JP3717656B2 - Optical scanning device and scanning imaging lens - Google Patents

Optical scanning device and scanning imaging lens Download PDF

Info

Publication number
JP3717656B2
JP3717656B2 JP05996798A JP5996798A JP3717656B2 JP 3717656 B2 JP3717656 B2 JP 3717656B2 JP 05996798 A JP05996798 A JP 05996798A JP 5996798 A JP5996798 A JP 5996798A JP 3717656 B2 JP3717656 B2 JP 3717656B2
Authority
JP
Japan
Prior art keywords
scanning
axis
light beam
incident
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05996798A
Other languages
Japanese (ja)
Other versions
JPH11258531A (en
Inventor
篤 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP05996798A priority Critical patent/JP3717656B2/en
Publication of JPH11258531A publication Critical patent/JPH11258531A/en
Application granted granted Critical
Publication of JP3717656B2 publication Critical patent/JP3717656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は光走査装置および走査結像レンズおよび画像形成装置に関する。
【0002】
【従来の技術】
光源側からの光束を光偏向器により等角速度的に偏向させ、偏向光束を被走査面上に光スポットとして集光させて光走査を行う光走査装置は、デジタル複写機や各種プリンタ等の画像形成装置に関連して広く知られている。
従来このような光走査装置は一般的に、光源側からの光束と、偏向光束が偏向掃引する面とが、同一平面上にあるように光学配置が設定されており、以下の如き問題がある。
即ち、第1に「光走査装置の床面積」が大きくなる。
第2に、光偏向器としては回転多面鏡が最も一般的であるが、回転多面鏡の回転軸は偏向反射面から離れているため、光源側からの光束の偏向反射面への入射位置が、偏向反射面の回転に伴い偏向反射面に対して変位し、偏向光束の偏向の起点が変動する所謂「サグ」が発生するが、光走査の基準になる「光スポットの像高:0を実現する偏向光束の方向」と「光源側から偏向反射面への入射光束の方向」とが例えば60度程度の角をなすので、上記サグが、光走査領域の像高:0の両側に非対称に発生し、サグの影響を考慮して像面湾曲や「fθ特性等の等速特性」を非対称に補正する必要が生じ、走査結像光学系の設計が難しくなる。
【0003】
これらの問題を一挙に解決できる光学配置として、光源側からの光束を光偏向器の偏向反射面に、この偏向反射面の回転軸に斜めに交わる方向から入射させて等角速度的に偏向させ、偏向光束を被走査面上に光スポットとして集光させ、光源側から偏向反射面への入射方向と上記回転軸とを含む平面に対して、光走査が対称的になるようにする光学配置が考えられる。
このようにすると、光源から光偏向器に至る光学系部分と、光偏向器以後の光学系部分とを上下に重ねるようにレイアウトできるので、光走査装置の床面積を小さくして光走査装置のコンパクト化を図ることができる。また、サグは発生するにしても像高:0に対称的に発生するので、等速特性や像面湾曲の補正が容易である。
【0004】
しかしながら反面、このような光学配置には以下の如き問題がある。
即ち、光源側からの光束を光偏向器の偏向反射面に、偏向反射面の回転軸に斜めに交わるように入射させるため、偏向光束は円錐面を掃引するように偏向し、このため、偏向光束が「以後の光学系に入射する位置」が、偏向に伴い副走査対応方向(光源から被走査面に至る光路上で副走査方向と対応する方向)において少なからず変動する。このため、被走査面上における光スポットの軌跡が直線にならず所謂「走査線曲がり」が発生してしまう。
【0005】
【発明が解決しようとする課題】
この発明は、上記光源側からの光束を光偏向器の偏向反射面に、この偏向反射面の回転軸に斜めに交わる方向から入射させる方式の光学配置の光走査装置で、像面湾曲や光スポット径の変動を良好にするとともに、走査線曲がりを有効に小さくして、良好な光走査を実現することを課題とする。
【0006】
【課題を解決するための手段】
この発明の走査結像レンズは「光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から偏向反射面に入射させるとともに、偏向反射面近傍に主走査対応方向に長い線像に結像させ、偏向反射面による反射光束を、偏向反射面への入射光束の主光線と上記回転軸との形成する平面に対して対称的に偏向させ、偏向光束を走査結像レンズにより被走査面上に光スポットとして集光させ、被走査面の光走査を行う光走査装置に用いられる走査結像レンズ」であり、単一レンズで構成される。
【0007】
請求項1記載の走査結像レンズは、以下の如き特徴を有する。
入射側レンズ面に就き、その中心軸をx1軸、主走査に対応する方向をy1軸とするとき、x11面内の形状が非円弧形状である。
射出側レンズ面に就き、その中心軸をx2軸、主走査に対応する方向をy2軸とするとき、x22面内の形状が非円弧形状である。
入射側レンズ面(偏向反射面側レンズ面)および/または射出側レンズ面(被走査面側レンズ面)は「WT面」である。
「WT面」は、以下の如き面である。例えば、入射側レンズ面がWT面である場合につき説明すると、このレンズ面に関する上記座標:x11に直交する座標軸をz1軸とするとき、x11面に平行な平断面内における曲率半径:r1が、この平断面のy1座標軸の関数:r1(y1)として変化するような面である。
1軸とx2軸とは、これらを含む平面内で互いに有限の角をなす。即ち、これらx1,x2軸は同一面内にあるが、互いに向きが異なる。x1軸とx2軸とがなす角を小さくしていった極限を考えると、この極限でx1軸とx2軸とは合致して同一直線となるが、この直線が通常のレンズにおける「光軸」に対応する。
【0008】
以下の説明のため、光走査装置の装置空間に、以下の如く座標軸を設定する。
即ち、偏向反射面の回転軸をZ軸とし、偏向反射面に入射する光束の主光線とZ軸とを含む平面内でZ軸に直交する軸をX軸とし、X軸とZ軸とに直交する軸をY軸とする。このようにすると、光源側からの光束の主光線は、XZ面内で偏向反射面に入射することになるが、この入射光束の入射角がθであるとは、上記入射光束の主光線が、XY面に平行な面に対して、角:θだけ傾くことを意味する。また「主走査対応方向」は、光源から被走査面に至る光路上で主走査方向に対応する方向を言うが、Y軸方向が主走査対応方向にあたり、光源側からの光束は、Y軸方向に長い線像として結像することになる。また偏向光束は、XZ面に対称に偏向することになる。
【0009】
請求項1記載の走査結像レンズは、光走査装置に以下の如く配備される。
上述したように、y1軸およびy2軸は「主走査に対応する」から、走査結像レンズは、そのy1軸およびy2軸が上記Y軸に平行になるようにされる。そして、上記x1軸とx2軸とを含む平面が、XZ面に合致させられる。
偏向反射面への入射光束の主光線と偏向反射面の回転軸との形成する平面、即ちXZ面内における偏向光束(XY面に対して角:θをなす)の主光線に対して、入射側レンズ面はx1軸を角:α1だけ傾けられ、さらにx1軸は偏向反射面の回転軸に平行な方向(Z軸方向)へ変位量:Δ1だけ変位される。射出側レンズ面はx2軸を上記偏向光束の主光線に対して角:α2だけ傾ける、さらにx2軸はZ方向へ変位量:Δ2だけ変位されて配備される。
このとき、上記角:α1,α2、変位量:Δ1,Δ2が、走査線曲がり、像面湾曲、光スポット径変動に対する補正パラメータとして用いられる。
即ち、走査結像レンズのレンズ形状(レンズ面形状、肉厚)やレンズ材質(屈折率)が走査結像レンズに要請される条件を満足するように設計されるが、これらとともに、上記α1,α2、Δ1,Δ2も補正パラメータとして設計に用いられるのである。
【0010】
上記のように、請求項1記載の走査結像レンズにおいては、入射側レンズ面、射出側レンズ面の少なくとも一方がWT面であるが、勿論「入射側および射出側レンズ面が、共にWT面である」ようにすることができる(請求項2)。
請求項1記載の走査結像レンズは、x 軸とx 軸とを含む平面内(光走査装置内ではXZ面内)における焦点距離をf とするとき、角:α ,α が、入射角:θに対して、条件:
(1) 0.8<|α /θ|<2.5
(2) 0.8<|α /θ|<2.5
を満足し、変位量:Δ ,Δ と焦点距離:f が、条件:
(3) 1×10 -2 <|Δ /f |<1×10 -1
(4) 1×10 -2 <|Δ /f |<1×10 -1
を満足する。
【0011】
条件(1),(2)は、走査線曲がりを有効に補正し、光スポット径の変動を有効に抑えるための条件である。
「光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から偏向反射面に入射させる」方式の光走査装置の場合、入射角:θが小さいほど、走査線の曲がりは軽微になるが、入射光束と反射光束を分離するためいには、入射角:θは所定量必要である。
角:α1,α2はθに比例的であるのがよく、その比例係数は、角:α1,α2につきそれぞれ条件(1),(2)の範囲が良い。
条件(1),(2)の下限を超えると、十分な走査線曲がり補正効果を実現することができない。
また、条件(1),(2)の上限を超えると、光スポットの中間〜周辺像高で副走査方向のコマ収差が過大になり、波面収差が劣化し、中心部の像高に比して、中間〜周辺像高で光スポット径が大きくなる。
【0012】
条件(1),(2)の範囲で、走査結像レンズを「傾ける」と、前述のように、走査線曲がりは有効に補正されるが、レンズの傾きに起因してコマ収差が発生する。条件(3),(4)は、このコマ収差を有効に補正する条件である。
条件(3),(4)の下限を超えると、上記傾きによるコマ収差をキャンセルできず、波面収差が劣化して、光スポット径の変動が大きくなる。
条件(3),(4)の上限を超えると、副走査対応方向(光源から被走査面に至る光路上で副走査方向に対応する方向)において高次の像面湾曲が大きくなり、光スポットの周辺像高において像面が急速に走査結像レンズ側に倒れるため、副走査方向の光スポット径が周辺像高で急速に大きくなる。
【0013】
請求項3記載の走査結像レンズは以下の如き特徴を有する。
光軸をx軸、主走査に対応する方向をy軸とするとき、入射側レンズ面および射出側レンズ面はともに、xy面内の形状が非円弧形状である。
入射側レンズ面および/または射出側レンズ面がWT面である。
前記XZ面内における偏向光束の主光線に対して、x軸を角:αだけ傾けられるとともに、入射側レンズ面は、x軸をZ軸方向へ変位量:Δ、射出側レンズ面は、x軸をZ軸方向へ変位量:Δ、それぞれ変位されて配備され、角:α、変位量:Δ,Δが、走査線曲がり、像面湾曲、光スポット径変動に対する補正パラメータとして用いられる。
即ち、請求項4記載の走査結像レンズは、請求項1記載の走査結像レンズにおいて、軸x,xが合致して光軸(x軸)となったものである。
【0014】
請求項3記載の走査結像レンズは、偏向反射面への入射光束の主光線と偏向反射面回転軸との形成する平面:XZ面内における焦点距離をfZとするとき、角:αが、入射角:θに対して、条件:
(5) 0.8<|α/θ|<2.5
を満足し、変位量:Δ ,Δ と焦点距離:f が条件:
(6) 1×10 -2 <|Δ /f |<1×10 -1
(7) 1×10 -2 <|Δ /f |<1×10 -1
を満足する。
【0015】
条件(5)は前記条件(1),(2)と同じく、走査線曲がりを有効に補正し、光スポット径の変動を有効に抑えるための条件であり、下限を超えると、十分な走査線曲がり補正効果を実現することができず、上限を超えると、光スポットの中間〜周辺像高で副走査方向のコマ収差が過大になり、波面収差が劣化し、中心部の像高に比して、中間〜周辺像高で光スポット径が大きくなる。
条件(6),(7)は、前記条件(3),(4)と同じく、レンズの傾きに起因するコマ収差を有効に補正する条件であり、条件(6),(7)の下限を超えると、上記傾きによるコマ収差をキャンセルできず、波面収差が劣化して、光スポット径の変動が大きくなり、条件(6),(7)の上限を超えると、副走査対応方向において高次の像面湾曲が大きくなり、光スポットの周辺像高において像面が急速に走査結像レンズ側に倒れるため、副走査方向の光スポット径が周辺像高で急速に大きくなる。
【0016】
上記請求項1〜3の任意の1に記載の走査結像レンズは、何れも「等角速度的に偏向される偏向光束による被走査面の光走査を等速化する機能」を有することができる(請求項4)。
また、請求項1〜4の任意の1に記載の走査結像レンズは何れも、偏向反射面近傍に「主走査対応方向に長い線像」に結像した偏向光束を被走査面上に光スポットとして集光するから「副走査対応方向に関して、偏向反射面位置近傍と被走査面位置とを共役な関係とする機能を有するが、この共役な関係における近軸倍率:mは、条件:
(8) 2<|m|<6
を満足することが好ましい(請求項5)。
即ち、下限を超えると、走査結像レンズの配置が被走査面に近づくため、走査結像レンズがY方向に長大化して、加工が難しくなり、コストアップを招く。
逆に上限を超えると、偏向反射面におけるX軸方向誤差が「m倍」で被走査面に伝搬されるので、偏向反射面の位置精度や面精度に高精度が要求され、コストアップの原因となる。
【0017】
この発明の光走査装置は「光源側からの光束を、偏向反射面の回転軸(Z軸)に対して入射角:θで斜めに交わる方向から偏向反射面に入射させるとともに、偏向反射面近傍に主走査対応方向(Y軸方向)に長い線像に結像させ、偏向反射面による反射光束を、偏向反射面への入射光束の主光線と回転軸との形成する平面(XZ面)に対して対称的に偏向させ、偏向光束を、走査結像レンズにより被走査面上に光スポットとして集光させ、被走査面の光走査を行う光走査装置」である。
請求項6記載の光走査装置は以下の如き特徴を有する。
即ち、走査結像レンズとして、上記請求項1または2記載の走査結像レンズを用い、走査結像レンズの材質および形状ならびに角:α1,α2、変位量:Δ1,Δ2の調整により、像面湾曲、走査線曲がり、光スポット径の変動を、それぞれ許容範囲内に抑えている。
請求項7記載の光走査装置は以下の如き特徴を有する。
即ち、走査結像レンズとして、上記請求項3記載の走査結像レンズを用い、走査結像レンズの材質および形状ならびに角:α、変位量:Δ1,Δ2の調整により、像面湾曲、走査線曲がり、光スポット径の変動を、それぞれ許容範囲内に抑えている。
これら請求項6または7記載の光走査装置において、走査結像レンズは「等角速度的に偏向される偏向光束による被走査面の光走査を等速化する機能」を有することができ(請求項8)、副走査対応方向における前記共役な関係における近軸倍率:mが、条件:
(8) 2<|m|<6
を満足するように構成できる(請求項9)。
この発明の画像形成装置は、請求項6〜9の任意の1に記載の光走査装置を使用するものである(請求項10)。
【0018】
【発明の実施の形態】
図1は、この発明の光走査装置の実施の1形態を説明するための図である。 図1(a)において、符号10は「光源」である半導体レーザ、符号15はカップリングレンズ、符号20はアパーチュア、符号25はシリンドリカルレンズ、符号30は「光偏向器」としての回転多面鏡、符号31は偏向反射面、符号30AXは偏向反射面31の回転軸(回転多面鏡30自体の回転軸)、符号40は走査結像レンズ、符号50は被走査面(実態的には光導電性の感光体の感光面)をそれぞれ示している。
【0019】
半導体レーザ10から放射された光束は、カップリングレンズ15により以後の光学系にカップリングされる。カップリングされた光束は、以後の光学系の光学特性如何により、平行光束となることもできるし、集束性の光束となることも発散性の光束となることもできる。
カップリングされた光束は、アパーチュア20を通過する際に周辺光束部を除去されて所謂「ビーム整形」される。ビーム整形された光束は、シリンドリカルレンズ25により副走査対応方向に集束され、偏向反射面31の位置に主走査対応方向に長い線像として結像する。偏向反射面31による反射光束は回転多面鏡30の等速回転に伴い等角速度的に偏向する偏向光束となり、走査結像レンズ40により被走査面50上に光スポットを形成し、被走査面50を光走査する。
図1(a)において、回転多面鏡30の回転軸30AXに合致させて「Z軸」を設定し、図の如くX,Y方向を定める。すると、半導体レーザ10側から偏向反射面31へ入射する光束(の主光線)と回転軸30AXとは同一面内、即ち「XZ面」内にあることになる。Y方向は「主走査対応方向」になる。
【0020】
図1(b)は(a)の状態をY方向から見た状態を示し、(b)におけるの図の面は「XZ面」になっている。(b)に示すように、半導体レーザ10側からの光束の主光線は、XZ面内において、偏向反射面31の回転軸30AZに対して入射角:θを持って偏向反射面31に入射する。即ち、入射角:θは、回転軸30AXに対して直交する平面(XY面)に対して入射光束の主光線がなす角である。図1(b)において、入射角:θをθ(−)と表示したのは、回転軸30AXに直交する平面に対し、入射光束がZ方向の「負の側」から入射することを表している。
図1(a)から明らかなように、回転多面鏡30の回転に従い、被走査面50の光走査はXZ面に略対称、即ち「XZ面に対して対称的」に行われる。
即ち、図1に実施の形態を示す光走査装置は「光源10側からの光束を、偏向反射面31の回転軸(Z軸)に対して入射角:θで斜めに交わる方向から、偏向反射面31に入射させるとともに、偏向反射面近傍に主走査対応方向(Y方向)に長い線像に結像させ、偏向反射面31による反射光束を、偏向反射面への入射光束の主光線と上記回転軸との形成する平面(XZ面)に対して対称的に偏向させ、偏向光束を、走査結像レンズ40により被走査面50上に光スポットとして集光させ、被走査面50の光走査を行う光走査装置」であり(請求項6,7)、走査結像レンズ40が、請求項1または2記載の走査結像レンズであるときには請求項6記載の光走査装置となり、走査結像レンズ40が、請求項3記載の走査結像レンズであるときには請求項7記載の光走査装置となる。
【0021】
図2は、請求項1記載の走査結像レンズの形状と、光走査装置内への配備を説明するための図である。
図1の実施の形態において走査結像レンズ40として用いられるレンズ40Aは、単一レンズで構成され、入射側レンズ面41Aに就き中心軸をx1軸、主走査に対応する方向(図面に直交する方向)をy1軸とするとき、x11面内の形状が非円弧形状である。また射出側レンズ面41Bに就き中心軸をx2軸、主走査に対応する方向をy2軸とするとき、x22面内の形状が非円弧形状である。
入射側レンズ面41Aおよび/または射出側レンズ面41BがWT面であり、x1軸とx2軸とが、これらを含む平面内(図中のXZ面)で互いに有限の角をなす。偏向反射面への入射光束の主光線と偏向反射面回転軸(Z軸)との形成する平面(XZ面)内における偏向光束の主光線FLに対して、入射側レンズ面41Aはx1軸を角:α1(−)だけ傾けると共に、x1軸を偏向反射面の回転軸に平行な方向へ変位量:Δ1だけ変位され、射出側レンズ面41Bはx2軸を角:α2(−)だけ傾けると共に、x2軸を偏向反射面の回転軸に平行な方向へ変位量:Δ2だけ変位されて配備される。これら角:α1,α2、変位量:Δ1,Δ2が、走査線曲がり、像面湾曲、光スポット径変動に対する補正パラメータとして用いられるのである。
【0022】
図3は、請求項3記載の走査結像レンズの形状と、光走査装置内への配備を説明するための図である。
図1の実施の形態において走査結像レンズ40として用いられるレンズ40Bは、単一レンズで構成され、光軸をx軸、主走査に対応する方向(図面に直交する方向)をy軸とするとき、入射側レンズ面42Aおよび射出側レンズ面42Bはともに、xy面内の形状が非円弧形状である。
入射側レンズ面42Aおよび/または射出側レンズ面42BがWT面であり、偏向反射面への入射光束の主光線と偏向反射面回転軸(Z軸)との形成する平面(XZ面)内における偏向光束の主光線FLに対して、x軸を角:α(−)だけ傾けられるとともに、入射側レンズ面42Aは、x軸を偏向反射面の回転軸に平行な方向へ変位量:Δだけ、射出側レンズ面42Bは、x軸を偏向反射面の回転軸に平行な方向へ変位量:Δだけ、それぞれ変位されて配備される。これら角:α、変位量:Δ,Δが、走査線曲がり、像面湾曲、光スポット径変動に対する補正パラメータとして用いられる。
上記図2,図3に即した説明において、角:α,αに付した(−)は主光線FLに対して時計回りの角を負とすることを意味し、角:θに付した(+)は、X軸に対して反時計回りの角を正とする個とを意味する。上に説明した実施の形態における入射角:θ、傾き角:α,α、変位量:Δ,Δの符号を全体として反転させた光学配置も勿論可能であることを付記しておく。
【0023】
【実施例】
以下、具体的な実施例を3例挙げる。
【0024】
各実施例とも、図1に示した実施の形態の実施例である。
光源10としての半導体レーザは発光波長780nmのものである。カップリングレンズ15は焦点距離:9mm、NA=0.3のものでカップリング作用は「コリメート作用」であり、カップリングされた光束は「実質的な平行光束」となる。アパーチュア20は開口径:3mmの円形開口を有するものであり、シリンドリカルレンズ25は副走査対応方向の焦点距離:60mmの「平凸レンズ」であり、光源側からの光束は被走査面近傍においては、主走査対応方向では略平行で、副走査対応方向には集光され、全体として主走査対応方向(Y方向)に長い線像になっている。
このような光学系レイアウトにおいて、像面湾曲の許容範囲を主・副走査方向とも、±1mm以内、走査線曲がりの許容範囲を0.1mm以内、光スポット径の変動を主・副走査方向とも3.5μm以下とし、これら許容範囲内の性能が実現されるように、走査結像レンズ40のレンズ面形状、傾き角:α,α1,α2、変位量:Δ1,Δ2を、入射角:θに応じて決定した。
【0025】
以下、走査結像レンズの形状および配備態位の特定に就き説明する。
実施例1においては、走査結像レンズとして請求項3記載のものが用いられており、実施例2および3においては、請求項5記載のものが用いられている。
実施例1〜3の何れにおいても、走査結像レンズのレンズ面は「WT面」である。各面の「非円弧形状」は、周知の式:
x(y)=(y2/R)/[1+√{1−(1+K)(y/R)2}]A0・y2+A・y4+B・y6+C・y8+D・y10+...
における、近軸曲率半径:R及び定数:K,A0,A,B,C,D,..を与えて特定する。走査結像レンズが請求項5記載のものであるとき、この式の「x」は光軸に合致させた座標で、「y」は主走査方向に対応する座標である。また、走査結像レンズが請求項3記載のものであるときは「x,y」は入射側レンズ面に関しては「x1,y1」、射出側レンズ面に関しては「x2,y2」を用いる。
また、「特殊トーリック面」であるWT面を特定する、XZ面に平行な面内における曲率半径のYの関数形状:ri(y)は、偶数次の多項式:
i(y)=a+b・y2+c・y4+d・y6+e・y8+f・y10+g・y12+..における各係数:a,b,...,,g..を与えて特定する。iは入射側レンズ面に関してi=1、射出側レンズ面に関してはi=2である。
【0026】
各実施例において、走査結像レンズの材質の屈折率(波長780nmのに対するもの)を「n780」、光走査装置内のXZ面内(xz面内、x面もしくはx面)におけるレンズ肉厚(走査結像レンズが請求項1または2記載のものであるときには、y軸の原点とy軸の原点との距離)をd(0)とする。
【0027】
また、XZ面内における偏向光束の主光線(図12における直線:FL)に対して、x軸もしくはx1軸を合致させて配備させた状態を「基準状態」し、この基準状態において、入射側レンズ面が位置するX軸方向の距離を「S(0)」とし、射出側レンズ面と被走査面とのX軸方向の距離を「l(0)」とする。なお、距離の次元を持つ量の単位は「mm」である。
【0028】
実施例1
S(0)=45.5,d(0)=13.2,l(0)=172.2,n780=1.52441,θ(+)=0.0806 rad
入射側レンズ面:WT面
11面内の非円弧形状
R=208.373,K=-6.077E+1,A0=-1.879E-4,A=-5.031E-7,
B= 1.261E-10,C=-4.089E-14,D= 2.987E-18
r1(y1)
a=-165.05, b= 5.579E-2,c=-2.019E-4 ,d= 5.043E-7,
e=-8.302E-10 , f= 6.326E-13 ,g=-1.831E-16
射出側レンズ面:WT面
22面内の非円弧形状
R=-152.69,K= 0.9840,A0=-4.044E-4 , A=-7.295E-7,
B= 1.495E-10 , C=-7.287E-140 , D= 5.104E-18
r2(y2)
a=-19.833 , b=-6.700E-4 ,c= 1.093E-6 , d= 6.400E-10,
e=-3.381E-12 , f= 3.126E-15 , g=-9.374E-19
α1=0.122rad α2=0.1145rad ,
Δ1=−2.429 mm ,Δ2=−1.927mm 。
【0029】
実施例1の球面収差(波面収差)の像高による変化を以下に示す。
像高 波面収差(RMS)
(mm) (λ=780nm)
0 0.0086
35 0.0149
58 0.0129
82 0.0173
93 0.0133
105 0.0122
条件(1)〜(4),(8)のパラメータの値:
|α/θ|=1.51
|α/θ|=1.42
|Δ/f|=5.83E−2
|Δ/f|=4.62E−2
|m|=3.10
(f=41.7)
図4に、実施例1に関する像面湾曲(実線は副走査方向、破線は主走査方向)、走査線曲がり、リニアリティおよびfθ特性の図を示す。走査線曲がりのみならず、像面湾曲やリニアリティおよびfθ特性も良好に補正されている。
なお、上のデータ表記において、例えば「E−9」は「10-9」を意味する。以下同様である。
【0030】
実施例2
S(0)=45.5 ,d(0)=13.0 ,l(0)=176.8 , n780=1.52441 ,θ(+)=0.0806 rad
入射側レンズ面:WT面
xy面内の非円弧形状
R=207.192 , K=-6.044E+1 , A0=-1.396E-4 ,A=-5.034E-7,
B= 1.258E-10 , C=-4.098E-14 , D= 2.917E-18
r1(y1)
a=-161.55 , b= 5.924E-2 , c=-2.016E-4 ,d= 3.759E-7 ,
e=-6.073E-10 , f= 4.929E-13 , g=-1.540E-16
射出側レンズ面:WT面
xy面内の非円弧形状
R=-152.94 , K= 0.9844 , A0=-3.655E-4 , A=-7.305E-7 ,
B= 1.493E-10 , C=-7.292E-14 , D= 5.102E-18
r2(y2)
a=-19.862 , b=-7.272E-4 , c= 1.087E-6 , d= 1.215E-9 ,
e=-4.674E-12 , f= 5.502E-15 , g=-1.690E-18
α=0.1306 rad
Δ1=−2.247 mm , Δ2=−1.694 mm 。
【0031】
実施例2の球面収差(波面収差)の像高による変化を以下に示す。
像高 波面収差(RMS)
(mm) (λ=780nm)
0 0.0144
35 0.0153
58 0.0141
82 0.0154
93 0.0121
105 0.0129
条件(5),(6)〜(8)のパラメータの値:
|α/θ|=1.62
|Δ/f|=5.36E−2
|Δ/f|=4.04E−2
|m|=3.19
(f=41.9)
図5に、実施例2に関する像面湾曲(実線は副走査方向、破線は主走査方向)、走査線曲がり、リニアリティおよびfθ特性の図を示す。走査線曲がりのみならず、像面湾曲やリニアリティおよびfθ特性も良好に補正されている。
【0032】
実施例3
S(0)=46.3 , d(0)=11.5 , l(0)=174.8 , n780=1.52441 , θ(+)=0.0605 rad
入射側レンズ面:WT面
xy面内の非円弧形状
R=205.770 , K=-5.691E+1 , A0=-3.317E-5 , A=-5.027E-7 ,
B= 1.255E-10 , C=-4.056E-14 , D= 3.090E-18
r1(y1)
a=-168.84 , b= 6.330E-2 , c=-2.024E-4 , d= 3.754E-7 ,
e=-4.920E-10 , f= 3.226E-13 , g=-8.142E-17
射出側レンズ面:WT面
xy面内の非円弧形状
R=-154.17 , K= 1.092 , A0=-1.841E-4 , A=-7.253E-7
B= 1.527E-10 , C=-7.271E-14 , D= 5.090E-18
r2(y2)
a=-19.761 , b=-8.503E-4 , c= 1.064E-6 , d= 3.593E-9 ,
e=-2.381E-12 , f= 2.117E-15 , g=-5.788E-19
α=0.0985rad
Δ1=−2.146 mm ,Δ2=−1.132 mm 。
【0033】
実施例3の球面収差(波面収差)の像高による変化を以下に示す。
像高 波面収差(RMS)
(mm) (λ=780nm)
0 0.0197
35 0.0195
58 0.0210
82 0.0198
93 0.0205
105 0.0175
条件(5),(6)〜(8)のパラメータの値:
|α/θ|=1.63
|Δ/f|=5.16E−2
|Δ/f|=2.72E−2
|m|=3.18
(f=41.6)
図6に、実施例3に関する像面湾曲(実線は副走査方向、破線は主走査方向)、走査線曲がり、リニアリティおよびfθ特性の図を示す。走査線曲がりのみならず、像面湾曲やリニアリティおよびfθ特性も良好に補正されている。
【0034】
即ち、上記実施例1は、光走査装置としては、光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から偏向反射面に入射させるとともに、偏向反射面近傍に主走査対応方向に長い線像に結像させ、偏向反射面による反射光束を、偏向反射面への入射光束の主光線と上記回転軸との形成する平面に対して対称的に偏向させ、偏向光束を、走査結像レンズにより被走査面上に光スポットとして集光させ、被走査面の光走査を行う光走査装置において、走査結像レンズとして、請求項2記載の走査結像レンズを用い、走査結像レンズの材質および形状ならびに角:α,α、変位量:Δ,Δの調整により、像面湾曲、走査線曲がり、光スポット径の変動をそれぞれ、許容範囲内に抑えたものであり(請求項6)、実施例2,3は、光走査装置としては、光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から偏向反射面に入射させるとともに、偏向反射面近傍に主走査対応方向に長い線像に結像させ、偏向反射面による反射光束を、偏向反射面への入射光束の主光線と上記回転軸との形成する平面に対して対称的に偏向させ、偏向光束を、走査結像レンズにより被走査面上に光スポットとして集光させ、被走査面の光走査を行う光走査装置において、走査結像レンズとして、請求項3記載の走査結像レンズを用い、走査結像レンズの材質および形状ならびに角:α、変位量:Δ,Δの調整により、像面湾曲、走査線曲がり、光スポット径の変動をそれぞれ、許容範囲内に抑えたものである(請求項7)。
また、各実施例とも、走査結像レンズは「等角速度的に偏向される偏向光束による被走査面の光走査を等速化する機能」を有し(請求項8)、副走査対応方向における共役な関係における近軸倍率:mが、条件(8)を満足する(請求項9)。
【0035】
【発明の効果】
以上に説明したように、この発明によれば新規な走査結像レンズおよび光走査装置および画像形成装置を実現できる。
この発明の走査結像レンズは、上記の如く、角:αもしくはα,α及びΔ,Δを走査線曲がりや像面湾曲等の補正パラメータとして利用することにより、斜め入射型の光走査装置の走査線曲がりを有効に補正するとともに、像面湾曲や光スポット径の変動を有効に抑えて、良好な光走査を実現することができる。
なお、請求項1または2記載の走査結像レンズは、プラスチック成形により容易且つ安価に製造が可能である。
また、この発明の光走査装置は、上記の如く、光源側からの光束を光偏向器の偏向反射面に、偏向反射面の回転軸に斜めに交わる方向から入射させる方式の光学配置であるから光走査装置の床面積を小さく小型化でき、発生するサグが光スポットの像高0の両側に対称的であるから、走査結像レンズが特殊トーリック面(WT面)を含むとは言え、主走査対応方向において光軸対称な比較的製造の容易なレンズとして実現でき、この走査結像レンズを用いることにより、走査線曲がりや像面湾強を良好に補正し、光スポット径の変動を小さくして、良好な光走査を実現することが可能となる。
また、請求項4,8記載の発明では、走査線曲がりを有効に補正し、光スポット形状を適正に保ち、像面湾曲や光スポット径を良好に補正できるとともに、光走査の等速性を実現でき、請求項5,9の発明では、走査結像レンズを長大化させることなく偏向反射面の位置精度や面精度を緩やかにすることができる。
【図面の簡単な説明】
【図1】この発明の実施の1形態を説明するための図である。
【図2】請求項1記載の走査結像レンズの形状および光走査装置への配備状態を説明するための図である。
【図3】請求項3載の走査結像レンズの形状および光走査装置への配備状態を説明するための図である。
【図4】実施例1に関する像面湾曲・走査線曲がり・リニアリティ・fθ特性を示す図である。
【図5】実施例2に関する像面湾曲・走査線曲がり・リニアリティ・fθ特性を示す図である。
【図6】実施例3に関する像面湾曲・走査線曲がり・リニアリティ・fθ特性を示す図である。
【符号の説明】
10 半導体レーザ
15 カップリングレンズ
25 シリンドリカルレンズ
30 回転多面鏡
31 偏向反射面
30AX 偏向反射面の回転軸
40 走査結像レンズ
50 被走査面
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an optical scanning device and a scanning imaging lens.And image forming apparatusAbout.
[0002]
[Prior art]
An optical scanning device that performs light scanning by deflecting a light beam from the light source side at a constant angular velocity by an optical deflector and condensing the deflected light beam as a light spot on a surface to be scanned is an image of a digital copying machine, various printers, etc. Widely known in connection with forming equipment.
Conventionally, such an optical scanning device generally has an optical arrangement in which the light beam from the light source side and the surface on which the deflected light beam is deflected and swept are on the same plane, and has the following problems. .
That is, first, “the floor area of the optical scanning device” is increased.
Second, a rotating polygon mirror is the most common optical deflector, but the rotational axis of the rotating polygon mirror is away from the deflection reflection surface, so the incident position of the light beam from the light source side on the deflection reflection surface is small. A so-called “sag” is generated in which the deflection reflection surface is displaced with the rotation of the deflection reflection surface, and the deflection starting point of the deflected light beam fluctuates. Since the “direction of the deflected light beam to be realized” and the “direction of the incident light beam from the light source side to the deflecting / reflecting surface” form an angle of about 60 degrees, for example, the sag is asymmetrical on both sides of the image height: 0 in the optical scanning region. In view of the influence of sag, it is necessary to asymmetrically correct curvature of field and “constant velocity characteristics such as fθ characteristics”, which makes it difficult to design a scanning imaging optical system.
[0003]
As an optical arrangement that can solve these problems at once, the light beam from the light source side is incident on the deflection reflection surface of the optical deflector from the direction obliquely intersecting the rotation axis of the deflection reflection surface, and is deflected at an equal angular velocity. An optical arrangement that condenses the deflected light beam as a light spot on the surface to be scanned and makes the light scanning symmetrical with respect to a plane including the incident direction from the light source side to the deflecting reflection surface and the rotation axis. Conceivable.
In this way, since the optical system part from the light source to the optical deflector and the optical system part after the optical deflector can be laid out vertically, the floor area of the optical scanning device can be reduced and the optical scanning device Compactness can be achieved. Even if sag is generated, it occurs symmetrically with an image height of 0, so that it is easy to correct constant velocity characteristics and field curvature.
[0004]
However, such an optical arrangement has the following problems.
That is, since the light beam from the light source side is incident on the deflection reflection surface of the optical deflector so as to cross the rotation axis of the deflection reflection surface obliquely, the deflection light beam is deflected so as to sweep the conical surface. The “position where the light beam is incident on the subsequent optical system” fluctuates in the sub-scanning corresponding direction (direction corresponding to the sub-scanning direction on the optical path from the light source to the scanned surface) with the deflection. For this reason, the locus of the light spot on the surface to be scanned is not a straight line, and so-called “scanning line bending” occurs.
[0005]
[Problems to be solved by the invention]
The present invention is an optical scanning device having an optical arrangement in which a light beam from the light source side is incident on a deflection reflection surface of an optical deflector from a direction obliquely intersecting with a rotation axis of the deflection reflection surface. It is an object of the present invention to realize favorable optical scanning by making the fluctuation of the spot diameter good and effectively reducing the scanning line bending.
[0006]
[Means for Solving the Problems]
The scanning imaging lens according to the present invention is such that the light beam from the light source side is incident on the deflecting reflecting surface from a direction obliquely intersecting with the rotation axis of the deflecting reflecting surface at an incident angle: θ, and the main scanning is performed in the vicinity of the deflecting reflecting surface. Form a line image that is long in the corresponding direction, deflect the reflected light beam from the deflecting reflecting surface symmetrically with respect to the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis, and This is a “scanning imaging lens used in an optical scanning device that is focused as a light spot on a surface to be scanned by a scanning imaging lens and performs optical scanning of the surface to be scanned”, and is composed of a single lens.
[0007]
The scanning imaging lens according to claim 1 has the following characteristics.
The center axis of the incident side lens surface is x1The axis and the direction corresponding to the main scan are y1X is the axis1y1The in-plane shape is a non-arc shape.
The center axis of the exit side lens surface is x2The axis and the direction corresponding to the main scan are y2X is the axis2y2The in-plane shape is a non-arc shape.
The incident side lens surface (deflecting / reflecting surface side lens surface) and / or the exit side lens surface (scanned surface side lens surface) are “WT surfaces”.
The “WT surface” is the following surface. For example, when the incident-side lens surface is a WT surface, the coordinates relating to this lens surface: x1y1Z is the coordinate axis orthogonal to1X is the axis1z1Radius of curvature in a plane cross section parallel to the surface: r1Is y1Coordinate axis function: r1(y1) As a change.
x1Axis and x2The axes form a finite angle with each other in a plane including them. That is, these x1, X2The axes are in the same plane, but the directions are different from each other. x1Axis and x2Considering the limit where the angle formed by the axis is reduced, x1Axis and x2The axes coincide with each other and become the same straight line, but this straight line corresponds to an “optical axis” in a normal lens.
[0008]
For the following description, coordinate axes are set in the device space of the optical scanning device as follows.
That is, the rotation axis of the deflecting / reflecting surface is the Z-axis, the axis perpendicular to the Z-axis in the plane including the principal ray of the light beam incident on the deflecting / reflecting surface and the Z-axis is the X-axis, and the X-axis and Z-axis are The orthogonal axis is the Y axis. In this way, the principal ray of the light beam from the light source side is incident on the deflecting / reflecting surface in the XZ plane. The incident light beam has an incident angle of θ. , It means that it is inclined by an angle θ relative to a plane parallel to the XY plane. The “main scanning corresponding direction” refers to a direction corresponding to the main scanning direction on the optical path from the light source to the surface to be scanned. The Y-axis direction corresponds to the main scanning corresponding direction, and the light flux from the light source side is the Y-axis direction. The image is formed as a long line image. Further, the deflected light beam is deflected symmetrically with respect to the XZ plane.
[0009]
The scanning imaging lens according to claim 1 is arranged in the optical scanning device as follows.
As mentioned above, y1Axis and y2Since the axis "corresponds to the main scan", the scanning imaging lens has its y1Axis and y2The axis is made parallel to the Y axis. And the above x1Axis and x2A plane containing the axis is matched to the XZ plane.
Incident to the chief ray of the deflected light beam (angle: θ with respect to the XY plane) in the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis of the deflecting reflecting surface, that is, the XZ plane. Side lens surface is x1Angle the axis: α1Just tilted, and x1The axis is displaced in a direction parallel to the rotation axis of the deflecting reflecting surface (Z-axis direction): Δ1Is displaced only. The exit lens surface is x2The angle of the axis with respect to the chief ray of the deflected light beam: α2Just tilt, and x2The axis is displaced in the Z direction: Δ2Only displaced and deployed.
At this time, the angle: α1, Α2, Displacement amount: Δ1, Δ2Are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation.
That is, the scanning imaging lens is designed so that the lens shape (lens surface shape, thickness) and lens material (refractive index) satisfy the conditions required for the scanning imaging lens.1, Α2, Δ1, Δ2Is also used as a correction parameter in the design.
[0010]
  As described above, in the scanning imaging lens according to claim 1, at least one of the incident-side lens surface and the exit-side lens surface is a WT surface. Of course, “both the incident-side and exit-side lens surfaces are WT surfaces. (Claim 2).
  The scanning imaging lens according to claim 1, wherein x 1 Axis and x 2 The focal length in the plane including the axis (in the XZ plane in the optical scanning device) is f Z When, angle: α 1 , Α 2 However, for the incident angle: θ, the condition:
(1) 0.8 <| α 1 /Θ|<2.5
(2) 0.8 <| α 2 /Θ|<2.5
Is satisfied, displacement amount: Δ 1 , Δ 2 And focal length: f Z But the condition:
(3) 1 × 10 -2 <| Δ 1 / F Z | <1 × 10 -1
(4) 1 × 10 -2 <| Δ 2 / F Z | <1 × 10 -1
Satisfied.
[0011]
Conditions (1) and (2) are conditions for effectively correcting scanning line bending and effectively suppressing fluctuations in the light spot diameter.
In the case of an optical scanning device of the type that “the light beam from the light source side is incident on the deflecting / reflecting surface from a direction obliquely intersecting with the rotation axis of the deflecting / reflecting surface at an incident angle: θ” Although the scan line is slightly bent, the incident angle: θ needs a predetermined amount in order to separate the incident light beam and the reflected light beam.
Angle: α1, Α2Should be proportional to θ, and its proportionality factor is the angle: α1, Α2The ranges of conditions (1) and (2) are good.
If the lower limits of the conditions (1) and (2) are exceeded, a sufficient scanning line bending correction effect cannot be realized.
When the upper limit of the conditions (1) and (2) is exceeded, coma aberration in the sub-scanning direction becomes excessive at the intermediate to peripheral image height of the light spot, the wavefront aberration is deteriorated, and compared with the image height at the center. Thus, the light spot diameter increases from the intermediate to the peripheral image height.
[0012]
When the scanning imaging lens is “tilted” in the range of the conditions (1) and (2), as described above, the scanning line bending is effectively corrected, but coma aberration occurs due to the inclination of the lens. . Conditions (3) and (4) are conditions for effectively correcting this coma.
If the lower limits of the conditions (3) and (4) are exceeded, the coma due to the tilt cannot be canceled, the wavefront aberration is deteriorated, and the fluctuation of the light spot diameter becomes large.
When the upper limit of the conditions (3) and (4) is exceeded, higher-order field curvature increases in the sub-scanning corresponding direction (the direction corresponding to the sub-scanning direction on the optical path from the light source to the scanned surface), and the light spot Since the image plane rapidly tilts toward the scanning imaging lens at the peripheral image height, the light spot diameter in the sub-scanning direction rapidly increases at the peripheral image height.
[0013]
  Claim 3The scanning imaging lens has the following characteristics.
  When the optical axis is the x-axis and the direction corresponding to the main scanning is the y-axis, both the incident-side lens surface and the exit-side lens surface have a non-arc shape in the xy plane.
  The incident side lens surface and / or the exit side lens surface is a WT surface.
  The x-axis is tilted by an angle: α with respect to the principal ray of the deflected light beam in the XZ plane, and the incident side lens surface is displaced in the Z-axis direction by an amount of displacement: Δ1The exit lens surface is displaced in the x-axis direction in the z-axis direction: Δ2, Respectively displaced and deployed, angle: α, displacement: Δ1, Δ2Are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation.
    That is, the scanning imaging lens according to claim 4 is the same as the scanning imaging lens according to claim 1, wherein the axis x1, X2Match and become the optical axis (x-axis).
[0014]
  In the scanning imaging lens according to claim 3, when the focal length in the plane: XZ plane formed by the principal ray of the light beam incident on the deflection reflection surface and the rotation axis of the deflection reflection surface is fZ, the angle: α is For incident angle: θ, conditions:
(5) 0.8 <| α / θ | <2.5
Is satisfied, displacement amount: Δ 1 , Δ 2 And focal length: f Z Is:
(6) 1 × 10 -2 <| Δ 1 / F Z | <1 × 10 -1
(7) 1 × 10 -2 <| Δ 2 / F Z | <1 × 10 -1
Satisfied.
[0015]
The condition (5) is a condition for effectively correcting the scanning line bending and effectively suppressing the fluctuation of the light spot diameter, as in the above conditions (1) and (2). If the upper limit is exceeded when the bending correction effect cannot be realized, the coma aberration in the sub-scanning direction becomes excessive at the intermediate to peripheral image height of the light spot, the wavefront aberration is degraded, and compared to the image height at the center. Thus, the light spot diameter increases from the intermediate to the peripheral image height.
The conditions (6) and (7) are conditions for effectively correcting the coma due to the tilt of the lens as in the conditions (3) and (4). The lower limits of the conditions (6) and (7) are If it exceeds, the coma aberration due to the tilt cannot be canceled, the wavefront aberration is deteriorated, and the fluctuation of the light spot diameter increases, and if the upper limit of the conditions (6) and (7) is exceeded, the higher order in the sub-scanning corresponding direction And the image surface rapidly falls to the scanning imaging lens side at the peripheral image height of the light spot, so that the light spot diameter in the sub-scanning direction rapidly increases at the peripheral image height.
[0016]
  Claims 1-3Any of the scanning imaging lenses according to any one of (1) may have a “function for equalizing the optical scanning of the surface to be scanned with a deflected light beam deflected at a constant angular velocity” (see FIG.Claim 4).
  Also,Claims 1-4Any of the scanning imaging lenses according to any one of the above-mentioned items collects the deflected light beam formed in the “long line image in the main scanning correspondence direction” in the vicinity of the deflection reflection surface as a light spot on the surface to be scanned. With respect to the sub-scanning corresponding direction, it has a function of having a conjugate relationship between the vicinity of the deflecting reflection surface position and the scanned surface position. The paraxial magnification in this conjugate relationship: m is a condition:
  (8) 2 <| m | <6
It is preferable to satisfy (Claim 5).
  That is, when the lower limit is exceeded, the arrangement of the scanning imaging lens approaches the surface to be scanned, so the scanning imaging lens becomes longer in the Y direction, making it difficult to process and increasing costs.
  On the other hand, if the upper limit is exceeded, the error in the X-axis direction on the deflecting / reflecting surface is “m”.2Since it is propagated to the surface to be scanned by “double”, high accuracy is required for the positional accuracy and surface accuracy of the deflecting / reflecting surface, which causes an increase in cost.
[0017]
  The optical scanning device according to the present invention is described as follows: “Because the light beam from the light source side is incident on the deflection reflection surface from a direction obliquely intersecting with the rotation axis (Z axis) of the deflection reflection surface at an incident angle: θ, and in the vicinity of the deflection reflection surface And forming a line image that is long in the direction corresponding to the main scanning (Y-axis direction), and the reflected light beam from the deflection reflection surface is formed on the plane (XZ plane) formed by the principal ray of the incident light beam on the deflection reflection surface and the rotation axis. An optical scanning device that deflects light symmetrically and condenses a deflected light beam as a light spot on a surface to be scanned by a scanning imaging lens to perform optical scanning on the surface to be scanned.
  Claim 6The described optical scanning device has the following characteristics.
  That is, as a scanning imaging lens, the aboveClaim 1 or 2Using the scanning imaging lens described above, the material and shape and angle of the scanning imaging lens: α1, Α2, Displacement amount: Δ1, Δ2With this adjustment, the curvature of field, the curve of the scanning line, and the variation of the light spot diameter are suppressed within allowable ranges.
  Claim 7This optical scanning device has the following characteristics.
  That is, as a scanning imaging lens, the aboveClaim 3Using the described scanning imaging lens, the material and shape of the scanning imaging lens, the angle: α, and the displacement: Δ1, Δ2With this adjustment, the curvature of field, the curve of the scanning line, and the variation of the light spot diameter are suppressed within allowable ranges.
  theseClaim 6 or 7In the described optical scanning device, the scanning imaging lens can have a “function for making the optical scanning of the surface to be scanned constant by the deflected light beam deflected at a constant angular velocity” (Claim 8), Paraxial magnification in the conjugate relationship in the sub-scanning corresponding direction: m is the condition:
  (8) 2 <| m | <6
Can be configured to satisfy (Claim 9).
  The image forming apparatus of the present inventionClaims 6-9The optical scanning device described in any one of (1) is used (Claim 10).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram for explaining one embodiment of an optical scanning device according to the present invention. In FIG. 1A, reference numeral 10 is a semiconductor laser as a “light source”, reference numeral 15 is a coupling lens, reference numeral 20 is an aperture, reference numeral 25 is a cylindrical lens, reference numeral 30 is a rotating polygon mirror as an “optical deflector”, Reference numeral 31 denotes a deflection reflection surface, reference numeral 30AX denotes a rotation axis of the deflection reflection surface 31 (rotation axis of the rotary polygon mirror 30 itself), reference numeral 40 denotes a scanning imaging lens, and reference numeral 50 denotes a surface to be scanned (actually photoconductive. 1 shows the photosensitive surface of the photosensitive member.
[0019]
The light beam emitted from the semiconductor laser 10 is coupled to the subsequent optical system by the coupling lens 15. The coupled light beam can be a parallel light beam, a converging light beam, or a divergent light beam, depending on the optical characteristics of the subsequent optical system.
When the coupled light beam passes through the aperture 20, the peripheral light beam portion is removed and so-called “beam shaping” is performed. The beam-shaped light beam is focused in the direction corresponding to the sub-scanning by the cylindrical lens 25, and is formed as a long line image in the direction corresponding to the main scanning at the position of the deflection reflection surface 31. The reflected light beam from the deflecting reflecting surface 31 becomes a deflected light beam deflected at a constant angular velocity as the rotating polygon mirror 30 rotates at a constant speed, and a light spot is formed on the scanned surface 50 by the scanning imaging lens 40. Is optically scanned.
In FIG. 1A, the “Z axis” is set so as to coincide with the rotation axis 30AX of the rotary polygon mirror 30, and the X and Y directions are determined as shown in the figure. Then, the light beam (the principal ray) incident on the deflecting / reflecting surface 31 from the semiconductor laser 10 side and the rotation axis 30AX are in the same plane, that is, in the “XZ plane”. The Y direction becomes the “main scanning corresponding direction”.
[0020]
  FIG. 1B shows the state of FIG. 1A viewed from the Y direction, and the surface of FIG. 1B is an “XZ plane”. As shown in (b), the principal ray of the light beam from the semiconductor laser 10 side enters the deflecting / reflecting surface 31 with an incident angle: θ with respect to the rotation axis 30AZ of the deflecting / reflecting surface 31 in the XZ plane. . That is, the incident angle: θ is an angle formed by the principal ray of the incident light beam with respect to a plane (XY plane) orthogonal to the rotation axis 30AX. In FIG. 1B, the incident angle: θ is represented as θ (−), indicating that the incident light beam is incident from the “negative side” in the Z direction with respect to the plane orthogonal to the rotation axis 30AX. Yes.
  As is clear from FIG. 1A, the optical scanning of the surface to be scanned 50 is performed substantially symmetrically with respect to the XZ plane, that is, “symmetrical with respect to the XZ plane” as the rotary polygon mirror 30 rotates.
  That is, the optical scanning device according to the embodiment shown in FIG. 1 “deflects and reflects the light beam from the light source 10 side in a direction that obliquely intersects with the rotation axis (Z axis) of the deflecting reflection surface 31 at an incident angle: θ. The light beam is incident on the surface 31, and is formed into a line image in the vicinity of the deflection reflection surface in the main scanning correspondence direction (Y direction), and the reflected light beam from the deflection reflection surface 31 is combined with the principal ray of the incident light beam on the deflection reflection surface and the above-mentioned Light is deflected symmetrically with respect to the plane (XZ plane) formed by the rotation axis, and the deflected light beam is condensed as a light spot on the scanned surface 50 by the scanning imaging lens 40, and optical scanning of the scanned surface 50 is performed. Optical scanning device "Claims 6, 7), The scanning imaging lens 40 isClaim 1 or 2When the scanning imaging lens is the optical scanning device according to claim 6, the scanning imaging lens 40 isClaim 3When the scanning imaging lens is describedClaim 7The described optical scanning device is obtained.
[0021]
FIG. 2 is a view for explaining the shape of the scanning imaging lens according to claim 1 and the arrangement in the optical scanning device.
The lens 40A used as the scanning imaging lens 40 in the embodiment of FIG. 1 is configured by a single lens, and the center axis of the lens 40A on the incident side lens surface 41A is x.1Axis, direction corresponding to main scanning (direction orthogonal to the drawing) is y1X is the axis1y1The in-plane shape is a non-arc shape. The center axis of the exit side lens surface 41B is x.2The axis and the direction corresponding to the main scan are y2X is the axis2y2The in-plane shape is a non-arc shape.
The incident side lens surface 41A and / or the emission side lens surface 41B are WT surfaces, and x1Axis and x2The axes form a finite angle with each other in a plane including these (XZ plane in the drawing). With respect to the principal ray FL of the deflected light beam in the plane (XZ plane) formed by the principal ray of the incident light beam on the deflecting reflection surface and the rotation axis (Z axis) of the deflecting reflection surface, the incident side lens surface 41A has x1Angle the axis: α1Tilt only (-) and x1Amount of displacement in the direction parallel to the rotation axis of the deflecting reflecting surface: Δ1And the exit side lens surface 41B is x2Angle the axis: α2Tilt only (-) and x2Amount of displacement in the direction parallel to the rotation axis of the deflecting reflecting surface: Δ2Only displaced and deployed. These angles: α1, Α2, Displacement amount: Δ1, Δ2However, it is used as a correction parameter for scanning line bending, field curvature, and light spot diameter variation.
[0022]
  FIG.Claim 3It is a figure for demonstrating the shape of the description scanning imaging lens, and arrangement | positioning in an optical scanning device.
  The lens 40B used as the scanning imaging lens 40 in the embodiment of FIG. 1 is formed of a single lens, and the optical axis is the x axis and the direction corresponding to the main scanning (the direction orthogonal to the drawing) is the y axis. When the incident side lens surface 42A and the emission side lens surface 42B are both non-arc-shaped in the xy plane.
  The incident-side lens surface 42A and / or the exit-side lens surface 42B is a WT surface, and is within a plane (XZ plane) formed by the principal ray of the incident light beam on the deflection reflection surface and the deflection reflection surface rotation axis (Z axis). The x-axis is inclined by an angle α (−) with respect to the principal ray FL of the deflected light beam, and the incident-side lens surface 42A is displaced in a direction parallel to the rotation axis of the deflecting / reflecting surface: Δ1Only, the exit side lens surface 42B has a displacement amount Δ2Only deployed with each displaced. These angles: α, displacement: Δ1, Δ2Are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation.
  In the description based on FIGS. 2 and 3, the angle: α1, Α2(−) Attached to indicates that the clockwise angle with respect to the principal ray FL is negative, and (+) attached to the angle θ indicates that the counterclockwise angle with respect to the X axis is positive. It means an individual to do. Incident angle: θ, tilt angle: α in the embodiment described above1, Α2, Displacement amount: Δ1, Δ2It should be noted that, of course, an optical arrangement in which the sign is reversed as a whole is also possible.
[0023]
【Example】
Hereinafter, three specific examples will be given.
[0024]
Each example is an example of the embodiment shown in FIG.
The semiconductor laser as the light source 10 has an emission wavelength of 780 nm. The coupling lens 15 has a focal length of 9 mm and NA = 0.3, the coupling action is a “collimating action”, and the coupled light beam becomes a “substantially parallel light beam”. The aperture 20 has a circular aperture with an aperture diameter of 3 mm, the cylindrical lens 25 is a “plano-convex lens” with a focal length of 60 mm in the sub-scanning corresponding direction, and the light flux from the light source side is near the surface to be scanned. The line image is substantially parallel in the main scanning direction, condensed in the sub-scanning direction, and has a long line image as a whole in the main scanning direction (Y direction).
In such an optical system layout, the allowable range of curvature of field is within ± 1 mm in both the main and sub scanning directions, the allowable range of bending of the scanning line is within 0.1 mm, and the variation of the light spot diameter is in both the main and sub scanning directions. The lens surface shape and tilt angle of the scanning imaging lens 40 are set to 3.5 μm or less so that the performance within the allowable range is realized.1, Α2, Displacement amount: Δ1, Δ2Was determined according to the incident angle: θ.
[0025]
In the following, description will be given on specifying the shape of the scanning imaging lens and the deployment position.
In the first embodiment, the scanning imaging lens according to the third aspect is used, and in the second and third embodiments, the one according to the fifth aspect is used.
In any of the first to third embodiments, the lens surface of the scanning imaging lens is a “WT surface”. The “non-arc shape” of each surface is a well-known formula:
x (y) = (y2/ R) / [1 + √ {1- (1 + K) (y / R)2}] A0・ Y2+ A ・ yFour+ B · y6+ C ・ y8+ D · yTen+. . .
, Paraxial radius of curvature: R and constants: K, A0, A, B, C, D,. Specify and give. When the scanning imaging lens is as defined in claim 5, “x” in this equation is a coordinate matched with the optical axis, and “y” is a coordinate corresponding to the main scanning direction. Further, when the scanning imaging lens is the one described in claim 3, “x, y” is “x” for the incident side lens surface.1, Y1”And“ x for the exit side lens surface ”2, Y2Is used.
In addition, a WT surface which is a “special toric surface” is specified, and the Y function shape of the radius of curvature in a plane parallel to the XZ plane: ri(y) is an even degree polynomial:
ri(y) = a + b · y2+ C ・ yFour+ D · y6+ E ・ y8+ F · yTen+ G · y12+. . Each coefficient in: a, b,. . . , G. . To identify. i is i = 1 for the entrance-side lens surface and i = 2 for the exit-side lens surface.
[0026]
  In each example, the refractive index of the material of the scanning imaging lens (with a wavelength of 780 nm)lightN780 ”in the XZ plane (in the xz plane, x1z1Surface or x2z2Lens thickness (scanning imaging lens)Claim 1 or 2Y1Axis origin and y2The distance from the axis origin) is d (0).
[0027]
Further, with respect to the principal ray of the deflected light beam in the XZ plane (straight line in FIG. 12: FL),1The state in which the axes are aligned is referred to as the “reference state”, and in this reference state, the distance in the X-axis direction where the incident side lens surface is located is set to “S (0)”, and the exit side lens surface and the scanned surface The distance in the X-axis direction is “l (0)”. The unit of the quantity having the dimension of distance is “mm”.
[0028]
Example 1
S (0) = 45.5, d (0) = 13.2, l (0) = 172.2, n780= 1.52441, θ (+) = 0.0806 rad
Incident side lens surface: WT surface
x1y1In-plane non-arc shape
R = 208.373, K = -6.077E + 1, A0= -1.879E-4, A = -5.031E-7,
B = 1.261E-10, C = -4.089E-14, D = 2.987E-18
r1(y1)
a = -165.05, b = 5.579E-2, c = -2.019E-4, d = 5.043E-7,
e = -8.302E-10, f = 6.326E-13, g = -1.831E-16
Exit lens surface: WT surface
x2y2In-plane non-arc shape
R = -152.69, K = 0.9840, A0= -4.044E-4, A = -7.295E-7,
B = 1.495E-10, C = -7.287E-140, D = 5.104E-18
r2(y2)
a = -19.833, b = -6.700E-4, c = 1.093E-6, d = 6.400E-10,
e = -3.381E-12, f = 3.126E-15, g = -9.374E-19
α1= 0.122 rad α2= 0.1145rad,
Δ1= -2.429 mm, Δ2=-1.927 mm.
[0029]
  Changes in spherical aberration (wavefront aberration) according to Example 1 due to image height are shown below.
    Image height Wavefront aberration (RMS)
    (mm) (λ = 780nm)
      0 0.0086
    35 0.0149
    58 0.0129
    82 0.0173
    93 0.0133
  105 0.0122
  Parameter values for conditions (1) to (4) and (8):
    | α1/Θ|=1.51
    | α2/Θ|=1.42
    | Δ1/ FZ| = 5.83E-2
    | Δ2/ FZ| = 4.62E-2
    | M | = 3.10
    (FZ= 41.7)
  FIG. 4 is a graph of field curvature (solid line is the sub-scanning direction, broken line is the main scanning direction), scanning line bending, linearity, and fθ characteristics related to Example 1.Show. Scan line curveThe curvature of field, linearity, and fθ characteristics are corrected well as well as the burrs.
  In the above data notation, for example, “E-9” is “10-9"Means. The same applies hereinafter.
[0030]
Example 2
S (0) = 45.5, d (0) = 13.0, l (0) = 176.8, n780= 1.52441, θ (+) = 0.0806 rad
Incident side lens surface: WT surface
Non-arc shape in xy plane
R = 207.192, K = -6.044E + 1, A0= -1.396E-4, A = -5.034E-7,
B = 1.258E-10, C = -4.098E-14, D = 2.917E-18
r1(y1)
a = -161.55, b = 5.924E-2, c = -2.016E-4, d = 3.759E-7,
e = -6.073E-10, f = 4.929E-13, g = -1.540E-16
Exit lens surface: WT surface
Non-arc shape in xy plane
R = -152.94, K = 0.9844, A0= -3.655E-4, A = -7.305E-7,
B = 1.493E-10, C = -7.292E-14, D = 5.102E-18
r2(y2)
a = -19.862, b = -7.272E-4, c = 1.087E-6, d = 1.215E-9,
e = -4.674E-12, f = 5.502E-15, g = -1.690E-18
α = 0.1306 rad
Δ1=-2.247 mm, Δ2= -1.694 mm.
[0031]
  Changes in spherical aberration (wavefront aberration) according to Example 2 due to image height are shown below.
    Image height Wavefront aberration (RMS)
    (mm) (λ = 780nm)
      0 0.0144
    35 0.0153
    58 0.0141
    82 0.0154
    93 0.0121
  105 0.0129
  Parameter values for conditions (5) and (6) to (8):
    | Α / θ | = 1.62
    | Δ1/ FZ| = 5.36E-2
    | Δ2/ FZ| = 4.04E-2
    | M | = 3.19
    (FZ= 41.9)
  FIG. 5 shows curvature of field (solid line in the sub-scanning direction, broken line in the main scanning direction), scanning line bending, linearity, and fθ characteristics for Example 2.The figure is shown. Scan line bendIn addition, the field curvature, linearity, and fθ characteristics are corrected well.
[0032]
Example 3
S (0) = 46.3, d (0) = 11.5, l (0) = 174.8, n780= 1.52441, θ (+) = 0.0605 rad
Incident side lens surface: WT surface
Non-arc shape in xy plane
R = 205.770, K = -5.691E + 1, A0= -3.317E-5, A = -5.027E-7,
B = 1.255E-10, C = -4.056E-14, D = 3.090E-18
r1(y1)
a = -168.84, b = 6.330E-2, c = -2.024E-4, d = 3.754E-7,
e = -4.920E-10, f = 3.226E-13, g = -8.142E-17
Exit lens surface: WT surface
Non-arc shape in xy plane
R = -154.17, K = 1.092, A0= -1.841E-4, A = -7.253E-7
  B = 1.527E-10, C = -7.271E-14, D = 5.090E-18
r2(y2)
a = -19.761, b = -8.503E-4, c = 1.064E-6, d = 3.593E-9,
e = -2.381E-12, f = 2.117E-15, g = -5.788E-19
α = 0.985rad
Δ1=-2.146 mm, Δ2= -1.132 mm.
[0033]
  Changes in spherical aberration (wavefront aberration) according to Example 3 due to image height are shown below.
    Image height Wavefront aberration (RMS)
    (mm) (λ = 780nm)
      0 0.0197
    35 0.0195
    58 0.0210
    82 0.0198
    93 0.0205
  105 0.0175
  Parameter values for conditions (5) and (6) to (8):
    | Α / θ | = 1.63
    | Δ1/ FZ| = 5.16E-2
    | Δ2/ FZ| = 2.72E-2
    | M | = 3.18
    (FZ= 41.6)
  FIG. 6 is a diagram of field curvature (solid line in the sub-scanning direction, broken line in the main scanning direction), scanning line bending, linearity, and fθ characteristics related to Example 3.Show. Scan line bendIn addition, the field curvature, linearity, and fθ characteristics are corrected well.
[0034]
  That is, in the first embodiment, as the optical scanning device, the light beam from the light source side is incident on the deflection reflection surface from a direction obliquely intersecting with the rotation axis of the deflection reflection surface at an incident angle: θ, and deflected and reflected. A line image that is long in the main scanning direction is formed near the surface, and the reflected light beam from the deflecting reflecting surface is deflected symmetrically with respect to the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis. In the optical scanning device that collects the deflected light beam as a light spot on the surface to be scanned by the scanning imaging lens and performs optical scanning of the surface to be scanned, as the scanning imaging lens,Claim 2The scanning imaging lens material, shape, and angle: α1, Α2, Displacement amount: Δ1, Δ2By adjusting this, the curvature of field, the curve of the scanning line, and the fluctuation of the light spot diameter are suppressed within the allowable range, respectively (Claim 6In the second and third embodiments, the light scanning device allows the light beam from the light source side to be incident on the deflection reflection surface from a direction obliquely intersecting with the rotation axis of the deflection reflection surface at an incident angle: θ. A line image that is long in the main scanning direction is formed near the reflecting surface, and the reflected light beam from the deflecting reflecting surface is symmetrical with respect to the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis. In an optical scanning device that deflects and deflects a deflected light beam as a light spot on a scanned surface by a scanning imaging lens and performs optical scanning of the scanned surface, as a scanning imaging lens,Claim 3Using the described scanning imaging lens, the material and shape of the scanning imaging lens, the angle: α, and the displacement: Δ1, Δ2With this adjustment, the curvature of field, the curve of the scanning line, and the fluctuation of the light spot diameter are suppressed within the allowable range, respectively (Claim 7).
  In each of the embodiments, the scanning imaging lens has a function of “constant speed of optical scanning of the surface to be scanned with a deflected light beam deflected at a constant angular velocity” (Claim 8), Paraxial magnification in a conjugate relationship in the sub-scanning corresponding direction: m satisfies the condition (8) (Claim 9).
[0035]
【The invention's effect】
  As described above, according to the present invention, a novel scanning imaging lens and an optical scanning device are provided.And image forming apparatusCan be realized.
  As described above, the scanning imaging lens of the present invention has an angle: α or α1, Α2And Δ1, Δ2Is used as a correction parameter for scanning line bending and field curvature, etc., and the scanning line bending of the oblique-incidence type optical scanning device is effectively corrected and fluctuations in field curvature and light spot diameter are effectively suppressed. Good optical scanning can be realized.
    In addition,Claim 1 or 2The described scanning imaging lens can be easily and inexpensively manufactured by plastic molding.
  Further, as described above, the optical scanning device of the present invention has an optical arrangement in which the light beam from the light source side is incident on the deflection reflection surface of the optical deflector from a direction obliquely intersecting the rotation axis of the deflection reflection surface. Since the floor area of the optical scanning device can be reduced and the generated sag is symmetrical on both sides of the image height 0 of the light spot, it can be said that the scanning imaging lens includes a special toric surface (WT surface). It can be realized as a relatively easy-to-manufacture lens that is optically symmetric in the scanning direction. By using this scanning imaging lens, it is possible to satisfactorily correct scanning line bending and image plane strength, and to reduce fluctuations in the light spot diameter. Thus, good optical scanning can be realized.
  Also,Claims 4 and 8In this invention, the scanning line bending is effectively corrected, the light spot shape is appropriately maintained, the field curvature and the light spot diameter can be corrected satisfactorily, and the constant speed of the optical scanning can be realized,Claims 5 and 9In this invention, the positional accuracy and surface accuracy of the deflecting / reflecting surface can be moderated without increasing the length of the scanning imaging lens.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining one embodiment of the present invention.
FIG. 2 is a diagram for explaining the shape of a scanning imaging lens according to claim 1 and the state of deployment to an optical scanning device;
[Fig. 3]Claim 3It is a figure for demonstrating the shape of this scanning imaging lens, and the deployment state to the optical scanning device.
4 is a diagram illustrating field curvature, scanning line bending, linearity, and fθ characteristics according to Example 1. FIG.
5 is a diagram illustrating field curvature, scanning line bending, linearity, and fθ characteristics according to Example 2. FIG.
6 is a diagram illustrating field curvature, scanning line bending, linearity, and fθ characteristics according to Example 3. FIG.
[Explanation of symbols]
  10 Semiconductor laser
  15 coupling lens
  25 Cylindrical lens
  30 rotating polygon mirror
  31 deflection reflective surface
  30AX Rotation axis of deflecting reflecting surface
  40 Scanning imaging lens
  50 surface to be scanned

Claims (10)

光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から上記偏向反射面に入射させるとともに上記偏向反射面近傍に主走査対応方向に長い線像に結像させ、上記偏向反射面による反射光束を、上記偏向反射面への入射光束の主光線と上記回転軸との形成する平面に対して対称的に偏向させ、偏向光束を走査結像レンズにより被走査面上に光スポットとして集光させ、上記被走査面の光走査を行う光走査装置に用いられる走査結像レンズであって、
単一レンズで構成され、
入射側レンズ面に就き、その中心軸をx1軸、主走査に対応する方向をy1軸とするとき、x11面内の形状が非円弧形状であり、
射出側レンズ面に就き、その中心軸をx2軸、主走査に対応する方向をy2軸とするとき、x22面内の形状が非円弧形状であり、
入射側レンズ面および/または射出側レンズ面がWT面であり、
上記x1軸とx2軸とが、これらを含む平面内で互いに有限の角をなし、
上記偏向反射面への入射光束の主光線と上記回転軸との形成する平面内における偏向光束の主光線に対して、上記入射側レンズ面はx1軸を角:α1だけ傾けると共に、x1軸を偏向反射面の回転軸に平行な方向へ変位量:Δ1だけ変位され、
上記射出側レンズ面はx2軸を角:α2だけ傾けると共に、x2軸を偏向反射面の回転軸に平行な方向へ変位量:Δ2だけ変位されて配備され、
上記x 1 軸とx 2 軸とを含む平面内における焦点距離をf Z とするとき、
上記角:α 1 ,α 2 が、上記入射角:θに対して、条件:
(1) 0.8<|α 1 /θ|<2.5
(2) 0.8<|α 2 /θ|<2.5
を満足し、上記変位量:Δ 1 ,Δ 2 と上記焦点距離:f Z が条件:
(3) 1×10 -2 <|Δ 1 /f Z |<1×10 -1
(4) 1×10 -2 <|Δ 2 /f Z |<1×10 -1
を満足し、
上記角:α1,α2、変位量:Δ1,Δ2が、走査線曲がり、像面湾曲、光スポット径変動に対する補正パラメータとして用いられることを特徴とする走査結像レンズ。
A light beam from the light source side is incident on the deflection reflection surface from a direction obliquely intersecting with the rotation axis of the deflection reflection surface at an incident angle: θ, and is formed into a line image in the vicinity of the deflection reflection surface in a main scanning corresponding direction. The reflected light beam from the deflecting reflecting surface is deflected symmetrically with respect to the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis, and the deflected light beam is covered by the scanning imaging lens. A scanning imaging lens for use in an optical scanning device that collects light as a light spot on a scanning surface and performs optical scanning of the scanned surface,
Composed of a single lens,
When the center side axis is the x 1 axis and the direction corresponding to the main scanning is the y 1 axis, the shape in the x 1 y 1 plane is a non-arc shape.
Per exit side lens surface, when the center axis x 2 axis, a direction corresponding to the main scanning and y 2 axes, the shape of the x 2 y 2 surfaces are non-arcuate shape,
The incident side lens surface and / or the exit side lens surface is a WT surface,
The x 1 axis and the x 2 axis form a finite angle with each other in a plane including them,
The incident side lens surface tilts the x 1 axis by an angle α 1 with respect to the chief ray of the deflected light beam in the plane formed by the principal ray of the incident light beam on the deflecting reflection surface and the rotation axis, and x One axis is displaced in the direction parallel to the rotation axis of the deflecting reflecting surface by a displacement amount: Δ 1
The injection-side lens surface angle of x 2 Axis: alpha 2 with only inclined, x 2 axis displacement in a direction parallel to the rotational axis of the deflecting reflection surfaces: that is deployed displaced by delta 2,
When the focal length in a plane including the x 1 axis and the x 2 axis is f Z ,
The angle: α 1 , α 2 is relative to the incident angle: θ:
(1) 0.8 <| α 1 /θ|<2.5
(2) 0.8 <| α 2 /θ|<2.5
The above-mentioned displacement amounts: Δ 1 and Δ 2 and the focal length: f Z are the conditions:
(3) 1 × 10 −2 <| Δ 1 / f Z | <1 × 10 −1
(4) 1 × 10 −2 <| Δ 2 / f Z | <1 × 10 −1
Satisfied,
A scanning imaging lens characterized in that the angles: α 1 , α 2 and displacements: Δ 1 , Δ 2 are used as correction parameters for scanning line bending, field curvature, and light spot diameter fluctuation.
請求項1記載の走査結像レンズにおいて、
入射側および射出側レンズ面が、共にWT面であることを特徴とする走査結像レンズ。
The scanning imaging lens according to claim 1.
A scanning imaging lens, wherein both the incident-side and exit-side lens surfaces are WT surfaces.
光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から上記偏向反射面に入射させるとともに上記偏向反射面近傍に主走査対応方向に長い線像に結像させ、上記偏向反射面による反射光束を、上記偏向反射面への入射光束の主光線と上記回転軸との形成する平面に対して対称的に偏向させ、偏向光束を走査結像レンズにより被走査面上に光スポットとして集光させ、上記被走査面の光走査を行う光走査装置に用いられる走査結像レンズであって、
単一レンズで構成され、
光軸をx軸、主走査に対応する方向をy軸とするとき、入射側レンズ面および射出側レンズ面はともに、xy面内の形状が非円弧形状で、
入射側レンズ面および/または射出側レンズ面がWT面であり、
上記偏向反射面への入射光束の主光線と上記回転軸との形成する平面内における偏向光束の主光線に対して、x軸を角:αだけ傾けられるとともに、上記入射側レンズ面はx軸を偏向反射面の回転軸に平行な方向へ変位量:Δ1だけ、上記射出側レンズ面はx軸を偏向反射面の回転軸に平行な方向へ変位量:Δ2だけ、それぞれ変位されて配備され、
上記偏向反射面への入射光束の主光線と上記回転軸との形成する平面内における焦点距離をf Z とするとき、
上記角:αが、上記入射角:θに対して、条件:
(5) 0.8<|α/θ|<2.5
を満足し、上記変位量:Δ 1 ,Δ 2 と上記焦点距離:f Z が条件:
(6) 1×10 -2 <|Δ 1 /f Z |<1×10 -1
(7) 1×10 -2 <|Δ 2 /f Z |<1×10 -1
を満足し、
上記角:α、変位量:Δ1,Δ2が、走査線曲がり、像面湾曲、光スポット径変動に対する補正パラメータとして用いられることを特徴とする走査結像レンズ。
A light beam from the light source side is incident on the deflection reflection surface from a direction obliquely intersecting with the rotation axis of the deflection reflection surface at an incident angle: θ, and is formed into a line image in the vicinity of the deflection reflection surface in a main scanning corresponding direction. The reflected light beam from the deflecting reflecting surface is deflected symmetrically with respect to the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis, and the deflected light beam is covered by the scanning imaging lens. A scanning imaging lens for use in an optical scanning device that collects light as a light spot on a scanning surface and performs optical scanning of the scanned surface,
Composed of a single lens,
When the optical axis is the x-axis and the direction corresponding to the main scanning is the y-axis, the incident side lens surface and the exit side lens surface are both non-arc shapes in the xy plane,
The incident side lens surface and / or the exit side lens surface is a WT surface,
The x-axis is inclined by an angle α with respect to the chief ray of the deflected light beam in the plane formed by the principal ray of the incident light beam on the deflecting reflection surface and the rotation axis, and the incident side lens surface is x-axis. displacement in a direction parallel to the rotational axis of the deflecting reflective surface: only delta 1, the exit side lens surface displacement in the direction parallel to the axis of rotation of the deflecting reflective surface in the x-axis: only delta 2, are respectively displaced Deployed,
When the focal length in the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis is f Z ,
The angle: α is relative to the incident angle: θ.
(5) 0.8 <| α / θ | <2.5
The above-mentioned displacement amounts: Δ 1 and Δ 2 and the focal length: f Z are the conditions:
(6) 1 × 10 −2 <| Δ 1 / f Z | <1 × 10 −1
(7) 1 × 10 −2 <| Δ 2 / f Z | <1 × 10 −1
Satisfied,
A scanning imaging lens, wherein the angle: α and the displacements: Δ 1 and Δ 2 are used as correction parameters for scanning line bending, field curvature, and light spot diameter fluctuation.
請求項1〜3の任意の1に記載の走査結像レンズにおいて、
等角速度的に偏向される偏向光束による被走査面の光走査を等速化する機能を有することを特徴とする走査結像レンズ。
The scanning imaging lens according to any one of claims 1 to 3 ,
What is claimed is: 1. A scanning imaging lens having a function of equalizing the speed of optical scanning of a surface to be scanned by a deflected light beam deflected at a constant angular velocity.
請求項1〜4の任意の1に記載の走査結像レンズにおいて、
副走査対応方向に関して、偏向反射面位置近傍と被走査面位置とを共役な関係とする機能を有し、上記共役な関係における近軸倍率:mが、条件:
(8) 2<|m|<6
を満足することを特徴とする走査結像レンズ。
The scanning imaging lens according to any one of claims 1 to 4 ,
With respect to the sub-scanning corresponding direction, it has a function of having a conjugate relation between the vicinity of the deflecting reflection surface position and the scanned surface position, and the paraxial magnification m in the conjugate relation is the condition:
(8) 2 <| m | <6
A scanning imaging lens characterized by satisfying
光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から上記偏向反射面に入射させるとともに上記偏向反射面近傍に主走査対応方向に長い線像に結像させ、上記偏向反射面による反射光束を、上記偏向反射面への入射光束の主光線と上記回転軸との形成する平面に対して対称的に偏向させ、偏向光束を、走査結像レンズにより被走査面上に光スポットとして集光させ、
上記被走査面の光走査を行う光走査装置において、
走査結像レンズとして、請求項1または2記載の走査結像レンズを用い、走査結像レンズの材質および形状ならびに角:α1,α2、変位量:Δ1,Δ2の調整により、像面湾曲、走査線曲がり、光スポット径の変動をそれぞれ、許容範囲内に抑えたことを特徴とする光走査装置。
A light beam from the light source side is incident on the deflection reflection surface from a direction obliquely intersecting with the rotation axis of the deflection reflection surface at an incident angle: θ, and is formed into a line image in the vicinity of the deflection reflection surface in a main scanning corresponding direction. The reflected light beam from the deflecting reflecting surface is deflected symmetrically with respect to the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis, and the deflected light beam is Focused as a light spot on the surface to be scanned,
In the optical scanning device that performs optical scanning of the scanned surface,
The scanning imaging lens according to claim 1 or 2 is used as a scanning imaging lens, and an image is obtained by adjusting the material and shape of the scanning imaging lens and the angles: α 1 , α 2 and displacements: Δ 1 , Δ 2. An optical scanning device characterized in that surface curvature, scanning line bending, and variation in light spot diameter are suppressed within allowable ranges.
光源側からの光束を、偏向反射面の回転軸に対して入射角:θで斜めに交わる方向から上記偏向反射面に入射させるとともに上記偏向反射面近傍に主走査対応方向に長い線像に結像させ、上記偏向反射面による反射光束を、上記偏向反射面への入射光束の主光線と上記回転軸との形成する平面に対して対称的に偏向させ、偏向光束を、走査結像レンズにより被走査面上に光スポットとして集光させ、上記被走査面の光走査を行う光走査装置において、
走査結像レンズとして、請求項3記載の走査結像レンズを用い、走査結像レンズの材質および形状ならびに角:α、変位量:Δ1,Δ2の調整により、像面湾曲、走査線曲がり、光スポット径の変動をそれぞれ、許容範囲内に抑えたことを特徴とする光走査装置。
A light beam from the light source side is incident on the deflection reflection surface from a direction obliquely intersecting with the rotation axis of the deflection reflection surface at an incident angle: θ, and is formed into a line image in the vicinity of the deflection reflection surface in a main scanning corresponding direction. The reflected light beam from the deflecting reflecting surface is deflected symmetrically with respect to the plane formed by the principal ray of the incident light beam on the deflecting reflecting surface and the rotation axis, and the deflected light beam is In an optical scanning device that collects light as a light spot on a surface to be scanned and performs optical scanning of the surface to be scanned.
The scanning imaging lens according to claim 3 is used as the scanning imaging lens, and the field curvature and scanning line curve are adjusted by adjusting the material and shape of the scanning imaging lens and the angle: α and the displacements: Δ 1 and Δ 2. An optical scanning device characterized in that the variation of the light spot diameter is suppressed within an allowable range.
請求項6または7記載の光走査装置において、
走査結像レンズが、等角速度的に偏向される偏向光束による被走査面の光走査を等速化する機能を有することを特徴とする光走査装置。
The optical scanning device according to claim 6 or 7 ,
An optical scanning device characterized in that the scanning imaging lens has a function of making the optical scanning of the surface to be scanned with a deflected light beam deflected at a constant angular velocity constant.
請求項6または7または8記載の光走査装置において、
走査結像レンズが、副走査対応方向に関して、偏向反射面位置近傍と被走査面位置とを共役な関係とする機能を有し、上記共役な関係における近軸倍率:mが、条件:
(8) 2<|m|<6
を満足することを特徴とする光走査装置。
The optical scanning device according to claim 6, 7 or 8 ,
The scanning imaging lens has a function of making the vicinity of the deflecting / reflecting surface position and the scanned surface position conjugate with respect to the sub-scanning corresponding direction, and the paraxial magnification in the conjugate relation: m is the condition:
(8) 2 <| m | <6
An optical scanning device characterized by satisfying
請求項6〜9の任意の1に記載の光走査装置を用いて画像形成する画像形成装置。An image forming apparatus that forms an image using the optical scanning device according to claim 1 .
JP05996798A 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens Expired - Fee Related JP3717656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05996798A JP3717656B2 (en) 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05996798A JP3717656B2 (en) 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens

Publications (2)

Publication Number Publication Date
JPH11258531A JPH11258531A (en) 1999-09-24
JP3717656B2 true JP3717656B2 (en) 2005-11-16

Family

ID=13128462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05996798A Expired - Fee Related JP3717656B2 (en) 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens

Country Status (1)

Country Link
JP (1) JP3717656B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497618B2 (en) * 2000-02-01 2010-07-07 キヤノン株式会社 Optical scanning optical system, optical scanning device, and image forming apparatus using the same
JP7060932B2 (en) * 2017-08-21 2022-04-27 株式会社ユーテクノロジー LED lighting device

Also Published As

Publication number Publication date
JPH11258531A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JPH10142543A (en) Optical scanning device
JP3869704B2 (en) Scanning optical system
JP3222498B2 (en) Scanning optical system
JP3467193B2 (en) Refractive / reflective fθ optical element and scanning optical system
JP4227334B2 (en) Scanning optical system
JP3235306B2 (en) Scanning optical system
US6512623B1 (en) Scanning optical device
JP4098851B2 (en) Manufacturing method of imaging mirror in scanning imaging optical system, scanning imaging optical system and optical scanning device
JP3620767B2 (en) Reflective scanning optical system
US7414766B2 (en) Optical beam scanning device having two sets of fθ mirrors where the mirror base and mirror face have differing coefficients of linear expansion
JP3191538B2 (en) Scanning lens and optical scanning device
JP3717656B2 (en) Optical scanning device and scanning imaging lens
JP3421704B2 (en) Scanning imaging lens and optical scanning device
JP3680896B2 (en) Optical scanning device
JP3051671B2 (en) Optical scanning lens and optical scanning device
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JPH11125777A (en) Optical scanner
JP3804886B2 (en) Imaging optical system for optical scanning device
JP3721487B2 (en) Scanning imaging lens and optical scanning device
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3558837B2 (en) Scanning optical system and optical scanning device
JP3680893B2 (en) Optical scanning device
JP3680895B2 (en) Optical scanning device
JP3680891B2 (en) Optical scanning device
JPH10288745A (en) Optical scanning lens and optical scanner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees