多面鏡の側から数えて各レンズ面を第1乃至第
4面とすると、これらのレンズ面の偏向面内での形状が
第1面から第4面に向かって順次、直線、円弧、直線、
円弧であり、 偏向面に平行な面内では第1のレンズが負、第2のレン
ズが正の屈折力を持ち、 上記第1面は平面、第2面は偏向直交面内の曲率半径が
光軸から離れるに従い小さくなる凹の樽型トーリック
面、第3面は偏向直交面内にのみ屈折力を持つ凹のシリ
ンダー面、第4面は偏向直交面内に強い曲率を持つ凸の
トーリック面であり、 偏向直交面内における合成焦点距離・横倍率をそれぞれ
fS,β、光軸を含む偏向直光面内に於ける第3,第4面の
曲率半径をそれぞれr′3,r′とするとき、これらが 0.4<|{(1/r′)−(1/r′)}・fS・β|<2.0 (4−I) なる条件を満足することを特徴とするfθレンズ系。
4. A substantially parallel light beam from a light source device is formed into a long linear image in a direction corresponding to the main scanning, and the light beam is subjected to uniform angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the linear image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system that forms an image of a light beam on a surface to be scanned.The imaging lens system has a function of coupling the reflection position of the rotary polygon mirror and the surface to be scanned in a sub-scanning direction to a substantially optically conjugate relationship. A two-group, two-lens configuration having first and second lenses that has an fθ function in the scanning direction and is provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. Of the light beam ideally deflected by the rotating polygon mirror. When a surface formed by sweeping light rays is a deflecting surface, and a surface parallel to the optical axis of the imaging lens system and orthogonal to the deflecting surface is a deflecting orthogonal surface, each lens surface is counted from the rotating polygon mirror side. Assuming the first to fourth surfaces, the shapes of these lens surfaces within the deflection surface are linear, arc, linear, and so on in order from the first surface to the fourth surface.
The first lens has a negative refractive power and the second lens has a positive refractive power in a plane parallel to the deflection surface. The first surface has a flat surface, and the second surface has a radius of curvature in a plane orthogonal to the deflection. A concave barrel-shaped toric surface that becomes smaller as it moves away from the optical axis, a third surface is a concave cylinder surface having refractive power only in a plane orthogonal to the deflection, and a fourth surface is a convex toric surface having a strong curvature in the plane orthogonal to the deflection. And the combined focal length and lateral magnification in the plane orthogonal to the deflection
When the radii of curvature of the third and fourth surfaces in the deflecting direct light plane including f S , β and the optical axis are r ′ 3 and r ′ 4 , respectively, they are 0.4 <│ {(1 / r ′ 3) - (1 / r ' 4)} · f S · β | <2.0 (4-I) comprising fθ lens system, characterized by satisfying the condition.
【請求項5】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により被走
査面上にスポット状に結像させて被走査面を略等速的に
光走査する光走査装置において、回転多面鏡により偏向
された光束を被走査面上に結像させる結像レンズ系であ
って、 副走査方向に関して回転多面鏡の反射位置と被走査面と
を幾何光学的に略共役な関係に結び付ける機能を持つと
ともに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1、第2の
順に配備される、第1および第2のレンズにより構成さ
れる2群・2枚構成であり、 回転多面鏡により理想的に偏向された光束の主光線の掃
引により形成される面を偏向面、結像レンズ系の光軸に
平行で上記偏向面に直交する面を偏向直交面とすると
き、 上記回転多面鏡の側から数えて各レンズ面を第1乃至第
4面とすると、これらのレンズ面の偏向面内での形状が
第1面から第4面に向かって順次、円弧、円弧、直線、
円弧であり、 偏向面に平行な面内では第1のレンズが負、第2のレン
ズが正の屈折力を持ち、 上記第1面は偏向直交面内の曲率半径が光軸を離れるに
従い小さくなる凹の樽型トーリック面、第2面は凸の球
面、第3面は偏向直交面内にのみ屈折力を持つ凹のシリ
ンダー面、第4面は偏向直交面内に強い曲率を持つ凸の
トーリック面であり、 偏向直交面内における合成焦点距離・横倍率をそれぞれ
fS,β、光軸を含む偏向直光面内に於ける第3,第4面の
曲率半径をそれぞれr′3,r′とするとき、これらが 0.1<|{(1/r′)−(1/r′)}・fS・β|<5.4 (5−I) なる条件を満足することを特徴とするfθレンズ系。
5. A method according to claim 1, wherein the substantially parallel light beam from the light source device is formed into a long line image in the main scanning direction, and the light beam is subjected to a constant angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the line image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system that forms an image of a light beam on a surface to be scanned.The imaging lens system has a function of coupling the reflection position of the rotary polygon mirror and the surface to be scanned in a sub-scanning direction to a substantially optically conjugate relationship. A two-group, two-lens configuration having first and second lenses that has an fθ function in the scanning direction and is provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. Of the light beam ideally deflected by the rotating polygon mirror. When a surface formed by sweeping light rays is a deflecting surface, and a surface parallel to the optical axis of the imaging lens system and orthogonal to the deflecting surface is a deflecting orthogonal surface, each lens surface is counted from the rotating polygon mirror side. Assuming the first to fourth surfaces, the shapes of these lens surfaces in the deflection surface are, in order from the first surface to the fourth surface, an arc, an arc, a straight line, and the like.
The first lens has a negative refractive power and the second lens has a positive refractive power in a plane parallel to the deflecting surface, and the first surface becomes smaller as the radius of curvature in the deflecting orthogonal plane moves away from the optical axis. A concave barrel-shaped toric surface, a second surface is a convex spherical surface, a third surface is a concave cylinder surface having refractive power only in a plane orthogonal to the deflection, and a fourth surface is a convex cylinder having a strong curvature in the plane orthogonal to the deflection. It is a toric surface, and the combined focal length and lateral magnification in the plane orthogonal to the deflection
Assuming that the radii of curvature of the third and fourth surfaces in the deflecting direct light plane including f S , β and the optical axis are r ′ 3 and r ′ 4 , respectively, these are 0.1 <| {(1 / r ′). 3) - (1 / r ' 4)} · f S · β | <5.4 (5-I) becomes fθ lens system, characterized by satisfying the condition.
【請求項6】光源装置からの略平行な光束を主走査対応
方向に長い線像に結像させ、その線像の結像位置の近傍
に反射面を有する回転多面鏡により上記光束を等角速度
的に偏向させ、この偏向光束を結像レンズ系により被走
査面上にスポット状に結像させて被走査面を略等速的に
光走査する光走査装置において、回転多面鏡により偏向
された光束を被走査面上に結像させる結像レンズ系であ
って、 副走査方向に関して回転多面鏡の反射位置と被走査面と
を幾何光学的に略共役な関係に結び付ける機能を持つと
ともに、主走査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1、第2の
順に配備される、第1および第2のレンズにより構成さ
れる2群・2枚構成であり、 回転多面鏡により理想的に偏向された光束の主光線の掃
引により形成される面を偏向面、結像レンズ系の光軸に
平行で上記偏向面に直交する面を偏向直交面とすると
き、 上記回転多面鏡の側から数えて各レンズ面を第1乃至第
4面とすると、これらのレンズ面の偏向面内での形状が
第1面から第4面に向かって順次、直線、円弧、円弧、
円弧であり、 偏向面に平行な面内では第1、第2のレンズとも正の屈
折力を持ち、 上記第1面は偏向直交面内にのみ屈折力を持つ凹のシリ
ンダー面、第2面は偏向直交面内の曲率半径が光軸を離
れるに従い小さくなる凸の樽型トーリック面、第3面は
凹の球面、第4面は偏向直交面内に強い曲率を持つ凸の
トーリック面であり、 偏向直交面内における合成焦点距離をfS、光軸を含む偏
向直交面内に於ける第1,第2面の曲率半径をそれぞれ
r′1,r′とするとき、これらが 0.5<|{(1/r′)−(1/r′)}・fS|<3.8 (6−I) なる条件を満足することを特徴とするfθレンズ系。
6. A substantially parallel light beam from the light source device is formed into a long linear image in the main scanning direction, and the light beam is subjected to a uniform angular velocity by a rotary polygon mirror having a reflecting surface near an image forming position of the line image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system that forms an image of a light beam on a surface to be scanned.The imaging lens system has a function of coupling the reflection position of the rotary polygon mirror and the surface to be scanned in a sub-scanning direction to a substantially optically conjugate relationship. A two-group, two-lens configuration having first and second lenses that has an fθ function in the scanning direction and is provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. Of the light beam ideally deflected by the rotating polygon mirror. When a surface formed by sweeping light rays is a deflecting surface, and a surface parallel to the optical axis of the imaging lens system and orthogonal to the deflecting surface is a deflecting orthogonal surface, each lens surface is counted from the rotating polygon mirror side. Assuming the first to fourth surfaces, the shapes of these lens surfaces within the deflection surface are linear, circular, circular, arc, in that order from the first surface to the fourth surface.
The first and second lenses have a positive refractive power in a plane parallel to the deflecting surface, and the first surface is a concave cylinder surface and a second surface having a refractive power only in a plane orthogonal to the deflecting surface. Is a convex barrel-shaped toric surface in which the radius of curvature in the plane perpendicular to the deflection decreases as the distance from the optical axis increases, the third surface is a concave spherical surface, and the fourth surface is a convex toric surface having a strong curvature in the plane orthogonal to the deflection. When the combined focal length in the orthogonal plane of deflection is f S , and the radii of curvature of the first and second surfaces in the orthogonal plane including the optical axis are r ′ 1 and r ′ 2 , these are 0.5 < | {(1 / r ′ 1 ) − (1 / r ′ 2 )} · f S | <3.8 (6-I) An fθ lens system characterized by satisfying the following condition:
JP29717089A 1988-12-22 1989-11-15 Fθ lens system in optical scanning device Expired - Lifetime JP2877390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/454,691 US5015050A (en) 1988-12-22 1989-12-21 Fθ lens system in optical scanner

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP32438388 1988-12-22
JP63-324383 1988-12-22
JP6792489 1989-03-20
JP1-67924 1989-03-20
JP1-76355 1989-03-28
JP7635589 1989-03-28
JP13780589 1989-05-31
JP1-137805 1989-05-31
JP1-156554 1989-06-19
JP15655489 1989-06-19
JP21805589 1989-08-24
JP1-218055 1989-08-24

Publications (2)

Publication Number Publication Date
JPH03155517A JPH03155517A (en) 1991-07-03
JP2877390B2 true JP2877390B2 (en) 1999-03-31

Family

ID=27551086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29717089A Expired - Lifetime JP2877390B2 (en) 1988-12-22 1989-11-15 Fθ lens system in optical scanning device

Country Status (1)

Country Link
JP (1) JP2877390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731859B2 (en) * 2004-09-03 2011-07-27 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JPH03155517A (en) 1991-07-03

Similar Documents

Publication Publication Date Title
JP2718735B2 (en) Fθ lens system in optical scanning device
JP3061829B2 (en) Fθ lens system in optical scanning device
JP2776465B2 (en) Fθ lens system in optical scanning device
JP2804512B2 (en) Fθ lens system in optical scanning device
JP2865009B2 (en) Scanning lens and optical scanning device
JP2550153B2 (en) Optical scanning device
JP3191538B2 (en) Scanning lens and optical scanning device
JP2877390B2 (en) Fθ lens system in optical scanning device
JPH0563777B2 (en)
JPH07119897B2 (en) Optical scanning device
JP2834793B2 (en) Fθ lens system in optical scanning device
JP2718743B2 (en) Fθ lens system in optical scanning device
JP2790839B2 (en) Fθ lens system in optical scanning device
JP2774586B2 (en) Fθ lens system in optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP2877457B2 (en) Fθ lens system in optical scanning device
JP2986949B2 (en) Imaging lens system in optical scanning device
JP2738857B2 (en) Fθ lens system in optical scanning device
JP3214944B2 (en) Optical scanning device
JP2774546B2 (en) Fθ lens system in optical scanning device
JP3717656B2 (en) Optical scanning device and scanning imaging lens
JP2927846B2 (en) Fθ lens system in optical scanning device
JPH0375719A (en) Ftheta lens system for optical scanner
JP2938550B2 (en) Ftheta lens and linear image forming lens
JP3364525B2 (en) Scanning imaging lens and optical scanning device