JPH11258531A - Optical scanner and scanning image formation lens - Google Patents

Optical scanner and scanning image formation lens

Info

Publication number
JPH11258531A
JPH11258531A JP5996798A JP5996798A JPH11258531A JP H11258531 A JPH11258531 A JP H11258531A JP 5996798 A JP5996798 A JP 5996798A JP 5996798 A JP5996798 A JP 5996798A JP H11258531 A JPH11258531 A JP H11258531A
Authority
JP
Japan
Prior art keywords
scanning
axis
lens
deflecting
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5996798A
Other languages
Japanese (ja)
Other versions
JP3717656B2 (en
Inventor
Atsushi Kawamura
篤 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP05996798A priority Critical patent/JP3717656B2/en
Publication of JPH11258531A publication Critical patent/JPH11258531A/en
Application granted granted Critical
Publication of JP3717656B2 publication Critical patent/JP3717656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively change the curvature of an image surface or the diameter of an optical spot, to reduce the bend of a scanning line and to realize fine optical scanning by constituting a scanning image formation lens of a single lens having a specific shape. SOLUTION: This scanning image formation lens 40A is composed of a single lens and the shapes of an incident side lens surface 41A and an exit side lens surface 41B are non-circular arc shapes. The lens surface 41A/41B is a WT surface and center axes x1 , x2 mutually form a finite angle in an XZ surface. The lens surface 41A inclines the axis x1 from the main light line FL of a deflected beam by an angle α1 (-) and is displaced only by a displacement amount Δ1 in a direction parallel with the rotational axis of a deflecting reflection surface. The lens surface 41B inclines the axis x2 by an angle α2 (-) and is displaced only by a displacement variable Δ2 in the direction parallel with the rotational axis of the deflecting reflection surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は光走査装置および
走査結像レンズに関する。
The present invention relates to an optical scanning device and a scanning image forming lens.

【0002】[0002]

【従来の技術】光源側からの光束を光偏向器により等角
速度的に偏向させ、偏向光束を被走査面上に光スポット
として集光させて光走査を行う光走査装置は、デジタル
複写機や各種プリンタ等の画像形成装置に関連して広く
知られている。従来このような光走査装置は一般的に、
光源側からの光束と、偏向光束が偏向掃引する面とが、
同一平面上にあるように光学配置が設定されており、以
下の如き問題がある。即ち、第1に「光走査装置の床面
積」が大きくなる。第2に、光偏向器としては回転多面
鏡が最も一般的であるが、回転多面鏡の回転軸は偏向反
射面から離れているため、光源側からの光束の偏向反射
面への入射位置が、偏向反射面の回転に伴い偏向反射面
に対して変位し、偏向光束の偏向の起点が変動する所謂
「サグ」が発生するが、光走査の基準になる「光スポッ
トの像高:0を実現する偏向光束の方向」と「光源側か
ら偏向反射面への入射光束の方向」とが例えば60度程
度の角をなすので、上記サグが、光走査領域の像高:0
の両側に非対称に発生し、サグの影響を考慮して像面湾
曲や「fθ特性等の等速特性」を非対称に補正する必要
が生じ、走査結像光学系の設計が難しくなる。
2. Description of the Related Art An optical scanning device that deflects a light beam from a light source side at an equal angular velocity by an optical deflector and condenses the deflected light beam as a light spot on a surface to be scanned and performs optical scanning is a digital copier or a digital copier. It is widely known in connection with image forming apparatuses such as various printers. Conventionally, such an optical scanning device is generally
The light beam from the light source side and the surface on which the deflected light beam deflects and sweeps,
The optical arrangement is set so as to be on the same plane, and has the following problems. That is, first, the “floor area of the optical scanning device” increases. Secondly, a rotating polygon mirror is most commonly used as an optical deflector. However, since the rotation axis of the rotating polygon mirror is far from the deflecting / reflecting surface, the incident position of the light beam from the light source side to the deflecting / reflecting surface is reduced. A so-called “sag” occurs in which the deflection starting point of deflection of the deflected light beam fluctuates with the rotation of the deflective reflecting surface due to the rotation of the deflective reflecting surface. The direction of the realized deflecting light beam and the "direction of the incident light beam from the light source side to the deflecting / reflecting surface" form an angle of, for example, about 60 degrees.
Asymmetrically occur on both sides of the image, and it becomes necessary to asymmetrically correct curvature of field and “constant velocity characteristics such as fθ characteristics” in consideration of the influence of sag, and it becomes difficult to design a scanning imaging optical system.

【0003】これらの問題を一挙に解決できる光学配置
として、光源側からの光束を光偏向器の偏向反射面に、
この偏向反射面の回転軸に斜めに交わる方向から入射さ
せて等角速度的に偏向させ、偏向光束を被走査面上に光
スポットとして集光させ、光源側から偏向反射面への入
射方向と上記回転軸とを含む平面に対して、光走査が対
称的になるようにする光学配置が考えられる。このよう
にすると、光源から光偏向器に至る光学系部分と、光偏
向器以後の光学系部分とを上下に重ねるようにレイアウ
トできるので、光走査装置の床面積を小さくして光走査
装置のコンパクト化を図ることができる。また、サグは
発生するにしても像高:0に対称的に発生するので、等
速特性や像面湾曲の補正が容易である。
As an optical arrangement which can solve these problems at once, a light beam from the light source side is applied to a deflecting and reflecting surface of an optical deflector.
The light is incident from a direction obliquely intersecting with the rotation axis of the deflecting / reflecting surface, is deflected at an equal angular velocity, and the deflected light beam is condensed as a light spot on the surface to be scanned. An optical arrangement that makes the optical scanning symmetric with respect to a plane including the rotation axis is conceivable. With this configuration, the optical system portion from the light source to the optical deflector and the optical system portion after the optical deflector can be laid out so as to be vertically overlapped, so that the floor area of the optical scanning device is reduced and the optical scanning device is reduced. Compactness can be achieved. Further, even if sag occurs, it occurs symmetrically at an image height of 0, so that it is easy to correct the constant velocity characteristics and the curvature of field.

【0004】しかしながら反面、このような光学配置に
は以下の如き問題がある。即ち、光源側からの光束を光
偏向器の偏向反射面に、偏向反射面の回転軸に斜めに交
わるように入射させるため、偏向光束は円錐面を掃引す
るように偏向し、このため、偏向光束が「以後の光学系
に入射する位置」が、偏向に伴い副走査対応方向(光源
から被走査面に至る光路上で副走査方向と対応する方
向)において少なからず変動する。このため、被走査面
上における光スポットの軌跡が直線にならず所謂「走査
線曲がり」が発生してしまう。
However, such an optical arrangement has the following problems. That is, in order to make the light beam from the light source incident on the deflecting reflection surface of the optical deflector so as to obliquely intersect with the rotation axis of the deflecting reflection surface, the deflecting light beam is deflected so as to sweep the conical surface. The “position where the light beam enters the optical system thereafter” fluctuates to a considerable extent in the sub-scanning corresponding direction (the direction corresponding to the sub-scanning direction on the optical path from the light source to the surface to be scanned) due to the deflection. For this reason, the trajectory of the light spot on the surface to be scanned does not become a straight line, and so-called “scanning line bending” occurs.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記光源
側からの光束を光偏向器の偏向反射面に、この偏向反射
面の回転軸に斜めに交わる方向から入射させる方式の光
学配置の光走査装置で、像面湾曲や光スポット径の変動
を良好にするとともに、走査線曲がりを有効に小さくし
て、良好な光走査を実現することを課題とする。
SUMMARY OF THE INVENTION The present invention relates to an optical arrangement of a system in which a light beam from the light source side is incident on a deflecting reflection surface of an optical deflector from a direction obliquely intersecting the rotation axis of the deflecting reflection surface. It is an object of the present invention to realize good optical scanning by improving the variation in the curvature of field and the diameter of a light spot and effectively reducing the curvature of a scanning line by a scanning device.

【0006】[0006]

【課題を解決するための手段】この発明の走査結像レン
ズは「光源側からの光束を、偏向反射面の回転軸に対し
て入射角:θで斜めに交わる方向から偏向反射面に入射
させるとともに、偏向反射面近傍に主走査対応方向に長
い線像に結像させ、偏向反射面による反射光束を、偏向
反射面への入射光束の主光線と上記回転軸との形成する
平面に対して対称的に偏向させ、偏向光束を走査結像レ
ンズにより被走査面上に光スポットとして集光させ、被
走査面の光走査を行う光走査装置に用いられる走査結像
レンズ」であり、単一レンズで構成される。
According to a scanning imaging lens of the present invention, "a light beam from a light source side is incident on a deflecting reflecting surface from a direction obliquely intersecting with a rotation axis of the deflecting reflecting surface at an incident angle θ. At the same time, a long line image is formed in the main scanning direction in the vicinity of the deflecting reflection surface, and the light beam reflected by the deflecting reflection surface is moved with respect to the plane formed by the principal ray of the light beam incident on the deflecting reflection surface and the rotation axis. A scanning imaging lens used in an optical scanning device that deflects symmetrically, converges a deflected light beam as a light spot on a surface to be scanned by a scanning image forming lens, and performs optical scanning of the surface to be scanned. It consists of a lens.

【0007】請求項1記載の走査結像レンズは、以下の
如き特徴を有する。入射側レンズ面に就き、その中心軸
をx1軸、主走査に対応する方向をy1軸とするとき、x
11面内の形状が非円弧形状である。射出側レンズ面に
就き、その中心軸をx2軸、主走査に対応する方向をy2
軸とするとき、x22面内の形状が非円弧形状である。
入射側レンズ面(偏向反射面側レンズ面)および/また
は射出側レンズ面(被走査面側レンズ面)は「WT面」
である。「WT面」は、以下の如き面である。例えば、
入射側レンズ面がWT面である場合につき説明すると、
このレンズ面に関する上記座標:x11に直交する座標
軸をz1軸とするとき、x11面に平行な平断面内にお
ける曲率半径:r1が、この平断面のy1座標軸の関数:
1(y1)として変化するような面である。x1軸とx2
とは、これらを含む平面内で互いに有限の角をなす。即
ち、これらx1,x2軸は同一面内にあるが、互いに向き
が異なる。x1軸とx2軸とがなす角を小さくしていった
極限を考えると、この極限でx1軸とx2軸とは合致して
同一直線となるが、この直線が通常のレンズにおける
「光軸」に対応する。
The scanning image forming lens according to the first aspect has the following features. Per incident-side lens surface, when the center axis x 1 axis, a direction corresponding to the main scanning and y 1 axis, x
Shape within 1 y 1 surface is non-arcuate shape. Per exit-side lens surface, the center axis x 2 axis, a direction corresponding to the main scanning y 2
When the axis, the shape of the x 2 y 2 surface which is non-arcuate shape.
The entrance-side lens surface (deflection / reflection surface-side lens surface) and / or the exit-side lens surface (scanned surface-side lens surface) are “WT surfaces”.
It is. The “WT plane” is a plane as described below. For example,
The case where the entrance lens surface is a WT surface will be described.
When a coordinate axis orthogonal to the above-mentioned coordinates: x 1 y 1 with respect to this lens surface is a z 1 axis, a radius of curvature: r 1 in a plane section parallel to the x 1 z 1 plane is determined by the y 1 coordinate axis of this plane section. function:
The surface changes as r 1 (y 1 ). The x 1 axis and x 2 axes, forms a finite angle to each other in a plane containing them. That is, the x 1 and x 2 axes are in the same plane, but have different directions. Given the extreme where the x 1 axis and x 2 axes began to reduce the angle, but the same line conform to the x 1 axis and x 2 axes at this extreme, the straight line in the normal lens Corresponds to "optical axis."

【0008】以下の説明のため、光走査装置の装置空間
に、以下の如く座標軸を設定する。即ち、偏向反射面の
回転軸をZ軸とし、偏向反射面に入射する光束の主光線
とZ軸とを含む平面内でZ軸に直交する軸をX軸とし、
X軸とZ軸とに直交する軸をY軸とする。このようにす
ると、光源側からの光束の主光線は、XZ面内で偏向反
射面に入射することになるが、この入射光束の入射角が
θであるとは、上記入射光束の主光線が、XY面に平行
な面に対して、角:θだけ傾くことを意味する。また
「主走査対応方向」は、光源から被走査面に至る光路上
で主走査方向に対応する方向を言うが、Y軸方向が主走
査対応方向にあたり、光源側からの光束は、Y軸方向に
長い線像として結像することになる。また偏向光束は、
XZ面に対称に偏向することになる。
For the following description, coordinate axes are set in the device space of the optical scanning device as follows. That is, the rotation axis of the deflecting / reflecting surface is defined as the Z-axis, and an axis orthogonal to the Z-axis within a plane including the principal ray of the light beam incident on the deflecting and reflecting surface and the Z-axis is defined as the X-axis.
An axis orthogonal to the X axis and the Z axis is defined as a Y axis. In this case, the principal ray of the light beam from the light source side is incident on the deflection reflecting surface in the XZ plane. If the incident angle of this incident light beam is θ, the principal ray of the incident light beam is , XY plane with respect to a plane parallel to the XY plane. The “main scanning corresponding direction” refers to a direction corresponding to the main scanning direction on the optical path from the light source to the surface to be scanned, but the Y axis direction corresponds to the main scanning corresponding direction, and the light flux from the light source side is the Y axis direction. Is formed as a long line image. The deflected light beam is
It will be symmetrically deflected to the XZ plane.

【0009】請求項1記載の走査結像レンズは、光走査
装置に以下の如く配備される。上述したように、y1
およびy2軸は「主走査に対応する」から、走査結像レ
ンズは、そのy1軸およびy2軸が上記Y軸に平行になる
ようにされる。そして、上記x1軸とx2軸とを含む平面
が、XZ面に合致させられる。偏向反射面への入射光束
の主光線と偏向反射面の回転軸との形成する平面、即ち
XZ面内における偏向光束(XY面に対して角:θをな
す)の主光線に対して、入射側レンズ面はx1軸を角:
α1だけ傾けられ、さらにx1軸は偏向反射面の回転軸に
平行な方向(Z軸方向)へ変位量:Δ1だけ変位され
る。射出側レンズ面はx2軸を上記偏向光束の主光線に
対して角:α2だけ傾ける、さらにx2軸はZ方向へ変位
量:Δ2だけ変位されて配備される。このとき、上記
角:α1,α2、変位量:Δ1,Δ2が、走査線曲がり、像
面湾曲、光スポット径変動に対する補正パラメータとし
て用いられる。即ち、走査結像レンズのレンズ形状(レ
ンズ面形状、肉厚)やレンズ材質(屈折率)が走査結像
レンズに要請される条件を満足するように設計される
が、これらとともに、上記α1,α2、Δ1,Δ2も補正パ
ラメータとして設計に用いられるのである。
The scanning imaging lens according to the first aspect is provided in an optical scanning device as follows. As described above, since the y 1 axis and the y 2 axis “correspond to the main scanning”, the scanning imaging lens is set so that the y 1 axis and the y 2 axis are parallel to the Y axis. The plane containing the said x 1 axis and x 2 axis, is caused to conform to the XZ plane. A plane formed by the principal ray of the light beam incident on the deflecting reflection surface and the rotation axis of the deflecting reflection surface, that is, the principal ray of the deflecting light beam (having an angle θ with respect to the XY plane) in the XZ plane is incident. angular side lens surface x 1 axis:
inclined by alpha 1, further x 1 axis displacement in a direction parallel to the axis of rotation of the deflecting reflective surface (Z axis direction) is delta 1 by displacement. Exit-side lens surface being an x 2 axis with respect to the principal ray of the deflected light beam angle: Tilt alpha 2 only, further x 2 axis displacement in the Z direction: deployed is delta 2 by displacement. At this time, the angles: α 1 , α 2 and the displacement amounts: Δ 1 , Δ 2 are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation. That is, the lens shape (lens surface shape, thickness) of the scanning imaging lens is, a lens material (refractive index) is designed to satisfy the conditions requested scanning image forming lens, together with these, the alpha 1 , Α 2 , Δ 1 , Δ 2 are also used in the design as correction parameters.

【0010】上記のように、請求項1記載の走査結像レ
ンズにおいては、入射側レンズ面、射出側レンズ面の少
なくとも一方がWT面であるが、勿論「入射側および射
出側レンズ面が、共にWT面である」ようにすることが
できる(請求項2)。これら請求項1または2記載の走
査結像レンズにおいて、x1軸とx2軸とを含む平面内
(光走査装置内ではXZ面内)における焦点距離をfZ
とするとき、角:α1,α2は、入射角:θに対して、条
件: (1) 0.8<|α1/θ|<2.5 (2) 0.8<|α2/θ|<2.5 を満足し、変位量:Δ1,Δ2と焦点距離:fZは、条
件: (3) 1×10~2<|Δ1/fZ|<1×10~1 (4) 1×10~2<|Δ2/fZ|<1×10~1 を満足することが好ましい(請求項3)。
As described above, in the scanning image forming lens according to the first aspect, at least one of the incident side lens surface and the exit side lens surface is a WT surface. Both are WT surfaces "(claim 2). In these according to claim 1 or 2 scanning imaging lens according, the focal length in the plane (XZ plane in the optical scanning apparatus) including the x 1 axis and x 2 axis f Z
When the angles α 1 and α 2 are incident angles θ, the conditions are as follows: (1) 0.8 <| α 1 /θ|<2.5 (2) 0.8 <| α 2 /Θ|<2.5, and the displacement amounts: Δ 1 , Δ 2 and the focal length: f Z are as follows: (3) 1 × 10 2 <| Δ 1 / f Z | <1 × 10 1 (4) It is preferable to satisfy 1 × 10 2 <| Δ 2 / f Z | <1 × 10 1 (claim 3).

【0011】条件(1),(2)は、走査線曲がりを有
効に補正し、光スポット径の変動を有効に抑えるための
条件である。「光源側からの光束を、偏向反射面の回転
軸に対して入射角:θで斜めに交わる方向から偏向反射
面に入射させる」方式の光走査装置の場合、入射角:θ
が小さいほど、走査線の曲がりは軽微になるが、入射光
束と反射光束を分離するためいには、入射角:θは所定
量必要である。角:α1,α2はθに比例的であるのがよ
く、その比例係数は、角:α1,α2につきそれぞれ条件
(1),(2)の範囲が良い。条件(1),(2)の下
限を超えると、十分な走査線曲がり補正効果を実現する
ことができない。また、条件(1),(2)の上限を超
えると、光スポットの中間〜周辺像高で副走査方向のコ
マ収差が過大になり、波面収差が劣化し、中心部の像高
に比して、中間〜周辺像高で光スポット径が大きくな
る。
The conditions (1) and (2) are conditions for effectively correcting the scanning line bending and effectively suppressing the fluctuation of the light spot diameter. In the case of the optical scanning device of the system in which the light beam from the light source side is incident on the deflection reflecting surface from a direction obliquely intersecting with the rotation axis of the deflection reflecting surface at an incident angle θ, the incidence angle θ
The smaller the is, the smaller the curvature of the scanning line becomes. However, in order to separate the incident light beam from the reflected light beam, a predetermined amount of the incident angle θ is required. The angles α 1 and α 2 are preferably proportional to θ, and the proportional coefficient is preferably in the range of the conditions (1) and (2) for the angles α 1 and α 2 . If the lower limits of the conditions (1) and (2) are exceeded, a sufficient scan line bending correction effect cannot be realized. If the upper limit of the conditions (1) and (2) is exceeded, the coma aberration in the sub-scanning direction becomes excessive in the middle to the peripheral image height of the light spot, and the wavefront aberration is deteriorated. As a result, the diameter of the light spot increases from the middle to the peripheral image height.

【0012】条件(1),(2)の範囲で、走査結像レ
ンズを「傾ける」と、前述のように、走査線曲がりは有
効に補正されるが、レンズの傾きに起因してコマ収差が
発生する。条件(3),(4)は、このコマ収差を有効
に補正する条件である。条件(3),(4)の下限を超
えると、上記傾きによるコマ収差をキャンセルできず、
波面収差が劣化して、光スポット径の変動が大きくな
る。条件(3),(4)の上限を超えると、副走査対応
方向(光源から被走査面に至る光路上で副走査方向に対
応する方向)において高次の像面湾曲が大きくなり、光
スポットの周辺像高において像面が急速に走査結像レン
ズ側に倒れるため、副走査方向の光スポット径が周辺像
高で急速に大きくなる。
When the scanning image forming lens is tilted within the range of the conditions (1) and (2), the scanning line bending is effectively corrected as described above, but the coma aberration is caused by the lens tilt. Occurs. Conditions (3) and (4) are conditions for effectively correcting this coma. If the lower limit of the condition (3) or (4) is exceeded, the coma due to the inclination cannot be canceled,
The wavefront aberration deteriorates, and the fluctuation of the light spot diameter increases. If the upper limits of the conditions (3) and (4) are exceeded, the higher-order field curvature becomes large in the sub-scanning corresponding direction (the direction corresponding to the sub-scanning direction on the optical path from the light source to the surface to be scanned), and the light spot At the peripheral image height, the image plane rapidly falls to the scanning imaging lens side, so that the light spot diameter in the sub-scanning direction rapidly increases at the peripheral image height.

【0013】請求項4記載の走査結像レンズは以下の如
き特徴を有する。光軸をx軸、主走査に対応する方向を
y軸とするとき、入射側レンズ面および射出側レンズ面
はともに、xy面内の形状が非円弧形状である。入射側
レンズ面および/または射出側レンズ面がWT面であ
る。前記XZ面内における偏向光束の主光線に対して、
x軸を角:αだけ傾けられるとともに、入射側レンズ面
は、x軸をZ軸方向へ変位量:Δ1、射出側レンズ面
は、x軸をZ軸方向へ変位量:Δ2、それぞれ変位され
て配備され、角:α、変位量:Δ1,Δ2が、走査線曲が
り、像面湾曲、光スポット径変動に対する補正パラメー
タとして用いられる。即ち、請求項4記載の走査結像レ
ンズは、請求項1記載の走査結像レンズにおいて、軸x
1,x2が合致して光軸(x軸)となったものである。
The scanning imaging lens according to the fourth aspect has the following features. When the optical axis is the x-axis and the direction corresponding to the main scanning is the y-axis, both the entrance-side lens surface and the exit-side lens surface have a non-circular shape in the xy plane. The entrance lens surface and / or the exit lens surface are WT surfaces. For the principal ray of the deflected light beam in the XZ plane,
The x-axis can be tilted by an angle: α, the incident-side lens surface has a displacement of the x-axis in the Z-axis direction: Δ 1 , and the emission-side lens surface has a displacement of the x-axis in the Z-axis direction: Δ 2 , respectively. It is displaced and deployed, and the angle: α and the displacement amounts: Δ 1 , Δ 2 are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation. That is, the scanning imaging lens according to claim 4 is the scanning imaging lens according to claim 1, wherein the axis x
1, x 2 are matched in which becomes the optical axis (x-axis).

【0014】この請求項4記載の走査結像レンズにおい
て、偏向反射面への入射光束の主光線と偏向反射面回転
軸との形成する平面:XZ面内における焦点距離をfZ
とするとき、角:αは、入射角:θに対して、条件: (5) 0.8<|α/θ|<2.5 を満足し、変位量:Δ1,Δ2と焦点距離:fZは条件: (6) 1×10~2<|Δ1/fZ|<1×10~1 (7) 1×10~2<|Δ2/fZ|<1×10~1 を満足することが好ましい(請求項5)。
[0014] In the scanning imaging lens of the fourth aspect, the plane formed between the principal ray of the incident light beam on the deflection reflective surface and the deflection reflecting surface rotation axis: the focal length in the XZ plane f Z
, The angle: α satisfies the condition: (5) 0.8 <| α / θ | <2.5 with respect to the incident angle: θ, the displacement amounts: Δ 1 and Δ 2, and the focal length : f Z condition: (6) 1 × 10 ~ 2 <| Δ 1 / f Z | <1 × 10 ~ 1 (7) 1 × 10 ~ 2 <| Δ 2 / f Z | <1 × 10 ~ 1 Is preferably satisfied (claim 5).

【0015】条件(5)は前記条件(1),(2)と同
じく、走査線曲がりを有効に補正し、光スポット径の変
動を有効に抑えるための条件であり、下限を超えると、
十分な走査線曲がり補正効果を実現することができず、
上限を超えると、光スポットの中間〜周辺像高で副走査
方向のコマ収差が過大になり、波面収差が劣化し、中心
部の像高に比して、中間〜周辺像高で光スポット径が大
きくなる。条件(6),(7)は、前記条件(3),
(4)と同じく、レンズの傾きに起因するコマ収差を有
効に補正する条件であり、条件(6),(7)の下限を
超えると、上記傾きによるコマ収差をキャンセルでき
ず、波面収差が劣化して、光スポット径の変動が大きく
なり、条件(6),(7)の上限を超えると、副走査対
応方向において高次の像面湾曲が大きくなり、光スポッ
トの周辺像高において像面が急速に走査結像レンズ側に
倒れるため、副走査方向の光スポット径が周辺像高で急
速に大きくなる。
The condition (5) is a condition for effectively correcting the scanning line bending and effectively suppressing the fluctuation of the light spot diameter, as in the above conditions (1) and (2).
Sufficient scanning line bending correction effect cannot be realized,
If the upper limit is exceeded, the coma aberration in the sub-scanning direction becomes excessive at the middle to peripheral image heights of the light spot, the wavefront aberration deteriorates, and the light spot diameter at the intermediate to peripheral image heights is lower than the central image height. Becomes larger. The conditions (6) and (7) correspond to the conditions (3) and (3).
Similar to (4), this is a condition for effectively correcting coma caused by lens tilt. If the lower limit of conditions (6) and (7) is exceeded, coma due to the tilt cannot be canceled, and wavefront aberration is reduced. When the light spot diameter is deteriorated and the fluctuation of the light spot diameter becomes large, and exceeds the upper limit of the conditions (6) and (7), the higher-order field curvature becomes large in the sub-scanning corresponding direction, and Since the surface quickly falls to the scanning image forming lens side, the light spot diameter in the sub-scanning direction rapidly increases at the peripheral image height.

【0016】上記請求項1〜5の任意の1に記載の走査
結像レンズは、何れも「等角速度的に偏向される偏向光
束による被走査面の光走査を等速化する機能」を有する
ことができる(請求項6)。また、請求項1〜6の任意
の1に記載の走査結像レンズは何れも、偏向反射面近傍
に「主走査対応方向に長い線像」に結像した偏向光束を
被走査面上に光スポットとして集光するから「副走査対
応方向に関して、偏向反射面位置近傍と被走査面位置と
を共役な関係とする機能を有するが、この共役な関係に
おける近軸倍率:mは、条件: (8) 2<|m|<6 を満足することが好ましい(請求項7)。即ち、下限を
超えると、走査結像レンズの配置が被走査面に近づくた
め、走査結像レンズがY方向に長大化して、加工が難し
くなり、コストアップを招く。逆に上限を超えると、偏
向反射面におけるX軸方向誤差が「m2倍 」で被走査面
に伝搬されるので、偏向反射面の位置精度や面精度に高
精度が要求され、コストアップの原因となる。
Each of the scanning image forming lenses according to any one of the first to fifth aspects has a "function of equalizing the speed of light scanning of a surface to be scanned by a deflected light beam deflected at a constant angular velocity". (Claim 6). Further, any of the scanning imaging lenses according to any one of claims 1 to 6 emits a deflected light beam, which has been formed into a "long line image in the main scanning corresponding direction", on the surface to be scanned in the vicinity of the deflecting reflection surface. Since the light is condensed as a spot, it has a function of making the vicinity of the deflecting reflection surface position and the position of the surface to be scanned conjugate with respect to the sub-scanning corresponding direction. 8) It is preferable to satisfy the following condition: 2 <| m | <6 (claim 7) In other words, when the lower limit is exceeded, the arrangement of the scanning imaging lens approaches the surface to be scanned, so that the scanning imaging lens moves in the Y direction. If the length exceeds the upper limit, an error in the X-axis direction in the deflecting reflecting surface is propagated to the surface to be scanned in the form of “m 2 ” when the upper limit is exceeded. High precision is required for the precision and surface precision, which causes an increase in cost.

【0017】この発明の光走査装置は「光源側からの光
束を、偏向反射面の回転軸(Z軸)に対して入射角:θ
で斜めに交わる方向から偏向反射面に入射させるととも
に、偏向反射面近傍に主走査対応方向(Y軸方向)に長
い線像に結像させ、偏向反射面による反射光束を、偏向
反射面への入射光束の主光線と回転軸との形成する平面
(XZ面)に対して対称的に偏向させ、偏向光束を、走
査結像レンズにより被走査面上に光スポットとして集光
させ、被走査面の光走査を行う光走査装置」である。請
求項8記載の光走査装置は以下の如き特徴を有する。即
ち、走査結像レンズとして、上記請求項1または2また
は3記載の走査結像レンズを用い、走査結像レンズの材
質および形状ならびに角:α1,α2、変位量:Δ1,Δ2
の調整により、像面湾曲、走査線曲がり、光スポット径
の変動を、それぞれ許容範囲内に抑えている。請求項9
記載の光走査装置は以下の如き特徴を有する。即ち、走
査結像レンズとして、上記請求項4または5記載の走査
結像レンズを用い、走査結像レンズの材質および形状な
らびに角:α、変位量:Δ1,Δ2の調整により、像面湾
曲、走査線曲がり、光スポット径の変動を、それぞれ許
容範囲内に抑えている。これら請求項8または9記載の
光走査装置において、走査結像レンズは「等角速度的に
偏向される偏向光束による被走査面の光走査を等速化す
る機能」を有することができ(請求項10)、副走査対
応方向における前記共役な関係における近軸倍率:m
が、条件: (8) 2<|m|<6 を満足するように構成できる(請求項11)。
According to the optical scanning device of the present invention, "the light beam from the light source side is incident on the rotation axis (Z-axis) of the deflecting / reflection surface at an incident angle θ
In this case, the light is made incident on the deflecting reflection surface from a direction intersecting obliquely, and a long line image is formed in the vicinity of the deflecting reflection surface in the main scanning direction (Y-axis direction). The deflecting light beam is symmetrically deflected with respect to a plane (XZ plane) formed by the principal ray of the incident light beam and the rotation axis, and the deflected light beam is condensed as a light spot on the surface to be scanned by the scanning imaging lens. Optical scanning device that performs optical scanning of The optical scanning device according to claim 8 has the following features. That is, the scanning imaging lens according to claim 1, 2 or 3 is used as the scanning imaging lens, and the material and shape and angles of the scanning imaging lens are α 1 and α 2 , and the displacement amounts are Δ 1 and Δ 2.
By adjusting (1), the curvature of field, the curvature of the scanning line, and the variation of the light spot diameter are suppressed within the allowable ranges. Claim 9
The described optical scanning device has the following features. That is, the scanning image forming lens according to claim 4 is used as the scanning image forming lens, and the image plane is adjusted by adjusting the material and shape of the scanning image forming lens and the angle α and the displacement amounts Δ 1 and Δ 2. Curve, scan line bend, and fluctuation of light spot diameter are suppressed within allowable ranges, respectively. In the optical scanning device according to the eighth or ninth aspect, the scanning image forming lens may have a function of “equalizing the optical scanning of the surface to be scanned by the deflected light beam deflected at a constant angular velocity”. 10), paraxial magnification in the conjugate relationship in the sub-scanning corresponding direction: m
Can satisfy the following condition: (8) 2 <| m | <6 (claim 11).

【0018】[0018]

【発明の実施の形態】図1は、この発明の光走査装置の
実施の1形態を説明するための図である。図1(a)に
おいて、符号10は「光源」である半導体レーザ、符号
15はカップリングレンズ、符号20はアパーチュア、
符号25はシリンドリカルレンズ、符号30は「光偏向
器」としての回転多面鏡、符号31は偏向反射面、符号
30AXは偏向反射面31の回転軸(回転多面鏡30自
体の回転軸)、符号40は走査結像レンズ、符号50は
被走査面(実態的には光導電性の感光体の感光面)をそ
れぞれ示している。
FIG. 1 is a diagram for explaining an embodiment of an optical scanning device according to the present invention. In FIG. 1A, reference numeral 10 denotes a semiconductor laser as a “light source”, reference numeral 15 denotes a coupling lens, reference numeral 20 denotes an aperture,
Reference numeral 25 denotes a cylindrical lens, reference numeral 30 denotes a rotating polygon mirror as an “optical deflector”, reference numeral 31 denotes a deflecting reflection surface, reference numeral 30AX denotes a rotation axis of the deflecting reflection surface 31 (a rotation axis of the rotation polygon mirror 30 itself), and reference numeral 40 Denotes a scanning imaging lens, and reference numeral 50 denotes a surface to be scanned (actually, a photosensitive surface of a photoconductive photoconductor).

【0019】半導体レーザ10から放射された光束は、
カップリングレンズ15により以後の光学系にカップリ
ングされる。カップリングされた光束は、以後の光学系
の光学特性如何により、平行光束となることもできる
し、集束性の光束となることも発散性の光束となること
もできる。カップリングされた光束は、アパーチュア2
0を通過する際に周辺光束部を除去されて所謂「ビーム
整形」される。ビーム整形された光束は、シリンドリカ
ルレンズ25により副走査対応方向に集束され、偏向反
射面31の位置に主走査対応方向に長い線像として結像
する。偏向反射面31による反射光束は回転多面鏡30
の等速回転に伴い等角速度的に偏向する偏向光束とな
り、走査結像レンズ40により被走査面50上に光スポ
ットを形成し、被走査面50を光走査する。図1(a)
において、回転多面鏡30の回転軸30AXに合致させ
て「Z軸」を設定し、図の如くX,Y方向を定める。す
ると、半導体レーザ10側から偏向反射面31へ入射す
る光束(の主光線)と回転軸30AXとは同一面内、即
ち「XZ面」内にあることになる。Y方向は「主走査対
応方向」になる。
The luminous flux emitted from the semiconductor laser 10 is
The light is coupled to the subsequent optical system by the coupling lens 15. The coupled light beam can be a parallel light beam, a convergent light beam, or a divergent light beam depending on the optical characteristics of the optical system thereafter. The coupled beam is aperture 2
When passing through zero, the peripheral light beam part is removed and so-called “beam shaping” is performed. The beam-shaped light beam is converged by the cylindrical lens 25 in the direction corresponding to the sub-scanning, and is formed on the position of the deflecting reflection surface 31 as a long line image in the direction corresponding to the main scanning. The luminous flux reflected by the deflecting / reflecting surface 31 is applied to the rotating polygon mirror 30.
Becomes a deflected light beam deflected at a constant angular velocity with the constant speed rotation, forms a light spot on the surface 50 to be scanned by the scanning imaging lens 40, and optically scans the surface 50 to be scanned. FIG. 1 (a)
, The "Z-axis" is set in accordance with the rotation axis 30AX of the rotary polygon mirror 30, and the X and Y directions are determined as shown in the figure. Then, (the principal ray) of the light beam incident on the deflection reflection surface 31 from the semiconductor laser 10 side and the rotation axis 30AX are in the same plane, that is, in the “XZ plane”. The Y direction is a “main scanning corresponding direction”.

【0020】図1(b)は(a)の状態をY方向から見
た状態を示し、(b)におけるの図の面は「XZ面」に
なっている。(b)に示すように、半導体レーザ10側
からの光束の主光線は、XZ面内において、偏向反射面
31の回転軸30AZに対して入射角:θを持って偏向
反射面31に入射する。即ち、入射角:θは、回転軸3
0AXに対して直交する平面(XY面)に対して入射光
束の主光線がなす角である。図1(b)において、入射
角:θをθ(−)と表示したのは、回転軸30AXに直
交する平面に対し、入射光束がZ方向の「負の側」から
入射することを表している。図1(a)から明らかなよ
うに、回転多面鏡30の回転に従い、被走査面50の光
走査はXZ面に略対称、即ち「XZ面に対して対称的」
に行われる。即ち、図1に実施の形態を示す光走査装置
は「光源10側からの光束を、偏向反射面31の回転軸
(Z軸)に対して入射角:θで斜めに交わる方向から、
偏向反射面31に入射させるとともに、偏向反射面近傍
に主走査対応方向(Y方向)に長い線像に結像させ、偏
向反射面31による反射光束を、偏向反射面への入射光
束の主光線と上記回転軸との形成する平面(XZ面)に
対して対称的に偏向させ、偏向光束を、走査結像レンズ
40により被走査面50上に光スポットとして集光さ
せ、被走査面50の光走査を行う光走査装置」であり
(請求項8,9)、走査結像レンズ40が、請求項1ま
たは2または3記載の走査結像レンズであるときには請
求項8記載の光走査装置となり、走査結像レンズ40
が、請求項4または5記載の走査結像レンズであるとき
には請求項9記載の光走査装置となる。
FIG. 1B shows the state of FIG. 1A as viewed from the Y direction, and the plane of FIG. 1B is an "XZ plane". As shown in (b), the principal ray of the light beam from the semiconductor laser 10 is incident on the deflecting / reflecting surface 31 at an incident angle θ with respect to the rotation axis 30AZ of the deflecting / reflecting surface 31 in the XZ plane. . That is, the incident angle: θ is the rotation axis 3
The angle formed by the principal ray of the incident light beam with respect to a plane (XY plane) orthogonal to 0AX. In FIG. 1B, the angle of incidence: θ is indicated as θ (−), which means that the incident light beam enters the plane perpendicular to the rotation axis 30AX from the “negative side” in the Z direction. I have. As is clear from FIG. 1A, the optical scanning of the surface 50 to be scanned is substantially symmetric with respect to the XZ plane, that is, "symmetric with respect to the XZ plane" according to the rotation of the rotary polygon mirror 30.
Done in That is, the optical scanning device according to the embodiment shown in FIG. 1 is configured such that “the light beam from the light source 10 side obliquely intersects the rotation axis (Z axis) of the deflecting / reflecting surface 31 at an incident angle θ.
While being incident on the deflecting / reflecting surface 31, an image is formed in the vicinity of the deflecting / reflecting surface into a long linear image in the main scanning direction (Y direction), and the light beam reflected by the deflecting / reflecting surface 31 is converted into a principal ray of the incident light beam on the deflecting / reflective surface. And the rotation axis are symmetrically deflected with respect to a plane (XZ plane) formed by the scanning axis, and the deflected light beam is condensed as a light spot on the surface 50 to be scanned by the scanning image forming lens 40. An optical scanning device that performs optical scanning ”(claims 8 and 9), and when the scanning imaging lens 40 is the scanning imaging lens according to claim 1, 2 or 3, the optical scanning device becomes the optical scanning device according to claim 8. , Scanning imaging lens 40
Is a scanning image forming lens according to claim 4 or 5, the optical scanning device according to claim 9 is provided.

【0021】図2は、請求項1記載の走査結像レンズの
形状と、光走査装置内への配備を説明するための図であ
る。図1の実施の形態において走査結像レンズ40とし
て用いられるレンズ40Aは、単一レンズで構成され、
入射側レンズ面41Aに就き中心軸をx1軸、主走査に
対応する方向(図面に直交する方向)をy1軸とすると
き、x11面内の形状が非円弧形状である。また射出側
レンズ面41Bに就き中心軸をx2軸、主走査に対応す
る方向をy2軸とするとき、x22面内の形状が非円弧
形状である。入射側レンズ面41Aおよび/または射出
側レンズ面41BがWT面であり、x1軸とx2軸とが、
これらを含む平面内(図中のXZ面)で互いに有限の角
をなす。偏向反射面への入射光束の主光線と偏向反射面
回転軸(Z軸)との形成する平面(XZ面)内における
偏向光束の主光線FLに対して、入射側レンズ面41A
はx1軸を角:α1(−)だけ傾けると共に、x1軸を偏
向反射面の回転軸に平行な方向へ変位量:Δ1だけ変位
され、射出側レンズ面41Bはx2軸を角:α2(−)だ
け傾けると共に、x2軸を偏向反射面の回転軸に平行な
方向へ変位量:Δ2だけ変位されて配備される。これら
角:α1,α2、変位量:Δ1,Δ2が、走査線曲がり、像
面湾曲、光スポット径変動に対する補正パラメータとし
て用いられるのである。
FIG. 2 is a view for explaining the shape of the scanning image forming lens according to the first aspect and the arrangement in the optical scanning device. The lens 40A used as the scanning imaging lens 40 in the embodiment of FIG.
When x 1 axis center axis per incident-side lens surface 41A, a direction corresponding to the main scanning (the direction perpendicular to the drawing) and y 1 axis, the shape of the x 1 y 1 plane is a non-arcuate shape. Also when x 2 axis center axis per exit-side lens surface 41B, the direction corresponding to the main scanning and y 2 axes, the shape of the x 2 y 2 surface which is non-arcuate shape. Incident-side lens surface 41A and / or the exit side lens surface 41B is WT surface, and the x 1 axis and x 2 axis,
They form finite angles with each other in a plane including these (the XZ plane in the figure). With respect to the principal ray FL of the deflecting light beam in a plane (XZ plane) formed by the principal ray of the light beam incident on the deflecting reflection surface and the rotation axis (Z axis) of the deflecting reflection surface, the entrance lens surface 41A.
The x 1 axis corner: (-) alpha 1 with tilting only, x 1 axis displacement in a direction parallel to the axis of rotation of the deflecting reflective surface: is displaced by delta 1, the exit-side lens surface 41B of the x 2 axis Angle: α 2 (−), and the x 2 axis is displaced by Δ 2 in a direction parallel to the rotation axis of the deflecting / reflecting surface. These angles: α 1 , α 2 , and the displacement amounts: Δ 1 , Δ 2 are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation.

【0022】図3は、請求項4記載の走査結像レンズの
形状と、光走査装置内への配備を説明するための図であ
る。図1の実施の形態において走査結像レンズ40とし
て用いられるレンズ40Bは、単一レンズで構成され、
光軸をx軸、主走査に対応する方向(図面に直交する方
向)をy軸とするとき、入射側レンズ面42Aおよび射
出側レンズ面42Bはともに、xy面内の形状が非円弧
形状である。入射側レンズ面42Aおよび/または射出
側レンズ面42BがWT面であり、偏向反射面への入射
光束の主光線と偏向反射面回転軸(Z軸)との形成する
平面(XZ面)内における偏向光束の主光線FLに対し
て、x軸を角:α(−)だけ傾けられるとともに、入射
側レンズ面42Aは、x軸を偏向反射面の回転軸に平行
な方向へ変位量:Δ1だけ、射出側レンズ面42Bは、
x軸を偏向反射面の回転軸に平行な方向へ変位量:Δ2
だけ、それぞれ変位されて配備される。これら角:α、
変位量:Δ1,Δ2が、走査線曲がり、像面湾曲、光スポ
ット径変動に対する補正パラメータとして用いられる。
上記図2,図3に即した説明において、角:α1,α2
付した(−)は主光線FLに対して時計回りの角を負と
することを意味し、角:θに付した(+)は、X軸に対
して反時計回りの角を正とする個とを意味する。上に説
明した実施の形態における入射角:θ、傾き角:α1
α2、変位量:Δ1,Δ2の符号を全体として反転させた
光学配置も勿論可能であることを付記しておく。
FIG. 3 is a view for explaining the shape of the scanning image forming lens according to the fourth aspect and the arrangement in the optical scanning device. The lens 40B used as the scanning imaging lens 40 in the embodiment of FIG.
When the optical axis is the x-axis and the direction corresponding to the main scanning (the direction orthogonal to the drawing) is the y-axis, both the entrance-side lens surface 42A and the exit-side lens surface 42B have a non-arc shape in the xy plane. is there. The entrance-side lens surface 42A and / or the exit-side lens surface 42B are WT surfaces, and are in a plane (XZ plane) formed by the principal ray of the light beam incident on the deflecting / reflecting surface and the deflecting / reflecting surface rotation axis (Z-axis). The x-axis is inclined by an angle α (−) with respect to the principal ray FL of the deflected light beam, and the incident-side lens surface 42A is displaced in the x-axis direction parallel to the rotation axis of the deflective reflection surface: Δ 1 However, the exit-side lens surface 42B is
The amount of displacement of the x-axis in a direction parallel to the rotation axis of the deflecting reflection surface: Δ 2
Only each is displaced and deployed. These angles: α,
The displacement amounts: Δ 1 and Δ 2 are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation.
In the description according to FIGS. 2 and 3, (−) added to the angles α 1 and α 2 means that the clockwise angle with respect to the principal ray FL is negative, and the angle added to the angle θ. (+) Means that the counterclockwise angle with respect to the X axis is positive. In the embodiment described above, the incident angle: θ, the inclination angle: α 1 ,
It should be noted that, of course, an optical arrangement in which the signs of α 2 and displacement amounts: Δ 1 and Δ 2 are inverted as a whole is also possible.

【0023】[0023]

【実施例】以下、具体的な実施例を3例挙げる。EXAMPLES Three specific examples will be described below.

【0024】各実施例とも、図1に示した実施の形態の
実施例である。光源10としての半導体レーザは発光波
長780nmのものである。カップリングレンズ15は
焦点距離:9mm、NA=0.3のものでカップリング
作用は「コリメート作用」であり、カップリングされた
光束は「実質的な平行光束」となる。アパーチュア20
は開口径:3mmの円形開口を有するものであり、シリ
ンドリカルレンズ25は副走査対応方向の焦点距離:6
0mmの「平凸レンズ」であり、光源側からの光束は被
走査面近傍においては、主走査対応方向では略平行で、
副走査対応方向には集光され、全体として主走査対応方
向(Y方向)に長い線像になっている。このような光学
系レイアウトにおいて、像面湾曲の許容範囲を主・副走
査方向とも、±1mm以内、走査線曲がりの許容範囲を
0.1mm以内、光スポット径の変動を主・副走査方向
とも3.5μm以下とし、これら許容範囲内の性能が実
現されるように、走査結像レンズ40のレンズ面形状、
傾き角:α,α1,α2、変位量:Δ1,Δ2を、入射角:
θに応じて決定した。
Each embodiment is an embodiment of the embodiment shown in FIG. The semiconductor laser as the light source 10 has an emission wavelength of 780 nm. The coupling lens 15 has a focal length of 9 mm and NA = 0.3, the coupling action is a “collimating action”, and the coupled light flux is a “substantial parallel light flux”. Aperture 20
Has a circular opening having an opening diameter of 3 mm, and the cylindrical lens 25 has a focal length of 6 in the sub-scanning corresponding direction.
0 mm “plano-convex lens”, and the luminous flux from the light source side is substantially parallel in the main scanning corresponding direction near the surface to be scanned.
The light is condensed in the sub-scanning corresponding direction, and is a long line image as a whole in the main scanning corresponding direction (Y direction). In such an optical system layout, the allowable range of the curvature of field is within ± 1 mm in both the main and sub-scanning directions, the allowable range of the scanning line bending is within 0.1 mm, and the fluctuation of the light spot diameter is both in the main and sub-scanning directions. 3.5 μm or less, and the lens surface shape of the scanning imaging lens 40, such that performance within these allowable ranges is realized.
Incline angles: α, α 1 , α 2 , displacement amounts: Δ 1 , Δ 2 , incident angle:
Determined according to θ.

【0025】以下、走査結像レンズの形状および配備態
位の特定に就き説明する。実施例1においては、走査結
像レンズとして請求項3記載のものが用いられており、
実施例2および3においては、請求項5記載のものが用
いられている。実施例1〜3の何れにおいても、走査結
像レンズのレンズ面は「WT面」である。各面の「非円
弧形状」は、周知の式: x(y)=(y2/R)/[1+√{1−(1+K)(y/R)2}] A0・y2+A・y4+B・y6+C・y8+D・y10+... における、近軸曲率半径:R及び定数:K,A0,A,
B,C,D,..を与えて特定する。走査結像レンズが
請求項5記載のものであるとき、この式の「x」は光軸
に合致させた座標で、「y」は主走査方向に対応する座
標である。また、走査結像レンズが請求項3記載のもの
であるときは「x,y」は入射側レンズ面に関しては
「x1,y1」、射出側レンズ面に関しては「x2,y2
を用いる。また、「特殊トーリック面」であるWT面を
特定する、XZ面に平行な面内における曲率半径のYの
関数形状:ri(y)は、偶数次の多項式:ri(y)=a+
b・y2+c・y4+d・y6+e・y8+f・y10+g・
12+..における各係数:a,b,...,,g..
を与えて特定する。iは入射側レンズ面に関してi=
1、射出側レンズ面に関してはi=2である。
A description will now be given of the specification of the shape and arrangement of the scanning imaging lens. In the first embodiment, the one described in claim 3 is used as a scanning imaging lens.
In the second and third embodiments, the structure described in claim 5 is used. In any of Embodiments 1 to 3, the lens surface of the scanning imaging lens is a “WT surface”. The “non-circular shape” of each surface is obtained by a well-known formula: x (y) = (y 2 / R) / [1 + √ {1- (1 + K) (y / R) 2 }] A 0 · y 2 + A · y 4 + B · y 6 + C · y 8 + D · y 10 +. . . , The paraxial radius of curvature: R and the constants: K, A 0 , A,
B, C, D,. Give. To identify. In the case where the scanning imaging lens is the one described in claim 5, "x" in this equation is a coordinate corresponding to the optical axis, and "y" is a coordinate corresponding to the main scanning direction. Further, when the scanning imaging lens is of the third aspect "x, y", "x 1, y 1" for the incident-side lens surface, with respect to the exit-side lens surface "x 2, y 2 '
Is used. Further, the function shape of the radius of curvature Y in the plane parallel to the XZ plane that specifies the WT plane that is the “special toric plane”: r i (y) is an even-order polynomial: r i (y) = a +
b · y 2 + c · y 4 + d · y 6 + e · y 8 + f · y 10 + g ·
y 12 +. . At each coefficient: a, b,. . . , G. .
To identify. i is i =
1, i = 2 for the exit-side lens surface.

【0026】各実施例において、走査結像レンズの材質
の屈折率(波長780nmのひかりに対するもの)を
「n780」、光走査装置内のXZ面内(xz面内、x1
1面もしくはx22面)におけるレンズ肉厚(走査結像
レンズが請求呼応3記載のものであるときには、y1
の原点とy2軸の原点との距離)をd(0)とする。
[0026] In each example, scanning the material refractive index of the imaging lens (that for a wavelength of 780nm light) to "n 780", in the XZ plane of the optical scanning device (xz plane, x 1 z
When the lens thickness in one plane or x 2 z 2 side) (scanning imaging lens is of the claimed response 3 described, the distance) between the origin of the origin and y 2 axes y 1 axis and d (0) I do.

【0027】また、XZ面内における偏向光束の主光線
(図12における直線:FL)に対して、x軸もしくは
1軸を合致させて配備させた状態を「基準状態」し、
この基準状態において、入射側レンズ面が位置するX軸
方向の距離を「S(0)」とし、射出側レンズ面と被走査
面とのX軸方向の距離を「l(0)」とする。なお、距離
の次元を持つ量の単位は「mm」である。
Further, (straight line in FIG. 12: FL) principal ray of the deflected light beam in the XZ plane with respect to the state of being deployed by matching the x-axis or x 1 axis and a "reference state",
In this reference state, the distance in the X-axis direction where the incident-side lens surface is located is “S (0)”, and the distance in the X-axis direction between the exit-side lens surface and the surface to be scanned is “l (0)”. . The unit of the quantity having the dimension of distance is “mm”.

【0028】実施例1 S(0)=45.5,d(0)=13.2,l(0)=172.2,n780=1.52441,θ
(+)=0.0806 rad 入射側レンズ面:WT面 x11面内の非円弧形状 R=208.373,K=-6.077E+1,A0=-1.879E-4,A=-5.031E-7,B=
1.261E-10,C=-4.089E-14,D= 2.987E-18 r1(y1) a=−165.05, b= 5.579E−2,c=
−2.019E−4 ,d= 5.043E−7,e=
−8.302E−10 , f= 6.326E−13
,g=−1.831E−16 射出側レンズ面:WT面 x2面内の非円弧形状 R=-152.69,K= 0.9840,A0=-4.044E-4 , A=-7.295E-7,B
= 1.495E-10 , C=-7.287E-140 , D= 5.104E-18 r2(y2) a=-19.833 , b=-6.700E-4 ,c= 1.093E-6 , d= 6.400E-1
0,e=-3.381E-12 , f= 3.126E-15 , g=-9.374E-19 α1=0.122rad α2=0.1145rad ,Δ1=−
2.429 mm ,Δ2=−1.927mm
Embodiment 1 S (0) = 45.5, d (0) = 13.2, l (0) = 172.2, n 780 = 1.52441, θ
(+) = 0.0806 rad incident-side lens surface: non-arcuate shape of the WT surface x 1 y 1 plane R = 208.373, K = -6.077E + 1, A 0 = -1.879E-4, A = -5.031E- 7, B =
1.261E-10, C = -4.089E- 14, D = 2.987E-18 r 1 (y 1) a = -165.05, b = 5.579E-2, c =
−2.019E-4, d = 5.043E-7, e =
−8.302E−10, f = 6.326E−13
, G = -1.831E-16 exit-side lens surface: non-arcuate shape R = -152.69 of WT surface x 2 y 2 plane, K = 0.9840, A 0 = -4.044E-4, A = -7.295E- 7, B
= 1.495E-10, C = -7.287E-140, D = 5.104E-18 r 2 (y 2 ) a = -19.833, b = -6.700E-4, c = 1.093E-6, d = 6.400E -1
0, e = -3.381E-12, f = 3.126E-15, g = -9.374E-19 α 1 = 0.122 rad α 2 = 0.1145 rad, Δ 1 = −
2.429 mm, Δ 2 = -1.927 mm
.

【0029】実施例1の球面収差(波面収差)の像高に
よる変化を以下に示す。 像高 波面収差(RMS) (mm) (λ=780nm) 0 0.0086 35 0.0149 58 0.0129 82 0.0173 93 0.0133 105 0.0122 条件(1)〜(4),(8)のパラメータの値: |α1/θ|=1.51 |α2/θ|=1.42 |Δ1/fZ|=5.83E−2 |Δ2/fZ|=4.62E−2 |m|=3.10 (fZ=41.7) 図4に、実施例1に関する像面湾曲(実線は副走査方
向、破線は主走査方向)、走査線曲がり、リニアリティ
およびfθ特性の図を示す。これらから、実施例が走査
線曲がりのみならず、像面湾曲やリニアリティおよびf
θ特性も良好に補正されている。なお、上のデータ表記
において、例えば「E−9」は「10~9」を意味する。
以下同様である。
The change in spherical aberration (wavefront aberration) according to the image height in the first embodiment is shown below. Image height Wavefront aberration (RMS) (mm) (λ = 780 nm) 0 0.0086 35 0.0149 58 0.0129 82 0.0173 93 0.0133 105 0.0122 Conditions (1) to (4), (8) ) Parameter value: | α 1 /θ|=1.51 | α 2 /θ|=1.42 | Δ 1 / f Z | = 5.83E-2 | Δ 2 / f Z | = 4.62E −2 | m | = 3.10 (f Z = 41.7) FIG. 4 shows field curvature (solid line in the sub-scanning direction, broken line in the main scanning direction), scanning line bending, linearity, and fθ characteristics according to the first embodiment. FIG. From these, the embodiment is not limited to the scan line curve, but also the field curvature and linearity and f.
The θ characteristic is also satisfactorily corrected. In the above data notation, for example, “E-9” means “10 to 9 ”.
The same applies hereinafter.

【0030】実施例2 S(0)=45.5 ,d(0)=13.0 ,l(0)=176.8 , n780=1.52441 ,
θ(+)=0.0806 rad 入射側レンズ面:WT面 xy面内の非円弧形状 R=207.192 , K=-6.044E+1 , A0=-1.396E-4 ,A=-5.034E
-7,B= 1.258E-10 , C=-4.098E-14 , D= 2.917E-18 r1(y1) a=-161.55 , b= 5.924E-2 , c=-2.016E-4 ,d= 3.759E-
7 ,e=-6.073E-10 , f= 4.929E-13 , g=-1.540E-16 射出側レンズ面:WT面 xy面内の非円弧形状 R=-152.94 , K= 0.9844 , A0=-3.655E-4 , A=-7.305E-
7 ,B= 1.493E-10 , C=-7.292E-14 , D= 5.102E-18 r2(y2) a=-19.862 , b=-7.272E-4 , c= 1.087E-6 , d= 1.215E-
9 ,e=-4.674E-12 , f= 5.502E-15 , g=-1.690E-18 α=0.1306 rad Δ1=−2.247 mm , Δ2=−1.694 mm
Example 2 S (0) = 45.5, d (0) = 13.0, l (0) = 176.8, n 780 = 1.52441,
θ (+) = 0.0806 rad Incident lens surface: WT surface Non-circular shape in xy plane R = 207.192, K = -6.044E + 1, A 0 = -1.396E-4, A = -5.034E
-7, B = 1.258E-10, C = -4.098E-14, D = 2.917E-18 r 1 (y 1 ) a = -161.55, b = 5.924E-2, c = -2.016E-4, d = 3.759E-
7, e = -6.073E-10, f = 4.929E-13, g = -1.540E-16 Exit side lens surface: WT surface Non-circular shape in xy plane R = -152.94, K = 0.9844, A 0 = -3.655E-4, A = -7.305E-
7, B = 1.493E-10, C = -7.292E-14, D = 5.102E-18 r 2 (y 2 ) a = -19.862, b = -7.272E-4, c = 1.087E-6, d = 1.215E-
9, e = -4.674E-12, f = 5.502E-15, g = -1.690E-18 α = 0.1306 rad Δ 1 = -2.247 mm, Δ 2 = -1.694 mm
.

【0031】実施例2の球面収差(波面収差)の像高に
よる変化を以下に示す。 像高 波面収差(RMS) (mm) (λ=780nm) 0 0.0144 35 0.0153 58 0.0141 82 0.0154 93 0.0121 105 0.0129 条件(5),(6)〜(8)のパラメータの値: |α/θ|=1.62 |Δ1/fZ|=5.36E−2 |Δ2/fZ|=4.04E−2 |m|=3.19 (fZ=41.9) 図5に、実施例2に関する像面湾曲(実線は副走査方
向、破線は主走査方向)、走査線曲がり、リニアリティ
およびfθ特性の図を示す。これらから、実施例が走査
線曲がりのみならず、像面湾曲やリニアリティおよびf
θ特性も良好に補正されている。
The change in spherical aberration (wavefront aberration) according to the image height in the second embodiment is shown below. Image height Wavefront aberration (RMS) (mm) (λ = 780 nm) 0 0.0144 35 0.0153 58 0.0141 82 0.0154 93 0.0121 105 0.0129 Conditions (5), (6) to (8) parameter values): | α / θ | = 1.62 | Δ 1 / f Z | = 5.36E-2 | Δ 2 / f Z | = 4.04E-2 | m | = 3.19 (f Z = 41.9) FIG. 5 is a diagram showing the field curvature (solid line is in the sub-scanning direction, broken line is in the main scanning direction), scanning line bending, linearity, and fθ characteristics according to the second embodiment. From these, the embodiment is not limited to the scan line curve, but also the field curvature and linearity and f.
The θ characteristic is also satisfactorily corrected.

【0032】実施例3 S(0)=46.3 , d(0)=11.5 , l(0)=174.8 , n780=1.52441
, θ(+)=0.0605 rad 入射側レンズ面:WT面 xy面内の非円弧形状 R=205.770 , K=-5.691E+1 , A0=-3.317E-5 , A=-5.027E
-7 ,B= 1.255E-10 , C=-4.056E-14 , D= 3.090E-18 r1(y1) a=-168.84 , b= 6.330E-2 , c=-2.024E-4 , d= 3.754E-
7 ,e=-4.920E-10 , f= 3.226E-13 , g=-8.142E-17 射出側レンズ面:WT面 xy面内の非円弧形状 R=-154.17 , K= 1.092 , A0=-1.841E-4 , A=-7.253E-7 B= 1.527E-10 , C=-7.271E-14 , D= 5.090E-18 r2(y2) a=-19.761 , b=-8.503E-4 , c= 1.064E-6 , d= 3.593E-
9 ,e=-2.381E-12 , f= 2.117E-15 , g=-5.788E-19 α=0.0985rad Δ1=−2.146 mm ,Δ2=−1.132 mm
[0032] Example 3 S (0) = 46.3, d (0) = 11.5, l (0) = 174.8, n 780 = 1.52441
, θ (+) = 0.0605 rad Incident lens surface: WT surface Non-circular shape in xy plane R = 205.770, K = -5.691E + 1, A 0 = -3.317E-5, A = -5.027E
-7, B = 1.255E-10, C = -4.056E-14, D = 3.090E-18 r 1 (y 1 ) a = -168.84, b = 6.330E-2, c = -2.024E-4, d = 3.754E-
7, e = -4.920E-10, f = 3.226E-13, g = -8.142E-17 Exit lens surface: WT surface Non-circular shape in xy plane R = -154.17, K = 1.092, A 0 = -1.841E-4, A = -7.253E-7 B = 1.527E-10, C = -7.271E-14, D = 5.090E-18 r 2 (y 2 ) a = -19.761, b = -8.503E -4, c = 1.064E-6, d = 3.593E-
9, e = -2.381E-12, f = 2.117E-15, g = -5.788E-19 α = 0.0985 rad Δ 1 = −2.146 mm, Δ 2 = −1.132 mm
.

【0033】実施例3の球面収差(波面収差)の像高に
よる変化を以下に示す。 像高 波面収差(RMS) (mm) (λ=780nm) 0 0.0197 35 0.0195 58 0.0210 82 0.0198 93 0.0205 105 0.0175 条件(5),(6)〜(8)のパラメータの値: |α/θ|=1.63 |Δ1/fZ|=5.16E−2 |Δ2/fZ|=2.72E−2 |m|=3.18 (fZ=41.6) 図6に、実施例3に関する像面湾曲(実線は副走査方
向、破線は主走査方向)、走査線曲がり、リニアリティ
およびfθ特性の図を示す。これらから、実施例が走査
線曲がりのみならず、像面湾曲やリニアリティおよびf
θ特性も良好に補正されている。
The change in spherical aberration (wavefront aberration) according to the image height in the third embodiment is shown below. Image height Wavefront aberration (RMS) (mm) (λ = 780 nm) 0 0.0197 35 0.0195 58 0.0210 82 0.0198 93 0.0205 105 0.0175 Conditions (5), (6) to (8) parameter values): | α / θ | = 1.63 | Δ 1 / f Z | = 5.16E-2 | Δ 2 / f Z | = 2.72E-2 | m | = 3.18 (f to Z = 41.6) 6, curvature (solid lines for example 3 is the sub-scanning direction, and the broken line the main scanning direction), scanning line bending, shows a diagram of the linearity and fθ characteristics. From these, the embodiment is not limited to the scan line curve, but also the field curvature and linearity and f.
The θ characteristic is also satisfactorily corrected.

【0034】即ち、上記実施例1は、光走査装置として
は、光源側からの光束を、偏向反射面の回転軸に対して
入射角:θで斜めに交わる方向から偏向反射面に入射さ
せるとともに、偏向反射面近傍に主走査対応方向に長い
線像に結像させ、偏向反射面による反射光束を、偏向反
射面への入射光束の主光線と上記回転軸との形成する平
面に対して対称的に偏向させ、偏向光束を、走査結像レ
ンズにより被走査面上に光スポットとして集光させ、被
走査面の光走査を行う光走査装置において、走査結像レ
ンズとして、請求項3記載の走査結像レンズを用い、走
査結像レンズの材質および形状ならびに角:α1,α2
変位量:Δ1,Δ2の調整により、像面湾曲、走査線曲が
り、光スポット径の変動をそれぞれ、許容範囲内に抑え
たものであり(請求項8)、実施例2,3は、光走査装
置としては、光源側からの光束を、偏向反射面の回転軸
に対して入射角:θで斜めに交わる方向から偏向反射面
に入射させるとともに、偏向反射面近傍に主走査対応方
向に長い線像に結像させ、偏向反射面による反射光束
を、偏向反射面への入射光束の主光線と上記回転軸との
形成する平面に対して対称的に偏向させ、偏向光束を、
走査結像レンズにより被走査面上に光スポットとして集
光させ、被走査面の光走査を行う光走査装置において、
走査結像レンズとして、請求項5記載の走査結像レンズ
を用い、走査結像レンズの材質および形状ならびに角:
α、変位量:Δ1,Δ2の調整により、像面湾曲、走査線
曲がり、光スポット径の変動をそれぞれ、許容範囲内に
抑えたものである(請求項9)。また、各実施例とも、
走査結像レンズは「等角速度的に偏向される偏向光束に
よる被走査面の光走査を等速化する機能」を有し(請求
項10)、副走査対応方向における共役な関係における
近軸倍率:mが、条件(8)を満足する(請求項1
1)。
That is, in the first embodiment, as the optical scanning device, the light beam from the light source side is incident on the deflecting reflection surface from a direction obliquely intersecting the rotation axis of the deflecting reflection surface at an incident angle θ. A linear image is formed in the vicinity of the deflecting reflection surface in a direction corresponding to the main scanning, and the light beam reflected by the deflecting reflection surface is symmetric with respect to the plane formed by the principal ray of the light beam incident on the deflecting reflection surface and the rotation axis. 4. The optical scanning device according to claim 3, wherein the optical scanning device performs optical scanning on the surface to be scanned by converging the deflected light beam as a light spot on the surface to be scanned by the scanning image forming lens. Using a scanning imaging lens, the material and shape and angles of the scanning imaging lens: α 1 , α 2 ,
By adjusting the displacement amounts: Δ 1 and Δ 2 , the curvature of field, the curvature of the scanning line, and the variation of the light spot diameter are suppressed within allowable ranges, respectively (claim 8). As the optical scanning device, a light beam from the light source side is incident on the deflecting reflecting surface in a direction obliquely intersecting with the rotation axis of the deflecting reflecting surface at an incident angle: θ, and in the main scanning corresponding direction near the deflecting reflecting surface. An image is formed on a long line image, and the light beam reflected by the deflecting / reflecting surface is symmetrically deflected with respect to the plane formed by the principal ray of the light beam incident on the deflecting / reflecting surface and the rotation axis.
In an optical scanning device that converges as a light spot on a surface to be scanned by a scanning imaging lens and performs optical scanning of the surface to be scanned,
The scanning imaging lens according to claim 5 is used as the scanning imaging lens, and the material, shape, and angle of the scanning imaging lens are as follows:
By adjusting α and the amount of displacement: Δ 1 and Δ 2 , the curvature of field, the curvature of the scanning line, and the variation of the light spot diameter are suppressed within allowable ranges, respectively. In each embodiment,
The scanning imaging lens has a function of making the optical scanning of the surface to be scanned uniform by a deflected light beam deflected at a uniform angular velocity (claim 10), and has a paraxial magnification in a conjugate relationship in the sub-scanning corresponding direction. : M satisfies the condition (8).
1).

【0035】[0035]

【発明の効果】以上に説明したように、この発明によれ
ば新規な走査結像レンズおよび光走査装置を実現でき
る。この発明の走査結像レンズは、上記の如く、角:α
もしくはα1,α2及びΔ1,Δ2を走査線曲がりや像面湾
曲等の補正パラメータとして利用することにより、斜め
入射型の光走査装置の走査線曲がりを有効に補正すると
ともに、像面湾曲や光スポット径の変動を有効に抑え
て、良好な光走査を実現することができる。なお、請求
項1〜3の任意の1に記載の走査結像レンズは、プラス
チック成形により容易且つ安価に製造が可能である。ま
た、この発明の光走査装置は、上記の如く、光源側から
の光束を光偏向器の偏向反射面に、偏向反射面の回転軸
に斜めに交わる方向から入射させる方式の光学配置であ
るから光走査装置の床面積を小さく小型化でき、発生す
るサグが光スポットの像高0の両側に対称的であるか
ら、走査結像レンズが特殊トーリック面(WT面)を含
むとは言え、主走査対応方向において光軸対称な比較的
製造の容易なレンズとして実現でき、この走査結像レン
ズを用いることにより、走査線曲がりや像面湾強を良好
に補正し、光スポット径の変動を小さくして、良好な光
走査を実現することが可能となる。また、請求項6,1
0記載の発明では、走査線曲がりを有効に補正し、光ス
ポット形状を適正に保ち、像面湾曲や光スポット径を良
好に補正できるとともに、光走査の等速性を実現でき、
請求項7,11の発明では、走査結像レンズを長大化さ
せることなく偏向反射面の位置精度や面精度を緩やかに
することができる。
As described above, according to the present invention, a novel scanning imaging lens and optical scanning device can be realized. As described above, the scanning imaging lens according to the present invention has an angle: α
Alternatively, by using α 1 , α 2 and Δ 1 , Δ 2 as correction parameters such as scanning line curvature and field curvature, the scanning line curvature of the oblique incidence type optical scanning device can be effectively corrected, and the image plane can be corrected. Good optical scanning can be realized by effectively suppressing the curvature and the fluctuation of the light spot diameter. The scanning imaging lens according to any one of claims 1 to 3 can be easily and inexpensively manufactured by plastic molding. Further, as described above, the optical scanning device of the present invention has an optical arrangement of a system in which the light flux from the light source side is incident on the deflecting reflection surface of the optical deflector from a direction obliquely intersecting the rotation axis of the deflecting reflection surface. Since the floor area of the optical scanning device can be made smaller and smaller, and the generated sag is symmetrical on both sides of the image height 0 of the light spot, it can be said that the scanning imaging lens includes a special toric surface (WT surface). It can be realized as a relatively easy-to-manufacture lens that is symmetrical with the optical axis in the scanning corresponding direction.By using this scanning imaging lens, it is possible to satisfactorily correct the scanning line bending and image field strength and reduce the fluctuation of the light spot diameter. As a result, good optical scanning can be realized. Claims 6 and 1
In the invention described in No. 0, it is possible to effectively correct the scanning line bending, maintain the light spot shape appropriately, correct the field curvature and the light spot diameter well, and realize the uniform speed of the optical scanning,
According to the seventh and eleventh aspects of the present invention, the positional accuracy and the surface accuracy of the deflecting reflection surface can be reduced without increasing the length of the scanning imaging lens.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の1形態を説明するための図で
ある。
FIG. 1 is a diagram for describing one embodiment of the present invention.

【図2】請求項1記載の走査結像レンズの形状および光
走査装置への配備状態を説明するための図である。
FIG. 2 is a view for explaining the shape of the scanning image forming lens according to the first embodiment and a state of being arranged in an optical scanning device.

【図3】請求項4記載の走査結像レンズの形状および光
走査装置への配備状態を説明するための図である。
FIG. 3 is a diagram for explaining the shape of a scanning image forming lens according to claim 4 and a state of being arranged in an optical scanning device.

【図4】実施例1に関する像面湾曲・走査線曲がり・リ
ニアリティ・fθ特性を示す図である。
FIG. 4 is a diagram illustrating the field curvature, scanning line curve, linearity, and fθ characteristics according to the first embodiment.

【図5】実施例2に関する像面湾曲・走査線曲がり・リ
ニアリティ・fθ特性を示す図である。
FIG. 5 is a diagram illustrating field curvature, scanning line curve, linearity, and fθ characteristics according to the second embodiment.

【図6】実施例3に関する像面湾曲・走査線曲がり・リ
ニアリティ・fθ特性を示す図である。
FIG. 6 is a diagram illustrating field curvature, scanning line curve, linearity, and fθ characteristics according to the third embodiment.

【符号の説明】[Explanation of symbols]

10 半導体レーザ 15 カップリングレンズ 25 シリンドリカルレンズ 30 回転多面鏡 31 偏向反射面 30AX 偏向反射面の回転軸 40 走査結像レンズ 50 被走査面 DESCRIPTION OF SYMBOLS 10 Semiconductor laser 15 Coupling lens 25 Cylindrical lens 30 Rotating polygon mirror 31 Deflection / reflection surface 30AX Rotation axis of deflection / reflection surface 40 Scanning imaging lens 50 Scanned surface

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】光源側からの光束を、偏向反射面の回転軸
に対して入射角:θで斜めに交わる方向から上記偏向反
射面に入射させるとともに上記偏向反射面近傍に主走査
対応方向に長い線像に結像させ、上記偏向反射面による
反射光束を、上記偏向反射面への入射光束の主光線と上
記回転軸との形成する平面に対して対称的に偏向させ、
偏向光束を走査結像レンズにより被走査面上に光スポッ
トとして集光させ、上記被走査面の光走査を行う光走査
装置に用いられる走査結像レンズであって、 単一レンズで構成され、 入射側レンズ面に就き、その中心軸をx1軸、主走査に
対応する方向をy1軸とするとき、x11面内の形状が
非円弧形状であり、 射出側レンズ面に就き、その中心軸をx2軸、主走査に
対応する方向をy2軸とするとき、x22面内の形状が
非円弧形状であり、 入射側レンズ面および/または射出側レンズ面がWT面
であり、 上記x1軸とx2軸とが、これらを含む平面内で互いに有
限の角をなし、 上記偏向反射面への入射光束の主光線と上記回転軸との
形成する平面内における偏向光束の主光線に対して、上
記入射側レンズ面はx1軸を角:α1だけ傾けると共に、
1軸を偏向反射面の回転軸に平行な方向へ変位量:Δ1
だけ変位され、 上記射出側レンズ面はx2軸を角:α2だけ傾けると共
に、x2軸を偏向反射面の回転軸に平行な方向へ変位
量:Δ2だけ変位されて配備され、 上記角:α1,α2、変位量:Δ1,Δ2が、走査線曲が
り、像面湾曲、光スポット径変動に対する補正パラメー
タとして用いられることを特徴とする走査結像レンズ。
A luminous flux from a light source side is made incident on the deflecting reflective surface from a direction obliquely intersecting the rotation axis of the deflecting reflective surface at an incident angle of θ, and in the main scanning corresponding direction near the deflecting reflective surface. Formed on a long line image, the reflected light beam by the deflecting and reflecting surface is symmetrically deflected with respect to the plane formed by the principal ray of the light beam incident on the deflecting and reflecting surface and the rotation axis,
A scanning image forming lens used in an optical scanning device that converges a deflected light beam as a light spot on a surface to be scanned by a scanning image forming lens and performs optical scanning of the surface to be scanned, comprising a single lens, When the central axis is x 1 axis and the direction corresponding to the main scanning is y 1 axis, the shape in the x 1 y 1 plane is a non-circular shape, and the exit lens surface is , the central axis x 2 axis, a direction corresponding to the main scanning when the y 2 axis, a non-arc shape shapes in x 2 y 2 surface, incident-side lens surface and / or the exit side lens surface a WT surface, and the x 1 axis and x 2 axis, without the finite angles to each other in a plane including these, a plane formed between the principal ray and the rotation axis of the incident light beam to said deflective reflection surface the main ray of the deflected light beam at said entrance-side lens surface being an x 1 axis angle: tilt α by 1 Along with
x 1 displacement in the direction parallel to the rotation axis of the deflecting and reflecting surface: Δ 1
Is only displaced, the exit side lens surface of the x 2 axis and angle with tilting alpha 2 only, x 2 axis displacement in a direction parallel to the axis of rotation of the deflecting reflective surface: deployed is displaced by delta 2, the A scanning imaging lens wherein angles: α 1 , α 2 and displacement amounts: Δ 1 , Δ 2 are used as correction parameters for scanning line bending, field curvature, and light spot diameter variation.
【請求項2】請求項1記載の走査結像レンズにおいて、 入射側および射出側レンズ面が、共にWT面であること
を特徴とする走査結像レンズ。
2. The scanning imaging lens according to claim 1, wherein both the entrance and exit lens surfaces are WT surfaces.
【請求項3】請求項1または2記載の走査結像レンズに
おいて、 x1軸とx2軸とを含む平面内における焦点距離をfZ
するとき、 角:α1,α2が、入射角:θに対して、条件: (1) 0.8<|α1/θ|<2.5 (2) 0.8<|α2/θ|<2.5 を満足し、変位量:Δ1,Δ2と焦点距離:fZが条件: (3) 1×10~2<|Δ1/fZ|<1×10~1 (4) 1×10~2<|Δ2/fZ|<1×10~1 を満足することを特徴とする走査結像レンズ。
3. An apparatus according to claim 1 or 2 scanning imaging lens according, when the focal length in the plane containing the x 1 axis and x 2 axis and f Z, angle: alpha 1, alpha 2 is incident angle: with respect to theta, conditions: (1) 0.8 <| α 1 /θ|<2.5 (2) 0.8 <| α 2 /θ|<2.5 satisfied, displacement: Δ 1 , Δ 2 and focal length: f Z are conditions: (3) 1 × 10 2 <| Δ 1 / f Z | <1 × 10 1 (4) 1 × 10 2 <| Δ 2 / f Z | <scanning and imaging lens satisfies the 1 × 10 ~ 1.
【請求項4】光源側からの光束を、偏向反射面の回転軸
に対して入射角:θで斜めに交わる方向から上記偏向反
射面に入射させるとともに上記偏向反射面近傍に主走査
対応方向に長い線像に結像させ、上記偏向反射面による
反射光束を、上記偏向反射面への入射光束の主光線と上
記回転軸との形成する平面に対して対称的に偏向させ、
偏向光束を走査結像レンズにより被走査面上に光スポッ
トとして集光させ、上記被走査面の光走査を行う光走査
装置に用いられる走査結像レンズであって、 単一レンズで構成され、 光軸をx軸、主走査に対応する方向をy軸とするとき、
入射側レンズ面および射出側レンズ面はともに、xy面
内の形状が非円弧形状で、 入射側レンズ面および/または射出側レンズ面がWT面
であり、 上記偏向反射面への入射光束の主光線と上記回転軸との
形成する平面内における偏向光束の主光線に対して、x
軸を角:αだけ傾けられるとともに、上記入射側レンズ
面はx軸を偏向反射面の回転軸に平行な方向へ変位量:
Δ1だけ、上記射出側レンズ面はx軸を偏向反射面の回
転軸に平行な方向へ変位量:Δ2だけ、それぞれ変位さ
れて配備され、 上記角:α、変位量:Δ1,Δ2が、走査線曲がり、像面
湾曲、光スポット径変動に対する補正パラメータとして
用いられることを特徴とする走査結像レンズ。
4. A luminous flux from the light source side is made incident on the deflecting reflection surface from a direction obliquely intersecting the rotation axis of the deflecting reflection surface at an incident angle θ, and in the main scanning corresponding direction near the deflecting reflection surface. Formed on a long line image, the reflected light beam by the deflecting and reflecting surface is symmetrically deflected with respect to the plane formed by the principal ray of the light beam incident on the deflecting and reflecting surface and the rotation axis,
A scanning image forming lens used in an optical scanning device that converges a deflected light beam as a light spot on a surface to be scanned by a scanning image forming lens and performs optical scanning of the surface to be scanned, comprising a single lens, When the optical axis is the x axis and the direction corresponding to the main scanning is the y axis,
Both the entrance-side lens surface and the exit-side lens surface have a non-circular shape in the xy plane, and the entrance-side lens surface and / or the exit-side lens surface are WT surfaces. For the principal ray of the deflected light beam in the plane formed by the ray and the rotation axis, x
The axis is tilted by an angle: α, and the incident-side lens surface is displaced in the direction parallel to the rotation axis of the deflecting / reflecting surface with respect to the x-axis.
Only delta 1, the exit side lens surface displacement in the direction parallel to the axis of rotation of the deflecting reflective surface in the x-axis: delta by 2, is deployed are respectively displaced, the angle: alpha, displacement: delta 1, delta 2. A scanning imaging lens, wherein 2 is used as a correction parameter for scanning line bending, field curvature, and light spot diameter variation.
【請求項5】請求項4記載の走査結像レンズにおいて、 上記偏向反射面への入射光束の主光線と上記回転軸との
形成する平面内における焦点距離をfZとするとき、 角:αが、入射角:θに対して、条件: (5) 0.8<|α/θ|<2.5 を満足し、変位量:Δ1,Δ2と焦点距離:fZが条件: (6) 1×10~2<|Δ1/fZ|<1×10~1 (7) 1×10~2<|Δ2/fZ|<1×10~1 を満足することを特徴とする走査結像レンズ。
5. The scanning imaging lens according to claim 4, wherein a focal length in a plane formed by the principal ray of the light beam incident on the deflecting / reflecting surface and the rotation axis is fZ, and an angle: α Satisfies the condition: (5) 0.8 <| α / θ | <2.5 with respect to the incident angle θ, and the displacement amounts: Δ 1 , Δ 2 and the focal length: f Z are: 6) 1 × 10 2 <| Δ 1 / f Z | <1 × 10 1 (7) It is characterized by satisfying 1 × 10 2 <| Δ 2 / f Z | <1 × 10 1 Scanning imaging lens.
【請求項6】請求項1〜5の任意の1に記載の走査結像
レンズにおいて、 等角速度的に偏向される偏向光束による被走査面の光走
査を等速化する機能を有することを特徴とする走査結像
レンズ。
6. A scanning image forming lens according to claim 1, wherein the scanning image forming lens has a function of equalizing the speed of light scanning of a surface to be scanned by a deflected light beam deflected at a constant angular velocity. Scanning imaging lens.
【請求項7】請求項1〜6の任意の1に記載の走査結像
レンズにおいて、 副走査対応方向に関して、偏向反射面位置近傍と被走査
面位置とを共役な関係とする機能を有し、上記共役な関
係における近軸倍率:mが、条件: (8) 2<|m|<6 を満足することを特徴とする走査結像レンズ。
7. A scanning image forming lens according to claim 1, further comprising a function of making the vicinity of the position of the deflecting reflection surface and the position of the surface to be scanned conjugate in the sub-scanning corresponding direction. And a paraxial magnification: m in the conjugate relationship satisfies the following condition: (8) 2 <| m | <6.
【請求項8】光源側からの光束を、偏向反射面の回転軸
に対して入射角:θで斜めに交わる方向から上記偏向反
射面に入射させるとともに上記偏向反射面近傍に主走査
対応方向に長い線像に結像させ、上記偏向反射面による
反射光束を、上記偏向反射面への入射光束の主光線と上
記回転軸との形成する平面に対して対称的に偏向させ、
偏向光束を、走査結像レンズにより被走査面上に光スポ
ットとして集光させ、上記被走査面の光走査を行う光走
査装置において、 走査結像レンズとして、請求項1または2または3記載
の走査結像レンズを用い、走査結像レンズの材質および
形状ならびに角:α1,α2、変位量:Δ1,Δの調整
により、像面湾曲、走査線曲がり、光スポット径の変動
をそれぞれ、許容範囲内に抑えたことを特徴とする光走
査装置。
8. A luminous flux from the light source side is made incident on the deflecting reflection surface from a direction obliquely intersecting with the rotation axis of the deflecting reflection surface at an incident angle of θ, and in the main scanning direction near the deflecting reflection surface. Formed on a long line image, the reflected light beam by the deflecting and reflecting surface is symmetrically deflected with respect to the plane formed by the principal ray of the light beam incident on the deflecting and reflecting surface and the rotation axis,
4. An optical scanning device for converging a deflected light beam as a light spot on a surface to be scanned by a scanning image forming lens and performing optical scanning on the surface to be scanned, wherein the scanning image forming lens is used as a scanning image forming lens. By using a scanning imaging lens and adjusting the material and shape of the scanning imaging lens and the angles α 1 , α 2 and the displacement amounts Δ 1 , Δ 2 , the curvature of field, the bending of the scanning line, and the fluctuation of the light spot diameter can be reduced. An optical scanning device characterized in that each is within an allowable range.
【請求項9】光源側からの光束を、偏向反射面の回転軸
に対して入射角:θで斜めに交わる方向から上記偏向反
射面に入射させるとともに上記偏向反射面近傍に主走査
対応方向に長い線像に結像させ、上記偏向反射面による
反射光束を、上記偏向反射面への入射光束の主光線と上
記回転軸との形成する平面に対して対称的に偏向させ、
偏向光束を、走査結像レンズにより被走査面上に光スポ
ットとして集光させ、上記被走査面の光走査を行う光走
査装置において、 走査結像レンズとして、請求項4または5記載の走査結
像レンズを用い、走査結像レンズの材質および形状なら
びに角:α、変位量:Δ,Δ2の調整により、像面湾
曲、走査線曲がり、光スポット径の変動をそれぞれ、許
容範囲内に抑えたことを特徴とする光走査装置。
9. A luminous flux from the light source side is made incident on the deflecting reflecting surface from a direction obliquely intersecting with the rotation axis of the deflecting reflecting surface at an incident angle θ, and in the main scanning direction in the vicinity of the deflecting reflecting surface. Formed on a long line image, the reflected light beam by the deflecting and reflecting surface is symmetrically deflected with respect to the plane formed by the principal ray of the light beam incident on the deflecting and reflecting surface and the rotation axis,
6. An optical scanning device for converging a deflected light beam as a light spot on a surface to be scanned by a scanning image forming lens and performing optical scanning on the surface to be scanned, wherein the scanning image forming lens is used as a scanning image forming lens. By using an image lens and adjusting the material and shape of the scanning imaging lens and the angle: α, and the amount of displacement: Δ 1 , Δ 2 , the curvature of field, the curvature of the scanning line, and the variation of the light spot diameter are all within allowable ranges. An optical scanning device characterized by being suppressed.
【請求項10】請求項9または10記載の光走査装置に
おいて、 走査結像レンズが、等角速度的に偏向される偏向光束に
よる被走査面の光走査を等速化する機能を有することを
特徴とする光走査装置。
10. The optical scanning device according to claim 9, wherein the scanning image forming lens has a function of making optical scanning of the surface to be scanned uniform by a deflected light beam deflected at a uniform angular velocity. Optical scanning device.
【請求項11】請求項8または9または10記載の光走
査装置において、 走査結像レンズが、副走査対応方向に関して、偏向反射
面位置近傍と被走査面位置とを共役な関係とする機能を
有し、上記共役な関係における近軸倍率:mが、条件: (8) 2<|m|<6 を満足することを特徴とする光走査装置。
11. The optical scanning device according to claim 8, wherein the scanning imaging lens has a function of making the vicinity of the position of the deflecting reflection surface and the position of the surface to be scanned conjugate in the sub-scanning corresponding direction. An optical scanning device, wherein the paraxial magnification: m in the conjugate relationship satisfies the following condition: (8) 2 <| m | <6.
JP05996798A 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens Expired - Fee Related JP3717656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05996798A JP3717656B2 (en) 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05996798A JP3717656B2 (en) 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens

Publications (2)

Publication Number Publication Date
JPH11258531A true JPH11258531A (en) 1999-09-24
JP3717656B2 JP3717656B2 (en) 2005-11-16

Family

ID=13128462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05996798A Expired - Fee Related JP3717656B2 (en) 1998-03-11 1998-03-11 Optical scanning device and scanning imaging lens

Country Status (1)

Country Link
JP (1) JP3717656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215421A (en) * 2000-02-01 2001-08-10 Canon Inc Optical scanning optical system, optical scanner and image forming device using the same
JP2019036495A (en) * 2017-08-21 2019-03-07 株式会社ユーテクノロジー Led illumination device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215421A (en) * 2000-02-01 2001-08-10 Canon Inc Optical scanning optical system, optical scanner and image forming device using the same
JP4497618B2 (en) * 2000-02-01 2010-07-07 キヤノン株式会社 Optical scanning optical system, optical scanning device, and image forming apparatus using the same
JP2019036495A (en) * 2017-08-21 2019-03-07 株式会社ユーテクノロジー Led illumination device

Also Published As

Publication number Publication date
JP3717656B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP3337510B2 (en) Optical scanning device
JP3869704B2 (en) Scanning optical system
JPH10142543A (en) Optical scanning device
JPH08240767A (en) Scanning and imaging lens and optical scanner
JP4227334B2 (en) Scanning optical system
US6512623B1 (en) Scanning optical device
JPH09265041A (en) Scanning image formation lens and optical scanner
JPH1138348A (en) Scanning image forming optical system, and optical scanning device
JP3222754B2 (en) Reflective scanning optical system
JP2865009B2 (en) Scanning lens and optical scanning device
JP3191538B2 (en) Scanning lens and optical scanning device
US5805324A (en) Optical scanner
JPH08240768A (en) Scanning optical system
JP3717656B2 (en) Optical scanning device and scanning imaging lens
JP3421704B2 (en) Scanning imaging lens and optical scanning device
JP3051671B2 (en) Optical scanning lens and optical scanning device
JPH11125777A (en) Optical scanner
JP3804886B2 (en) Imaging optical system for optical scanning device
JP3721487B2 (en) Scanning imaging lens and optical scanning device
JP3558837B2 (en) Scanning optical system and optical scanning device
JP3404204B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JPH10288745A (en) Optical scanning lens and optical scanner
JP3452294B2 (en) Optical scanning lens, scanning imaging lens, and optical scanning device
JP3680895B2 (en) Optical scanning device
JPH08146322A (en) Aspherical reflection mirror and light beam scanning optical system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Effective date: 20050328

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050725

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Effective date: 20050831

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080909

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090909

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110909

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees