JP2877457B2 - Fθ lens system in optical scanning device - Google Patents

Fθ lens system in optical scanning device

Info

Publication number
JP2877457B2
JP2877457B2 JP16926390A JP16926390A JP2877457B2 JP 2877457 B2 JP2877457 B2 JP 2877457B2 JP 16926390 A JP16926390 A JP 16926390A JP 16926390 A JP16926390 A JP 16926390A JP 2877457 B2 JP2877457 B2 JP 2877457B2
Authority
JP
Japan
Prior art keywords
plane
deflection
lens system
scanned
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16926390A
Other languages
Japanese (ja)
Other versions
JPH0457010A (en
Inventor
彰久 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16926390A priority Critical patent/JP2877457B2/en
Publication of JPH0457010A publication Critical patent/JPH0457010A/en
Application granted granted Critical
Publication of JP2877457B2 publication Critical patent/JP2877457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光走査装置におけるfθレンズ系に関す
る。
The present invention relates to an fθ lens system in an optical scanning device.

[従来の技術] 光走査装置は、光束の走査により情報の書き込みや読
み取りを行う装置として知られ、レーザープリンターや
ファクシミリ等に使用されている。
2. Description of the Related Art An optical scanning device is known as a device for writing and reading information by scanning a light beam, and is used for a laser printer, a facsimile, and the like.

このような光走査装置のうちに「光源装置からの平行
な光束を主走査対応方向に長い線像として結像させ、線
像の結像位置の近傍に偏向反射面を有する回転多面鏡に
より上記光束を等角速度的に偏向させ、偏向光束を結像
レンズ系により被走査面上にスポット状に結像させて被
走査面を光走査する」方式の装置がある。
Among such optical scanning devices, `` a parallel light beam from the light source device is imaged as a long line image in the main scanning corresponding direction, and the above-mentioned light is scanned by a rotating polygon mirror having a deflecting reflection surface near the image forming position of the line image. There is an apparatus of the type in which a light beam is deflected at a constant angular velocity, and the deflected light beam is imaged into a spot on the surface to be scanned by an imaging lens system to optically scan the surface to be scanned.

回転多面鏡を用いる光走査装置には「面倒れ」の問題
があり、また偏向される光束は回転多面鏡の角速度が一
定であるため通常のf・tanθレンズを用いたのでは被
走査面の走査が等速的に行われない。そこで等速走査す
るための工夫が必要となる。fθレンズ系は被走査面の
等速的な走査を光学的に実現する様にしたレンズ系であ
り、レンズ光軸に対してθなる角をもって入射する光束
の像高が焦点距離fとしてfθとなるようにする「fθ
機能」を有する。
An optical scanning device using a rotating polygon mirror has a problem of "surface tilt", and the angular velocity of the deflected light beam is constant because the angular velocity of the rotating polygon mirror is constant. Scanning is not performed at a constant speed. Therefore, a device for scanning at a constant speed is required. The fθ lens system is a lens system that optically realizes constant-speed scanning of the surface to be scanned, and the image height of a light beam incident at an angle of θ with respect to the lens optical axis is fθ and fθ. Fθ
Function ".

また面倒れの問題を解決する方法としては、回転多面
鏡と被走査面との間に設けられるレンズ系をアナモフィ
ック系とし、副走査方向に関して「偏向反射面位置と被
走査面とを幾何光学的な共役関係とする」方法が知られ
ている。
In order to solve the problem of surface tilt, the lens system provided between the rotating polygon mirror and the surface to be scanned is made an anamorphic system, and the position of the deflecting reflection surface and the surface to be scanned are geometrically There is known a method of “establishing a conjugate relationship”.

[発明が解決しようとする課題] fθレンズ系自体をアナモフィックとし、等速的な走
査と面倒れの問題の解決とを図ったものは種々知られて
いる。例えば、特開昭63−19617号公報には2枚構成の
ものが開示されている。
[Problems to be Solved by the Invention] There are various known fθ lens systems that use an anamorphic lens to perform scanning at a constant speed and solve the problem of surface tilt. For example, Japanese Patent Application Laid-Open No. 63-19617 discloses a two-sheet configuration.

しかしこのfθレンズ系は像面湾曲の補正が必ずしも
十分ではなく、被走査面上に於ける結像スポットの径が
走査位置によりかなり大きく変動するので高密度の光走
査の実現が困難である。また特開昭61−120112号公報に
は像面湾曲を良好に補正するために所謂鞍型トーリック
面を使用した2枚構成のfθレンズ系が開示されている
が、このfθレンズ系は非球面を2面用いているために
加工が難しいという問題がある。
However, the fθ lens system does not always sufficiently correct the curvature of field, and the diameter of the image spot on the surface to be scanned fluctuates considerably depending on the scanning position, so that it is difficult to realize high-density optical scanning. Japanese Patent Application Laid-Open No. 61-120112 discloses a two-element fθ lens system using a so-called saddle-shaped toric surface in order to satisfactorily correct field curvature, but this fθ lens system has an aspherical surface. There is a problem that processing is difficult because two surfaces are used.

本発明は上述した事情に鑑みてなされたものであっ
て、主・副走査方向の像面湾曲の十分な補正と、回転多
面鏡における面倒れの問題の解決とを可能ならしめた新
規なfθレンズ系の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a novel fθ that enables sufficient correction of curvature of field in the main and sub-scanning directions and a solution to the problem of surface tilt in a rotating polygon mirror. The purpose is to provide a lens system.

[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.

本発明のfθレンズ系は「光源装置からの平行な光束
を主走査対応方向に長い線像として結像させ、線像の結
像位置の近傍に偏向反射面を有する回転多面鏡により上
記光束を等角速度的に偏向させ、この偏向光束を結像レ
ンズ系により被走査面上にスポット状に結像させて被走
査面を略等速的に光走査する光走査装置において、回転
多面鏡により偏向された光束を被走査面上に結像させる
結像レンズ系」であって、副走査方向に関しては「偏向
反射面位置と被走査面とを幾何光学的に略共役な関係と
する機能」を持ち、主走査方向に関しては「fθ機能」
を有する。
The fθ lens system according to the present invention is configured such that “a parallel light beam from the light source device is formed as a long linear image in the main scanning corresponding direction, and the light beam is converted by a rotary polygon mirror having a deflecting / reflecting surface near the image forming position of the linear image. In an optical scanning device which deflects at a constant angular velocity, forms an image of the deflected light beam into a spot on the surface to be scanned by an imaging lens system, and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by a rotating polygon mirror. Imaging lens system that forms the focused light beam on the surface to be scanned, and a function of making the position of the deflecting reflection surface and the surface to be scanned substantially geometrically conjugate with respect to the sub-scanning direction. "Fθ function" for main scanning direction
Having.

上記回転多面鏡により理想的に偏向された偏向光束の
主光線の掃引により形成される平面を「偏向面」と称す
る。また結像レンズ系の非軸に平行で上記偏向面に直交
する平面を「偏向直交面」と称する。
The plane formed by sweeping the principal ray of the deflected light beam ideally deflected by the rotating polygon mirror is referred to as a “deflection surface”. A plane parallel to the off-axis of the imaging lens system and orthogonal to the deflecting surface is referred to as a “deflection orthogonal surface”.

本発明のfθレンズ系は、回転多面鏡の側から被走査
面側へ向かって第1,第2の順に配備される第1および第
2のレンズにより構成される2群・2枚構成であり、回
転多面鏡の側から数えて各レンズ面を第1乃至第4面と
するとき、これらのレンズ面の偏向面内での形状が第1
面から第4面に向かって順次「直線、円弧、円弧、円
弧」であり、偏向面に平行な面内では第1,第2のレンズ
とも正の屈折力を持つ。
The fθ lens system of the present invention has a two-group, two-lens configuration composed of first and second lenses provided in the first and second order from the side of the rotary polygon mirror toward the surface to be scanned. When each lens surface is defined as the first to fourth surfaces counted from the side of the rotary polygon mirror, the shape of these lens surfaces within the deflection surface is the first.
From the surface to the fourth surface, the order is “straight line, arc, arc, arc”, and within the plane parallel to the deflecting surface, both the first and second lenses have positive refractive power.

上記第1面は「平面または偏向直交面内にのみ屈折力
を持つ凸もしくは凹のシリンダー面」、第2面は「凸の
球面」、第3面は「偏向直交面内の曲率半径が光軸から
離れるに従い小さくなる凹の樽型トーリック面」、第4
面は「偏向直交面内に強い曲率を持つ凸のトーリック
面」である。
The first surface is a “convex or concave cylinder surface having a refractive power only in a plane or a plane orthogonal to deflection”, the second surface is a “convex spherical surface”, and the third surface is “light having a radius of curvature in the plane orthogonal to deflection. Concave barrel-shaped toric surface that decreases with distance from the axis. "
The surface is a “convex toric surface having a strong curvature in a plane orthogonal to the deflection”.

偏向直交面内における合成焦点距離をfS、光軸を含む
偏向直交面内に於ける第3,第4面の曲率半径をそれぞれ
r′3,r′4とするとこれらは (I)0.4<|{(1/r′3)−(1/r′4)}・fS|<1.4 なる条件を満足する。
Assuming that the combined focal length in the plane orthogonal to the deflection plane is f S , and the radii of curvature of the third and fourth planes in the plane orthogonal to the deflection plane including the optical axis are r ′ 3 and r ′ 4 , respectively. | {(1 / r ′ 3 ) − (1 / r ′ 4 )} · f S | <1.4.

ここで第1図を参照して、本発明のfθレンズ系の各
レンズ面を説明する。
Here, each lens surface of the fθ lens system of the present invention will be described with reference to FIG.

第1図に於いて、図の左側は回転多面鏡の側、右側は
被走査面の側であり、従ってレンズは左側が第1のレン
ズ、右側が第2のレンズを表しており、レンズ面は左か
ら右へ向かって順次第1乃至第4面である。
In FIG. 1, the left side of the figure is the side of the rotating polygon mirror, and the right side is the side of the surface to be scanned. Therefore, the left side of the figure shows the first lens and the right side shows the second lens. Are the first to fourth surfaces sequentially from left to right.

また第1図の上側の図は、fθレンズ系の偏向面内で
のレンズ形状を表し、下側の図は光軸を含む偏向直交面
内でのレンズ形状を表している。
1 shows the lens shape in the deflection plane of the fθ lens system, and the lower figure shows the lens shape in the deflection orthogonal plane including the optical axis.

偏向面はその被走査面との交線が理想的な主走査方向
に対応するので、第1図の上の図は「主」と表示してあ
る。同様に上記偏向直交面は副走査方向と対応するので
第1図の下の図は「副」と表示してある。
Since the intersection of the deflection surface with the surface to be scanned corresponds to the ideal main scanning direction, the upper drawing of FIG. 1 is indicated as "main". Similarly, since the plane orthogonal to the deflection corresponds to the sub-scanning direction, the drawing below FIG. 1 is indicated as "sub".

偏向面内におけるレンズ面形状は、第1図の上の図の
ように第1ないし第4レンズ面が、順に直線、円弧、円
弧、円弧である。偏向面に平行な面内での屈折力は、第
1,第2のレンズとも「正」である。
As for the lens surface shape in the deflecting surface, the first to fourth lens surfaces are a straight line, an arc, an arc, and an arc in this order as shown in the upper part of FIG. The refractive power in a plane parallel to the deflection surface is
1, Both the second lens is “positive”.

[作用] 上記条件(I)に付き説明する。[Operation] The condition (I) will be described.

上記の如きレンズ面構成でfθレンズ系を構成するこ
とにより主・副走査方向の像面湾曲の良好な補正が可能
になる。
By configuring the fθ lens system with the above-described lens surface configuration, it is possible to favorably correct the curvature of field in the main and sub scanning directions.

しかし主走査方向の像面湾曲を良好に補正した状態に
於いて、副走査方向の像面湾曲をも有効に補正するに
は、さらに上記条件(I)の充足が必要となる。即ち上
記の面構成でレンズ構成して面倒れの補正を行った場
合、条件(I)の下限を越えると副走査方向の像面湾曲
はオーバー側に発生し、上限を越えるとアンダー側に発
生する。従って条件(I)を外れると結像性能が低下
し、副走査方向の光スポット径の変動が大きくなり良好
な光走査を実現するのが困難となる。逆に上記条件
(I)を満足する場合は第3面の凹の樽型トーリック面
の「副走査方向の像面湾曲補正機能」が良好に発揮され
る。
However, in a state where the curvature of field in the main scanning direction is well corrected, in order to effectively correct the curvature of field in the sub-scanning direction, the above condition (I) must be further satisfied. That is, in the case where the lens is formed with the above-described surface configuration and the surface tilt is corrected, the curvature of field in the sub-scanning direction occurs on the over side when the lower limit of the condition (I) is exceeded, and on the under side when the upper limit is exceeded. I do. Therefore, if the condition (I) is not satisfied, the imaging performance is reduced, the fluctuation of the light spot diameter in the sub-scanning direction becomes large, and it becomes difficult to realize good optical scanning. Conversely, when the above condition (I) is satisfied, the "field curvature correcting function in the sub-scanning direction" of the concave barrel-shaped toric surface on the third surface is favorably exhibited.

次に第2図を参照すると、この図はfθレンズ系を用
いた光走査装置の1例を説明図的に略示している。また
第3図は、第2図の光学配置を副走査方向から見た状
態、即ち偏向面内での様子を示している。
Next, referring to FIG. 2, this figure schematically illustrates an example of an optical scanning apparatus using an fθ lens system. FIG. 3 shows the optical arrangement of FIG. 2 viewed from the sub-scanning direction, that is, the state in the deflection plane.

第2図に於いて、光源もしくは光源と集光装置とから
なる光源装置1からの平行光束は線像結像光学系たるシ
リンダーレンズ2により、回転多面鏡3の偏向反射面3a
の近傍に偏向面と略平行な線像LIとして結像する。この
線像LIの長手方向は主走査対応方向である。
In FIG. 2, a parallel light beam from a light source device 1 comprising a light source or a light source and a condensing device is converted by a cylinder lens 2 as a line image forming optical system into a deflecting and reflecting surface 3a of a rotary polygon mirror 3.
Is formed as a line image LI substantially parallel to the deflection surface. The longitudinal direction of the line image LI is a main scanning corresponding direction.

回転多面鏡3により反射された光束は、fθレンズ系
により被走査面6上にスポット状に結像され、回転多面
鏡3の矢印方向への等速回転に従い被走査面6を等速的
に走査する。
The light beam reflected by the rotating polygon mirror 3 is formed into an image of a spot on the surface 6 to be scanned by the fθ lens system. Scan.

fθレンズ系は第1のレンズ4と第2のレンズ5とに
より構成され、レンズ4は回転多面鏡3の側、レンズ5
は被走査面6の側にそれぞれ配設される。偏向面内で見
ると第3図に示すようにレンズ4,5によるfθレンズ系
は光源装置1側の無限遠と被走査面6の位置とを幾何光
学的な共役関係に結び付けている。
The fθ lens system includes a first lens 4 and a second lens 5, and the lens 4 is located on the side of the rotary polygon mirror 3 and the lens 5.
Are disposed on the side of the surface 6 to be scanned. As viewed in the deflection plane, as shown in FIG. 3, the fθ lens system including the lenses 4 and 5 links the infinity on the light source device 1 side and the position of the surface 6 to be scanned to a geometrical conjugate relationship.

これに対し偏向直交面内で見ると、即ち副走査方向に
関してはfθレンズ系は偏向反射面3aの反射位置と被走
査面6とを幾何光学的に略共役な関係に結び付けてい
る。従って第4図に示すように偏向反射面3aが符号3a′
で示すように面倒れを生じてもfθレンズ系による被走
査面6上の結像位置は副走査方向(第4図上下方向)に
は殆ど移動しない。従って面倒れは補正される。
On the other hand, when viewed in the plane orthogonal to the deflection, that is, in the sub-scanning direction, the fθ lens system connects the reflection position of the deflection reflection surface 3a and the surface 6 to be scanned in a geometrically optically conjugate relationship. Therefore, as shown in FIG.
As shown in the figure, even if the surface tilts, the image formation position on the scanned surface 6 by the fθ lens system hardly moves in the sub-scanning direction (vertical direction in FIG. 4). Therefore, the tilting is corrected.

さて、回転多面鏡3が回転すると偏向反射面3aは軸3A
を中心として回転するため、第5図に示すように偏向反
射面の回転に伴い線像の結像位置Pと偏向反射面3aとの
間に位置ずれΔXが生じ、fθレンズ系による線像の共
役像の位置P′は被走査面6からΔX′だけずれる。こ
のずれ量ΔX′はfθレンズ系の副走査方向の横倍率を
βとして、周知の如くΔX′=β2・ΔXで与えられ
る。
Now, when the rotating polygon mirror 3 rotates, the deflecting / reflecting surface 3a becomes the axis 3A.
5, a displacement ΔX occurs between the imaging position P of the line image and the deflecting reflecting surface 3a due to the rotation of the deflecting reflecting surface as shown in FIG. The position P ′ of the conjugate image is shifted from the scanned surface 6 by ΔX ′. The shift amount ΔX ′ is given by ΔX ′ = β 2 · ΔX, as is well known, where β is the lateral magnification of the fθ lens system in the sub-scanning direction.

偏向面内で、fθレンズ系のレンズ光軸と偏向光束の
主光線とのなす角をθとする時、θと上記ΔXとの関係
を示したのが第6図及び第7図である。第6図は固有入
射角α(第8図参照)を90度とし、回転多面鏡3の内接
円半径R′をパラメーターとして描いている。また、第
7図では上記内接円半径R′を40mmとし、固有入射角α
をパラメーターとして描いている。第6,7図から分かる
ように、ΔXは内接円半径R′が大きいほど、また固有
入射角αが小さいほど大きくなる。
FIGS. 6 and 7 show the relationship between θ and ΔX when the angle between the lens optical axis of the fθ lens system and the principal ray of the deflected light beam is θ in the deflection plane. FIG. 6 depicts the specific incident angle α (see FIG. 8) as 90 degrees and the radius R ′ of the inscribed circle of the rotating polygon mirror 3 as a parameter. In FIG. 7, the radius R 'of the inscribed circle is 40 mm, and the specific incident angle α
Is drawn as a parameter. As can be seen from FIGS. 6 and 7, ΔX increases as the radius of the inscribed circle R ′ increases and as the specific incident angle α decreases.

また、偏向反射面の回転に伴う線像の位置と偏向反射
面との相対的な位置ずれは偏向面内で2次元的に生じ、
且つレンズ光軸に対しても非対象に移動する。従って第
2図の如き非走査装置ではfθレンズ系の主・副走査方
向の像面湾曲を良好に補正する必要がある。また主走査
方向に関してはfθ特性が良好に補正されねばならない
ことは言うまでもない。
Also, the relative displacement between the position of the line image and the deflection reflecting surface due to the rotation of the deflection reflecting surface occurs two-dimensionally in the deflection surface,
In addition, it moves asymmetrically with respect to the lens optical axis. Therefore, in the non-scanning device as shown in FIG. 2, it is necessary to satisfactorily correct the field curvature of the fθ lens system in the main and sub scanning directions. Needless to say, the fθ characteristic must be well corrected in the main scanning direction.

ここで前述の固有入射角αにつき説明すると、第8図
において符号aは回転多面鏡に入射する光束の主光線を
示し、符号bはfθレンズ系の光軸を示している。固有
入射角αは、図の如く主光線aと光軸bの交角として定
義される。
Here, a description will be given of the above-mentioned specific incident angle α. In FIG. 8, reference symbol a indicates a principal ray of a light beam incident on the rotary polygon mirror, and reference symbol b indicates an optical axis of the fθ lens system. The specific incident angle α is defined as the intersection angle between the principal ray a and the optical axis b as shown in the figure.

主光線aと光軸bの交点の位置を原点として図のごと
くX,Y軸を定め、回転多面鏡3の回転軸位置3Aの座標をX
c,Ycとする。
The X and Y axes are determined as shown in the figure with the position of the intersection of the principal ray a and the optical axis b as the origin, and the coordinates of the rotation axis position 3A of the rotary polygon mirror 3 are X
c and Yc.

前述した、線像位置と偏向反射面との位置ずれ量のΔ
Xの変動をなるべく少なくする為には周知のごとく、R
を回転多面鏡の外接円半径として 0<Xc<Rcos(α/2) 0<Yp<Rsin(α/2) なる条件をXc,Ycに課せばよい。
As described above, Δ of the positional deviation amount between the line image position and the deflecting reflection surface
In order to minimize the fluctuation of X, as is well known, R
Is defined as 0 <Xc <Rcos (α / 2), 0 <Yp <Rsin (α / 2), and Xc, Yc.

また入射光束の主光線aが有効主走査領域外に存在
し、被走査面6からの戻り光がゴースト光として被走査
面の主走査領域に再入射しないようにするには、回転多
面鏡3の面数をN、偏向角をθとして、上記αに対し、 θ<α<(4π/N)−θ なる条件を課すれば良い。
In order to prevent the principal ray a of the incident light beam from existing outside the effective main scanning area and prevent the return light from the scanned surface 6 from re-entering the main scanning area on the scanned surface as ghost light, the rotating polygon mirror 3 must be used. Is the number of surfaces and the deflection angle is θ, and the above α may be subject to the condition θ <α <(4π / N) −θ.

次に、本発明の特徴の一端をなす樽型トーリック面に
付き説明する。
Next, the barrel-shaped toric surface forming one end of the features of the present invention will be described.

第9図を参照するとAVBを通る曲線は位置C1を曲率中
心とする円弧である。この円弧を、円弧と同一面内で曲
率中心C1より円弧AVB側にある直線X1Y1を軸として回転
させると第10図に示すような樽型の曲面TTが得られる。
この面TTが樽型トーリック面である、この面TTをレンズ
面として使用する際に凸面として使用する場合と凹面と
して使用する場合とが可能であり、本発明では第3面に
凹の樽型トーリック面を使用するのである。
Curve passing through AVB Referring to FIG. 9 is a circular arc whose center of curvature position C 1. When this arc is rotated about the straight line X 1 Y 1 on the arc AVB side from the center of curvature C 1 in the same plane as the arc, a barrel-shaped curved surface TT as shown in FIG. 10 is obtained.
This surface TT is a barrel-shaped toric surface. When this surface TT is used as a lens surface, it can be used as a convex surface or as a concave surface. Use the toric surface.

なお第4面の凸のトーリック面では円弧が光軸を含む
偏向直交面内にあり、回転軸はこの面内で副走査方向に
平行で、円弧の曲率中心に関して円弧と反対側にある。
従って、このトーリック面は光軸を含む偏向直交面内に
強い曲率を持つ。
In the convex toric surface of the fourth surface, the arc is in the plane orthogonal to the deflection including the optical axis, and the rotation axis is parallel to the sub-scanning direction in this surface, and is on the opposite side to the arc with respect to the center of curvature of the arc.
Therefore, this toric surface has a strong curvature in a plane orthogonal to the deflection including the optical axis.

X1Y1軸に直交する面内における樽型トーリック面の曲
率半径を見ると、これはC2点を軸方向に離れるに従って
小さくなっており、この曲率半径は軸X1Y1と円弧AVBと
の距離に等しい。
Looking at the radius of curvature of the barrel-shaped toric surface in X 1 Y 1 perpendicular to the axis to the plane, which is smaller with increasing distance to C 2 points in the axial direction, the radius of curvature the axis X 1 Y 1 and arc AVB Equal to the distance to

本発明では、第3面の凹の樽型トーリック面に於いて
軸X1Y1の方向を偏向面内で主走査方向と平行にするので
ある。
In the present invention, the direction of the axis X 1 Y 1 on the concave barrel-shaped toric surface of the third surface is made parallel to the main scanning direction within the deflection surface.

[実施例] 以下、具体的な実施例を9例挙げる。[Examples] Hereinafter, nine specific examples will be given.

各実施例においてfMはfθレンズ系の主走査方向に関
する合成焦点距離、即ち偏向面に平行な面内における合
成焦点距離を表し、この値は100に規格化される。またf
Sは偏向直交面内での合成焦点距離即ち副走査方向に関
する合成焦点距離を表す。2θは偏向角(単位:度)、
αは固有入射角(単位:度)、βは副走査方向の横倍率
を表す。
In each embodiment, f M represents a combined focal length in the main scanning direction of the fθ lens system, that is, a combined focal length in a plane parallel to the deflection surface, and this value is normalized to 100. Also f
S represents a combined focal length in the plane orthogonal to the deflection, that is, a combined focal length in the sub-scanning direction. 2θ is the deflection angle (unit: degree),
α represents a specific incident angle (unit: degree), and β represents a lateral magnification in the sub-scanning direction.

rixは回転多面鏡の側から数えてi番目のレンズ面の
偏向面内の曲率半径、即ち第1図各図で「主」と表示さ
れた図に現れたレンズ面形状の曲率半径、riYはi番目
のレンズ面の偏向直交面内の曲率半径、即ち第1図各図
で「副」と表示された図に現れたレンズ面形状の曲率半
径であり、r3Y,r4Yは条件(I)に関連してr′3,r′4
として説明したものである。また第3面に関し、r3X
第9図のVC1間の距離、3YはVC2間の距離を表す。
r ix is the radius of curvature in the deflection plane of the i-th lens surface counted from the side of the rotating polygon mirror, that is, the radius of curvature of the lens surface shape appearing in the figures indicated as “main” in each of FIGS. iY is the radius of curvature of the i-th lens surface in the plane orthogonal to the deflection, that is, the radius of curvature of the lens surface shape that appears in the figure indicated as “sub” in each of FIGS. 1A and 1B, and r 3Y and r 4Y are the conditions. R ′ 3 , r ′ 4 in relation to (I)
It is explained as. Regarding the third surface, r 3X represents the distance between VC 1 and 3Y represents the distance between VC 2 in FIG.

d1はi番目のレンズ面間距離、dOは回転多面鏡の偏向
反射面から第1レンズ面までの距離、njはj番目のレン
ズの屈折率を表す。
d 1 is the distance between the i-th lens surfaces, d O is the distance from the deflecting reflection surface of the rotary polygon mirror to the first lens surface, and n j is the refractive index of the j-th lens.

さらに、Kをもって上記条件(I)における |{(1/r′3)−(1/r′4)}・fS| を表す。Further, K represents | {(1 / r ′ 3 ) − (1 / r ′ 4 )} · f S | in the above condition (I).

実施例1 fM=100,fS=14.945,β=−5.91,α=54,2θ=63.4,K=
1.25,dO=5.411 i riX riY di j ni 1 ∞ ∞ 1.5091 1.71221 2 −954.926 −954.926 7.245 3 −36.528 −17.196 4.6382 1.675 4 −25.488 −7.062 実施例2 fM=100,fS=14.052,β=−6.39,α=54,2θ=63.4,K=
1.04,dO=7.816 i riX riY di j ni 1 ∞ ∞ 3.3671 1.71221 2 −623.550 −623.550 1.202 3 −36.796 −12.386 6.0122 1.675 4 −26.335 −6.454 実施例3 fM=100,fS=16.175,β=−5.45,α=54,2θ=63.4,K=
0.95,dO=9.019 i riX riY di j ni 1 ∞ ∞ 3.7161 1.71221 2 −478.035 −478.035 0.602 3 −40.655 −14.310 8.7792 1.675 4 −28.998 −7.778 実施例4 fM=100,fS=15.123,β=−5.69,α=54,2θ=63.4,K=
1.31,dO=5.411 i riX riY di j ni 1 ∞ −57.720 1.5091 1.71221 2 −954.926 −954.926 7.245 3 −36.528 −18.398 4.6382 1.675 4 −25.488 −7.090 実施例5 fM=100,fS=13.106,β=−7.77,α=54,2θ=63.4,K=
0.68,dO=5.411 i riX riY di j ni 1 ∞ 9.019 1.5091 1.71221 2 −954.926 −954.926 7.245 3 −36.528 −10.231 4.6382 1.675 4 −25.488 −6.675 実施例6 fM=100,fS=13.946,β=−6.5,α=54,2θ=63.4,K=
0.9,dO=7.816 i riX riY di j ni 1 ∞ 72.149 3.3671 1.71221 2 −623.550 −623.550 1.202 3 −36.796 −10.822 6.0122 1.675 4 −26.335 −6.382 実施例7 fM=100,fS=14.201,β=−6.25,α=54,2θ=63.4,K=
1.34,dO=7.816 i riX riY di j ni 1 ∞ −36.676 3.3671 1.71221 2 −623.550 −623.550 1.202 3 −36.796 −18.037 6.0122 1.675 4 −26.335 −6.670 実施例8 fM=100,fS=16.184,β=−5.44,α=54,2θ=63.4,K=
1.0,dO=9.019 i riX riY di j ni 1 ∞ −300.623 3.7161 1.71221 2 −478.035 −478.035 0.602 3 −40.655 −15.031 8.7792 1.675 4 −28.998 −7.806 実施例9 fM=100,fS=16.012,β=−5.62,α=54,2θ=63.4,K=
0.46,dO=9.019 i riX riY di j ni 1 ∞ 28.619 3.7161 1.71221 2 −478.035 −478.035 0.602 3 −40.655 −9.620 8.7792 1.675 4 −28.998 −7.550 第11図乃至第19図に実施例1〜9に関する収差図・f
θ特性図を示す。像面湾曲図は回転多面鏡の回転に伴う
ものであり、破線は主走査方向のもの、実線が副走査方
向のものを表している。
Example 1 f M = 100, f S = 14.945, β = −5.91, α = 54, 2θ = 63.4, K =
1.25, d O = 5.411 i r iX r iY d i j n i 1 ∞ ∞ 1.5091 1.71221 2 -954.926 -954.926 7.245 3 -36.528 -17.196 4.6382 1.675 4 -25.488 -7.062 Example 2 f M = 100, f S = 14.052, β = −6.39, α = 54, 2θ = 63.4, K =
1.04, d O = 7.816 i r iX r iY d i j n i 1 ∞ ∞ 3.3671 1.71221 2 -623.550 -623.550 1.202 3 -36.796 -12.386 6.0122 1.675 4 -26.335 -6.454 Example 3 f M = 100, f S = 16.175, β = -5.45, α = 54, 2θ = 63.4, K =
0.95, d O = 9.019 i r iX r iY d i j n i 1 ∞ ∞ 3.7161 1.71221 2 −478.035 −478.035 0.602 3 −40.655 −14.310 8.7792 1.675 4 −28.998 −7.778 Example 4 f M = 100, f S = 15.123, β = -5.69, α = 54, 2θ = 63.4, K =
1.31, d O = 5.411 i r iX r iY d i j n i 1 ∞ -57.720 1.5091 1.71221 2 -954.926 -954.926 7.245 3 -36.528 -18.398 4.6382 1.675 4 -25.488 -7.090 Example 5 f M = 100, f S = 13.106, β = -7.77 , α = 54,2θ = 63.4, K =
0.68, d O = 5.411 i r iX r iY d i j n i 1 ∞ 9.019 1.5091 1.71221 2 -954.926 -954.926 7.245 3 -36.528 -10.231 4.6382 1.675 4 -25.488 -6.675 Example 6 f M = 100, f S = 13.946, β = -6.5, α = 54, 2θ = 63.4, K =
0.9, d O = 7.816 i r iX r iY d i j n i 1 ∞ 72.149 3.3671 1.71221 2 -623.550 -623.550 1.202 3 -36.796 -10.822 6.0122 1.675 4 -26.335 -6.382 Example 7 f M = 100, f S = 14.201, β = -6.25, α = 54, 2θ = 63.4, K =
1.34, d O = 7.816 i r iX r iY d i j n i 1 ∞ -36.676 3.3671 1.71221 2 -623.550 -623.550 1.202 3 -36.796 -18.037 6.0122 1.675 4 -26.335 -6.670 Example 8 f M = 100, f S = 16.184, β = -5.44 , α = 54,2θ = 63.4, K =
1.0, d O = 9.019 i r iX r iY d i j n i 1 ∞ -300.623 3.7161 1.71221 2 -478.035 -478.035 0.602 3 -40.655 -15.031 8.7792 1.675 4 -28.998 -7.806 Example 9 f M = 100, f S = 16.012, β = -5.62, α = 54, 2θ = 63.4, K =
0.46, d O = 9.019 i r iX r iY d i j n i 1 ∞ 28.619 3.7161 1.71221 2 −478.035 −478.035 0.602 3 −40.655 −9.620 8.7792 1.675 4 −28.998 −7.550 Implemented in FIGS. 11 to 19 Aberration diagram for Examples 1 to 9
A θ characteristic diagram is shown. The curvature of field diagram is associated with the rotation of the rotary polygon mirror. The broken line indicates the one in the main scanning direction, and the solid line indicates the one in the sub-scanning direction.

またfθ特性は理想像高をfM・θ、実際の像高をhと
するとき、(h−fM・θ)・100/(fM・θ)で定義され
る。
The fθ characteristics an ideal image height f M · θ, when the actual image height is h, as defined in (h-f M · θ) · 100 / (f M · θ).

各実施例とも収差が良好であり特に、像面湾曲は主・
副走査方向とも極めて良好に補正されている。またfθ
特性も良好である。
Each of the embodiments has good aberration.
It is corrected very well in the sub-scanning direction. Fθ
The characteristics are also good.

[発明の効果] 以上、本発明によれば新規なfθレンズ系を提供でき
る。このfθレンズ系は上述の如き構成となっているの
で回転多面鏡の面倒れを良好に補正しつつ、主・副走査
方向の像面湾曲を良好に補正して光走査を実現でき、従
って高密度の光走査が可能になる。
[Effects of the Invention] As described above, according to the present invention, a novel fθ lens system can be provided. Since the fθ lens system has the above-described configuration, it is possible to satisfactorily correct the surface tilt of the rotating polygon mirror and satisfactorily correct the field curvature in the main and sub-scanning directions to realize optical scanning. Optical scanning of the density becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のfθレンズ系の形状を説明するための
図、第2図乃至第8図は光走査装置を説明するための
図、第9図および第10図は樽型トーリック面を説明する
ための図、第11図乃至第19図は各実施例に関する収差図
・fθ特性図である。 1…光源装置、2…シリンダーレンズ、3…回転多面
鏡、4,5…fθレンズ系を構成する第1および第2レン
FIG. 1 is a diagram for explaining the shape of the fθ lens system of the present invention, FIGS. 2 to 8 are diagrams for explaining an optical scanning device, and FIGS. 9 and 10 are barrel-shaped toric surfaces. FIGS. 11 to 19 are diagrams illustrating aberrations and fθ characteristics relating to each example. DESCRIPTION OF SYMBOLS 1 ... Light source device, 2 ... Cylinder lens, 3 ... Rotating polygon mirror, 4, 5 ... 1st and 2nd lens which comprises ftheta lens system

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源装置からの平行な光束を主走査対応方
向に長い線像として結像させ、上記線像の結像位置の近
傍に偏向反射面を有する回転多面鏡により上記光束を等
角速度的に偏向させ、この偏向光束を結像レンズ系によ
り被走査面上にスポット状に結像させて被走査面を略等
速的に光走査する光走査装置において、回転多面鏡によ
り偏向された光束を被走査面上に結像させる結像レンズ
系であって、 副走査方向に関して偏向反射面位置と被走査面とを幾何
光学的に略共役な関係とする機能を持つとともに、主走
査方向に関してfθ機能を有し、 回転多面鏡の側から被走査面側へ向かって第1,第2の順
に配備される第1および第2のレンズにより構成される
2群・2枚構成であり、 回転多面鏡により理想的に偏向された偏向光束の主光線
が偏向に伴って掃引する平面を偏向面、結像レンズ系の
光軸に平行で上記偏向面に直交する面を偏向直交面と呼
ぶとき、 上記回転多面鏡の側から数えて第1乃至第4面の偏向面
内での形状が第1面から第4面に向かって順次、直線、
円弧、円弧、円弧であり、 偏向面に平行な面内では第1・第2のレンズとも正の屈
折力を持ち、 上記第1面は平面または偏向直交面内にのみ屈折力を持
つ凸もしくは凹のシリンダー面、第2面は凸の球面、第
3面は偏向直交面内の曲率半径が光軸から離れるに従い
小さくなる凹の樽型トーリック面、第4面は偏向直交面
内に強い曲率を持つ凸のトーリック面であり、 偏向直交面内における合成焦点距離をfS、光軸を含む偏
向直交面内に於ける第3及び第4面の曲率半径をそれぞ
れr′3,r′4とするとき、これらが 0.4<|{(1/r′3)−(1/r′4)}・fS|<1.4 なる条件を満足することを特徴とするfθレンズ系。
A parallel light beam from a light source device is formed as a long linear image in a direction corresponding to the main scanning, and the light beam is converted into a uniform angular velocity by a rotary polygon mirror having a deflecting reflection surface near an image forming position of the linear image. In a light scanning device that forms a spot on the surface to be scanned by the imaging lens system and optically scans the surface to be scanned at a substantially constant speed, the light is deflected by the rotating polygon mirror. An imaging lens system for forming an image of a light beam on a surface to be scanned. The imaging lens system has a function of making the position of the deflecting reflection surface and the surface to be scanned substantially geometrically conjugate with respect to the sub-scanning direction, and also has a function in the main scanning direction. Has a fθ function, and is a two-group, two-element configuration including first and second lenses arranged in first and second order from the side of the rotary polygon mirror toward the surface to be scanned, The principal ray of the deflected light beam ideally deflected by the rotating polygon mirror is When a plane swept with the deflection is called a deflecting surface, and a surface parallel to the optical axis of the imaging lens system and orthogonal to the deflecting surface is called a deflecting orthogonal surface, the first to fourth surfaces are counted from the rotating polygon mirror side. The shape of the surface within the deflection plane is sequentially linear from the first surface to the fourth surface,
An arc, an arc, or an arc, wherein the first and second lenses both have a positive refractive power in a plane parallel to the deflecting surface, and the first surface has a convex power having a refractive power only in a plane or a plane orthogonal to the deflection. The concave cylinder surface, the second surface is a convex spherical surface, the third surface is a concave barrel-shaped toric surface in which the radius of curvature in the plane perpendicular to the deflection decreases as the distance from the optical axis increases, and the fourth surface is a strong curvature in the plane orthogonal to the deflection. A composite focal length in the orthogonal plane of deflection, f s , and the radii of curvature of the third and fourth surfaces in the orthogonal plane including the optical axis are r ′ 3 , r ′ 4 , respectively. when the, they 0.4 <| {(1 / r '3) - (1 / r' 4)} · f S | <fθ lens system and satisfies 1.4 following condition.
JP16926390A 1990-06-27 1990-06-27 Fθ lens system in optical scanning device Expired - Fee Related JP2877457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16926390A JP2877457B2 (en) 1990-06-27 1990-06-27 Fθ lens system in optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16926390A JP2877457B2 (en) 1990-06-27 1990-06-27 Fθ lens system in optical scanning device

Publications (2)

Publication Number Publication Date
JPH0457010A JPH0457010A (en) 1992-02-24
JP2877457B2 true JP2877457B2 (en) 1999-03-31

Family

ID=15883270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16926390A Expired - Fee Related JP2877457B2 (en) 1990-06-27 1990-06-27 Fθ lens system in optical scanning device

Country Status (1)

Country Link
JP (1) JP2877457B2 (en)

Also Published As

Publication number Publication date
JPH0457010A (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JPH0782157B2 (en) Scanning optical system with surface tilt correction function
US6445483B2 (en) Optical scanning apparatus
JP2718735B2 (en) Fθ lens system in optical scanning device
JP3061829B2 (en) Fθ lens system in optical scanning device
JP2804512B2 (en) Fθ lens system in optical scanning device
JP2550153B2 (en) Optical scanning device
JPH07119897B2 (en) Optical scanning device
JP2877457B2 (en) Fθ lens system in optical scanning device
JP2834793B2 (en) Fθ lens system in optical scanning device
JP2738857B2 (en) Fθ lens system in optical scanning device
JP2774586B2 (en) Fθ lens system in optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP2718743B2 (en) Fθ lens system in optical scanning device
JP2790839B2 (en) Fθ lens system in optical scanning device
JP2877390B2 (en) Fθ lens system in optical scanning device
JP3680893B2 (en) Optical scanning device
JP2986949B2 (en) Imaging lens system in optical scanning device
JP2774546B2 (en) Fθ lens system in optical scanning device
JP2553882B2 (en) Scanning optical system
JPH112769A (en) Optical scanner
JP2927846B2 (en) Fθ lens system in optical scanning device
JPH0375719A (en) Ftheta lens system for optical scanner
JPH1020235A (en) Optical scanner
JP3680891B2 (en) Optical scanning device
JP2856491B2 (en) Fθ lens for optical scanning device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees