JP3034565B2 - Telecentric fθ lens - Google Patents

Telecentric fθ lens

Info

Publication number
JP3034565B2
JP3034565B2 JP2208419A JP20841990A JP3034565B2 JP 3034565 B2 JP3034565 B2 JP 3034565B2 JP 2208419 A JP2208419 A JP 2208419A JP 20841990 A JP20841990 A JP 20841990A JP 3034565 B2 JP3034565 B2 JP 3034565B2
Authority
JP
Japan
Prior art keywords
lens
group
surface facing
image
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2208419A
Other languages
Japanese (ja)
Other versions
JPH0493910A (en
Inventor
克昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP2208419A priority Critical patent/JP3034565B2/en
Publication of JPH0493910A publication Critical patent/JPH0493910A/en
Application granted granted Critical
Publication of JP3034565B2 publication Critical patent/JP3034565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はテレセントリックなfθレンズに関する。Description: TECHNICAL FIELD The present invention relates to a telecentric fθ lens.

[従来の技術] 光源装置からの光束を偏向装置により等角速度的に偏
向させ、偏向光束を結像レンズ系と面倒れ補正レンズと
により走査面上に光スポットとして結像させて光走査を
行う光走査装置が知られている。このような光走査装置
に於いては、等速度的な光走査を実現するために結像レ
ンズ系としてfθレンズが用いられる。
[Prior Art] A light beam from a light source device is deflected at a uniform angular velocity by a deflecting device, and the deflected light beam is imaged as a light spot on a scanning surface by an imaging lens system and a surface tilt correction lens to perform optical scanning. Optical scanning devices are known. In such an optical scanning device, an fθ lens is used as an imaging lens system in order to realize uniform optical scanning.

一般に知られたfθレンズはテレセントリックでな
く、このため走査面位置とfθレンズとの光軸方向の距
離が設計上の距離からずれると、設計通りのfθ特性が
得られないという問題がある。
The generally known fθ lens is not telecentric, and therefore, if the distance between the scanning plane position and the fθ lens in the optical axis direction deviates from the designed distance, there is a problem that the designed fθ characteristics cannot be obtained.

従来、テレセントリックなfθレンズとしては特開昭
62−299927号公報開示のものがある。
Conventionally, as a telecentric fθ lens,
There is one disclosed in JP-A-62-299927.

[発明が解決しようとする課題] このfθレンズではレンズ最終面と走査面との間隔が
狭く、面倒れ補正レンズを配備する余裕がない。
[Problems to be Solved by the Invention] In this fθ lens, the distance between the final lens surface and the scanning surface is narrow, and there is no room for disposing a surface tilt correction lens.

このため面倒れ補正を行うことが出来ない。 For this reason, face tilt correction cannot be performed.

本発明はこのような事情に鑑みてなされたものであっ
て、面倒れ補正用レンズとともに用いることができ、諸
収差が良好に補正されたテレセントリックなfθレンズ
の提供を目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a telecentric fθ lens that can be used together with a surface tilt correction lens and has various aberrations well corrected.

[課題を解決するための手段] 以下、本発明を説明する。[Means for Solving the Problems] Hereinafter, the present invention will be described.

本発明のfθレンズは、「光源装置からの光束を偏向
装置により等角速度的に偏向させ、偏向光束を結像レン
ズ系と面倒れ補正レンズとにより走査面上に光スポット
として結像させて光走査を行う光走査装置に於いて結像
レンズ系として用いられるレンズ系」であって、物体側
から像側へ向って第1乃至第4群を順次配してなる。
The fθ lens of the present invention provides a light source that deflects a light beam from a light source device at a constant angular velocity by a deflecting device, and forms an image of the deflected light beam as a light spot on a scanning surface by an imaging lens system and a surface tilt correction lens. A lens system used as an imaging lens system in an optical scanning device that performs scanning, and includes a first group to a fourth group sequentially arranged from the object side to the image side.

「第1群」は、正レンズとすることも負レンズとする
こともできる。
The “first group” may be a positive lens or a negative lens.

「第2群」は物体側に凹面を向けた負メニスカスレン
ズ、「第3群」は物体側に凹面を向けた正メニスカスレ
ンズ、「第4群」は像側レンズ面が凸面である正レンズ
である。
The “second group” is a negative meniscus lens having a concave surface facing the object side, the “third group” is a positive meniscus lens having a concave surface facing the object side, and the “fourth group” is a positive lens having a convex image-side lens surface. It is.

全系の合成焦点距離をf、第3群の焦点距離をf3、第
2群レンズの物体側および像側のレンズ面の曲率半径を
それぞれRIII,RIV、第2,第3群間の軸上空気間隔を
DIV、第3群レンズの材質の屈折率をnIIIとするとき、
これらは (I) 0.4<f/f3<0.95 (II) −0.3<RIII/f<−0.2 (III) −0.4<RIV/f<−0.3 (IV) 0<DIV/f<0.06 (V) 1.6<nIII なる条件を満足する。
The combined focal length of the entire system is f, the focal length of the third group is f 3 , the radii of curvature of the object-side and image-side lens surfaces of the second group lens are R III , R IV , and the second and third groups, respectively. On-axis air spacing
D IV , when the refractive index of the material of the third lens unit is n III ,
These are (I) 0.4 <f / f 3 <0.95 (II) −0.3 <R III /f<−0.2 (III) −0.4 <R IV /f<−0.3 (IV) 0 <D IV /f<0.06 (V) The condition 1.6 <n III is satisfied.

第1群は、1枚もしくは2枚のレンズで構成される。 The first group includes one or two lenses.

第1図乃至第3図にそれぞれ請求項2〜4のfθレン
ズのレンズ構成を示す。これらの図に於いて符号G2は第
2群、符号G3は第3群、符号G4は第4群を示す。図の左
側が物体側即ち偏向装置側であり、右側は像側即ち像面
S側である。
FIGS. 1 to 3 show the lens structure of the fθ lens according to claims 2 to 4, respectively. In these figures, reference numeral G2 denotes a second lens unit, reference numeral G3 denotes a third lens unit, and reference numeral G4 denotes a fourth lens unit. The left side of the figure is the object side, that is, the deflecting device side, and the right side is the image side, that is, the image plane S side.

第1図に示すように、請求項2のレンズ構成におい
て、第1群は物体側に凸面を向けた負メニスカスレンズ
G1である。
As shown in FIG. 1, in the lens configuration according to claim 2, the first group is a negative meniscus lens having a convex surface facing the object side.
G1.

第2図に示すように、請求項3のレンズ構成に於い
て、第1群は「物体側に凸面を向けた正レンズG11と、
この正レンズG11の像側に接合され像側に凹面を向けた
負レンズG12とで構成される。
As shown in FIG. 2, in the lens configuration of claim 3, the first group includes a positive lens G11 having a convex surface facing the object side,
The negative lens G12 is cemented to the image side of the positive lens G11 and has a concave surface facing the image side.

第3図に示すように、請求項3のレンズ構成に於い
て、第1群は「物体側に凸面を向けた正レンズG13と、
この正レンズG13の像側に配備され像側に凹面を向けた
負レンズG14とで構成される。
As shown in FIG. 3, in the lens configuration of claim 3, the first group includes a positive lens G13 having a convex surface facing the object side,
The negative lens G14 is provided on the image side of the positive lens G13 and has a concave surface facing the image side.

従って、請求項2のレンズ配置ではfθレンズは4群
4枚構成、請求項3、4のレンズ構成ではfθレンズは
4群5枚構成である。
Therefore, in the lens arrangement of the second aspect, the fθ lens has four elements in four groups, and in the lens arrangement of the third and fourth aspects, the fθ lens has four elements in four groups.

[作用] 上記条件(I)〜(V)に就いて説明する。[Operation] The conditions (I) to (V) will be described.

条件(I)〜(III)は何れもfθ特性(光軸に対し
θの角をもって入射する光束に対する理想像高をfθ、
実際の像高をH′とするとき、{H′−fθ}・100/f
θ(%)で定義される)およびコマ収差を補正する条件
であり、これら条件の上限を越えると、fθ特性・コマ
収差とも補正オーバーとなり、下限を越えると補正アン
ダーとなる。
Conditions (I) to (III) are all fθ characteristics (the ideal image height for a light beam incident at an angle of θ with respect to the optical axis is fθ,
When the actual image height is H ′, {H′−fθ} · 100 / f
θ (%)) and coma aberration are corrected. If the upper limit of these conditions is exceeded, the fθ characteristic and coma aberration are over-corrected, and if the lower limit is exceeded, the correction is under-corrected.

条件(IV)はfθ特性を補正するための条件であり、
上限を越えると補正オーバーになる。
Condition (IV) is a condition for correcting the fθ characteristic,
If the upper limit is exceeded, the correction will be over.

条件(V)はfθ特性と主走査方向の像面湾曲を補正
するための条件であり、条件範囲外ではfθ特性は補正
アンダーになり、残存像面湾曲も大きくなる。
The condition (V) is a condition for correcting the fθ characteristic and the field curvature in the main scanning direction. Outside the condition range, the fθ characteristic is undercorrected, and the residual field curvature increases.

なお本発明のfθレンズは面倒れ補正レンズと伴に使
用され、面倒れ補正レンズに副走査方向の像面湾曲除去
機能があるので、fθレンズにおける副走査方向の像面
湾曲補正は問題とする必要がない。
Since the fθ lens of the present invention is used together with the surface tilt correction lens, and the surface tilt correction lens has a function of removing the field curvature in the sub scanning direction, the field curvature correction in the sub scanning direction of the fθ lens is a problem. No need.

また第1〜3図に示すように、最終レンズ面と像面と
の間には、面倒れ補正レンズを配備するのに十分な余地
がある。
Further, as shown in FIGS. 1 to 3, there is enough room between the final lens surface and the image surface to dispose a surface tilt correction lens.

以下、第4図及び第5図を参照して本発明のfθレン
ズの使用例を簡単に説明する。
Hereinafter, an example of use of the fθ lens of the present invention will be briefly described with reference to FIGS. 4 and 5.

第4図に於いて、光源装置1は例えば半導体レーザー
とコリメートレンズとにより構成され、実質的な平行光
束を放射する。
In FIG. 4, the light source device 1 is composed of, for example, a semiconductor laser and a collimating lens, and emits a substantially parallel light beam.

平行光束は、副走査対応方向に正の屈折力を持つシリ
ンダーレンズ2により副走査対応方向に集束されて、偏
向装置たる回転多面鏡3の偏向反射面4上に副走査対応
方向に長い線像として結像する。偏向反射面4に反射さ
れた光束は偏向光束となり。回転多面鏡3の回転に伴い
等角速度的に偏向する。
The parallel light beam is converged in the sub-scanning corresponding direction by the cylinder lens 2 having a positive refractive power in the sub-scanning corresponding direction, and a linear image long in the sub-scanning corresponding direction is formed on the deflecting / reflecting surface 4 of the rotary polygon mirror 3 as a deflecting device. As an image. The light beam reflected by the deflecting reflection surface 4 becomes a deflecting light beam. The light is deflected at a constant angular velocity with the rotation of the rotary polygon mirror 3.

偏向光束は次いで、fθレンズ5と面倒れ補正レンズ
6とを透過し、これらレンズの作用により走査面7上に
光スポットとして結像する。
The deflected light beam then passes through the fθ lens 5 and the surface tilt correction lens 6, and forms an image as a light spot on the scanning surface 7 by the action of these lenses.

第5図は光源装置から走査面までを光路にそって展開
し、副走査方向が上下方向となるように描いた図であ
る。図に示すように、この例ではfθレンズ5と面倒れ
補正レンズ6とによって偏向反射面4と走査面7とが副
走査対応方向に関して幾何光学的に略共役な関係となっ
ており、偏向反射面4が破線で示すように面倒れを起こ
しても光スポットの結像位置は副走査方向に移動しな
い。従って面倒れは補正される。
FIG. 5 is a diagram in which the area from the light source device to the scanning surface is developed along the optical path, and the sub-scanning direction is the vertical direction. As shown in the figure, in this example, the fθ lens 5 and the surface tilt correction lens 6 make the deflecting reflecting surface 4 and the scanning surface 7 substantially geometrically optically conjugate with respect to the sub-scanning corresponding direction. Even when the surface 4 is tilted as shown by the broken line, the image forming position of the light spot does not move in the sub-scanning direction. Therefore, the tilting is corrected.

偏向装置としては回転多面鏡の他、ピラミダルミラー
を使用できる。また面倒れ補正レンズとしては第4、5
図に示す長尺シリンダーレンズの他に長尺トロイダルレ
ンズ等を使用できる。
As the deflecting device, a pyramidal mirror can be used in addition to the rotary polygon mirror. In addition, as the surface tilt correction lens, the fourth and fifth lenses are used.
In addition to the long cylinder lens shown in the figure, a long toroidal lens or the like can be used.

また本発明のfθレンズを使用する上で、光源装置か
らの光束を偏向反射面近傍に線像に結像させる必要は必
ずしもなく、fθレンズと面倒れ補正レンズとで偏向反
射面と走査面とを副走査対応方向に関して幾何光学的な
共役関係とすることも必ずしも必要でない。
Further, in using the fθ lens of the present invention, it is not always necessary to form a light beam from the light source device into a linear image near the deflecting / reflecting surface. Is not necessarily required to have a geometrical conjugate relationship with respect to the sub-scanning corresponding direction.

[実施例] 以下、具体的な実施例を7例挙げる。EXAMPLES Seven specific examples will be given below.

各実施例に於いて、fは全系の合成焦点距離、2θは
偏向角を示す。
In each embodiment, f indicates the combined focal length of the entire system, and 2θ indicates the deflection angle.

物体側から数えて第i番目のレンズ面の曲率半径をRi
(i=1〜10)、第i番目と第i+1番目のレンズ面の
間の光軸上の間隔をDi(i=1〜9)、物体側から数え
て第j番目のレンズの材質の屈折率をnj(j=1〜5)
で表す。
The radius of curvature of the i-th lens surface counted from the object side is R i
(I = 1 to 10), the i-th and the distance on the optical axis between the (i + 1) th lens surface D i (i = 1~9), the material of the j-th lens counted from the object side The refractive index is n j (j = 1 to 5)
Expressed by

またK1,K2,K3,K4,K5をもってそれぞれ、条件(I)〜
(V)の各パラメーターを表す。
Further, K 1 , K 2 , K 3 , K 4 , and K 5 are respectively used as conditions (I) to
(V) represents each parameter.

また各実施例とも入射光束は主走査対応方向に関して
は平行光束であり、偏向反射面と第1レンズ面との間の
光軸上距離をD0とする。
The incident light beam in each embodiment is a parallel light beam in the main scanning corresponding direction, an optical axis distance between the deflection reflecting surface and the first lens surface and D 0.

最初に挙げる実施例1〜3は請求項2のレンズ構成に
よる実施例である。
The first to third embodiments are embodiments based on the lens configuration of claim 2.

実施例1 f=50,2θ=48度、K1=0.848,K2=−0.259,K3=−0.
359,K4=0.017,K5=1.82802 i Ri Di j nj 0 12.690 1 38.247 5.984 1 1.51390 2 30.573 13.056 3 −12.927 5.440 2 1.83486 4 −17.975 0.870 5 −105.846 8.704 3 1.82802 6 −34.648 0.544 7 2003.630 6.528 4 1.79929 8 −106.038 実施例2 f=50,2θ=48度、K1=0.818,K2=−0.252,K3=−0.
367,K4=0.017,K5=1.82802 i Ri Di j nj 0 11.720 1 44.541 5.984 1 1.51390 2 31.763 13.056 3 −12.587 5.440 2 1.61420 4 −18.353 0.870 5 −77.306 8.704 3 1.82802 6 −32.149 0.544 7 −588.653 6.528 4 1.79929 8 −74.204 実施例3 f=50,2θ=48度、K1=0.778,K2=−0.263,K3=−0.
371,K4=0.017,K5=1.79929 i Ri Di j nj 0 8.456 1 29.446 5.984 1 1.51390 2 25.097 16.320 3 −13.153 5.440 2 1.83486 4 −18.557 0.870 5 −69.614 8.704 3 1.79929 6 −31.194 0.544 7 238.045 6.528 4 1.79929 8 −130.703 次ぎに挙げる実施例4,5は請求項3のレンズ構成によ
る実施例である。
Example 1 f = 50, 2θ = 48 degrees, K 1 = 0.848, K 2 = −0.259, K 3 = −0.
359, K 4 = 0.017, K 5 = 1.82802 i R i D i ij n j 0 12.690 1 38.247 5.984 1 1.51390 2 30.573 13.056 3 -12.927 5.440 2 1.83486 4 -17.975 0.870 5 -105.846 8.704 3 1.82802 6 -34.648 0.544 7 2003.630 6.528 4 1.79929 8 -106.038 Example 2 f = 50,2θ = 48 degrees, K 1 = 0.818, K 2 = −0.252, K 3 = −0.
367, K 4 = 0.017, K 5 = 1.82802 i R i D i ij n j 0 11.720 1 44.541 5.984 1 1.51390 2 31.763 13.056 3 -12.587 5.440 2 1.61420 4 -18.353 0.870 5 -77.306 8.704 3 1.82802 6 -32.149 0.544 7 −588.653 6.528 4 1.79929 8 −74.204 Example 3 f = 50, 2θ = 48 degrees, K 1 = 0.778, K 2 = −0.263, K 3 = −0.
371, K 4 = 0.017, K 5 = 1.79929 i R i D i j n j 0 8.456 1 29.446 5.984 1 1.51390 2 25.097 16.320 3 -13.153 5.440 2 1.83486 4 -18.557 0.870 5 -69.614 8.704 3 1.79929 6 -31.194 0.544 7 238.045 6.528 4 1.79929 8 -130.703 The following Embodiments 4 and 5 are embodiments based on the lens configuration of Claim 3.

実施例4 f=50,2θ=48度、K1=0.536,K2=−0.260,K3=−0.
360,K4=0.017,K5=1.82802 i Ri Di j nj 0 11.286 1 30.384 4.896 1 1.82802 2 −35.417 2.089 2 1.74601 3 24.409 12.832 4 −13.024 3.264 3 1.83486 5 −18.012 0.870 6 −36.364 8.704 4 1.82802 7 −27.399 0.870 8 300.145 9.792 5 1.82802 9 −62.923 実施例5 f=50,2θ=48度、K1=0.811,K2=−0.250,K3=−0.
342,K4=0.017,K5=1.82802 i Ri Di j nj 0 12.134 1 53.194 4.896 1 1.79465 2 380.799 1.629 2 1.61420 3 32.428 13.056 4 −12.497 3.264 3 1.83486 5 −17.088 0.870 6 −51.338 8.160 4 1.82802 7 −27.436 0.870 8 −463.494 9.792 5 1.82802 9 −60.789 最後に挙げる実施例6,7は請求項4のレンズ構成によ
る実施例である。
Example 4 f = 50, 2θ = 48 degrees, K 1 = 0.536, K 2 = −0.260, K 3 = −0.
360, K 4 = 0.017, K 5 = 1.82802 i R i D i j n j 0 11.286 1 30.384 4.896 1 1.82802 2 -35.417 2.089 2 1.74601 3 24.409 12.832 4 -13.024 3.264 3 1.83486 5 -18.012 0.870 6 -36.364 8.704 4 1.82802 7 -27.399 0.870 8 300.145 9.792 5 1.82802 9 -62.923 Example 5 f = 50,2θ = 48 degrees, K 1 = 0.811, K 2 = −0.250, K 3 = −0.
342, K 4 = 0.017, K 5 = 1.82802 i R i D i ij n j 0 12.134 1 53.194 4.896 1 1.79465 2 380.799 1.629 2 1.61420 3 32.428 13.056 4 -12.497 3.264 3 1.83486 5 −17.088 0.870 6 −51.338 8.160 4 1.82802 7−27.436 0.870 8−463.494 9.792 5 1.82802 9−60.789 Finally, the sixth and seventh embodiments are embodiments based on the lens configuration of claim 4.

実施例6 f=50,2θ=48度、K1=0.558,K2=−0.252,K3=−0.
344,K4=0.017,K5=1.82802 i Ri Di j nj 0 10.732 1 66.716 4.896 1 1.82802 2 −127.315 1.632 3 −271.999 1.629 2 1.74601 4 37.719 10.931 5 −12.587 3.264 3 1.83486 6 −17.197 0.870 7 −36.166 9.556 4 1.82802 8 −27.223 0.870 9 400.541 9.792 5 1.82802 10 −62.349 実施例7 f=50,2θ=48度、K1=0.511,K2=−0.251,K3=−0.
344,K4=0.017,K5=1.82802 i Ri Di j nj 0 12.456 1 62.955 4.896 1 1.82802 2 701.244 1.632 3 271.599 1.629 2 1.61420 4 33.247 10.931 5 −12.552 3.264 3 1.83486 6 −17.206 0.870 7 −32.289 6.528 4 1.82802 8 −25.196 0.870 9 1191.683 9.792 5 1.82802 10 −50.379 実施例1〜7に関する収差図を第6図乃至第12図に順
次示す。非点収差における破線はメリディオナル、実線
はサジタルである。収差は各実施例とも良好に補正され
ている。
Example 6 f = 50, 2θ = 48 degrees, K 1 = 0.558, K 2 = −0.252, K 3 = −0.
344, K 4 = 0.017, K 5 = 1.82802 i R i D i ij n j 0 10.732 1 66.716 4.896 1 1.82802 2 -127.315 1.632 3 -271.999 1.629 2 1.74601 4 37.719 10.931 5 -12.587 3.264 3 1.83486 6 -17.197 0.870 7 −36.166 9.556 4 1.82802 8 −27.223 0.870 9 400.541 9.792 5 1.82802 10 −62.349 Example 7 f = 50, 2θ = 48 degrees, K 1 = 0.511, K 2 = −0.251, K 3 = −0.
344, K 4 = 0.017, K 5 = 1.82802 i R i D i ij n j 0 12.456 1 62.955 4.896 1 1.82802 2 701.244 1.632 3 271.599 1.629 2 1.61420 4 33.247 10.931 5 -12.552 3.264 3 1.83486 6 -17.206 0.870 7-32.289 6.528 4 1.82802 8 -25.196 0.870 9 1191.683 9.792 5 1.82802 10 -50.379 FIGS. 6 to 12 show aberration diagrams for Examples 1 to 7. The broken line in astigmatism is meridional, and the solid line is sagittal. Aberration is well corrected in each embodiment.

[発明の効果] 以上、本発明によればテレセントリックなfθレンズ
を提供できる。
[Effects of the Invention] As described above, according to the present invention, a telecentric fθ lens can be provided.

このfθレンズは諸収差が良好に補正され、テレセン
トリックであるので走査面とfθレンズの距離が光軸方
向にずれても適性なfθ特性を実現できる。またレンズ
最終面から走査面までの間隔が大きいので面倒れ補正レ
ンズとともに使用することができる。
Since the fθ lens is well corrected for various aberrations and is telecentric, an appropriate fθ characteristic can be realized even if the distance between the scanning surface and the fθ lens is shifted in the optical axis direction. Further, since the distance from the last lens surface to the scanning surface is large, it can be used together with a surface tilt correction lens.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第3図は本発明のfθレンズのレンズ構成
を説明するための図、第4図及び第5図は本発明のfθ
レンズの使用の1例を説明する図、第6図ないし第12図
は各実施例に関する収差図である。 G1……第1群の負メニスカスレンズ、G2……第2群、G3
……第3群、G4……第4群
1 to 3 are views for explaining the lens configuration of the fθ lens of the present invention, and FIGS. 4 and 5 are fθ lenses of the present invention.
FIG. 6 to FIG. 12 are diagrams illustrating an example of use of a lens, and FIG. 6 to FIG. G1 ... Negative meniscus lens of the first group, G2 ... Second group, G3
…… Third group, G4 …… Fourth group

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源装置からの光束を偏向装置により等角
速度的に偏向させ、偏向光束を結像レンズ系と面倒れ補
正レンズとにより走査面上に光スポットとして結像させ
て光走査を行う光走査装置に於いて結像レンズ系として
用いられるレンズ系であって、 物体側から像側へ向って第1乃至第4群を順次配してな
り、 第2群は物体側に凹面を向けた負メニスカスレンズ、第
3群は物体側に凹面を向けた正メニスカスレンズ、第4
群は像側レンズ面が凸面である正レンズであり、 全系の合成焦点距離をf、第3群の焦点距離をf3、第2
群レンズの物体側および像側のレンズ面の曲率半径をそ
れぞれRIII,RIV、第2,第3群間の軸上空気間隔をDIV
第3群レンズの材質の屈折率をnIIIとするとき、これら
が (I) 0.4<f/f3<0.95 (II) −0.3<RIII/f<−0.2 (III) −0.4<RIV/f<−0.3 (IV) 0<DIV/f<0.06 (V) 1.6<nIII なる条件を満足することを特徴とするテレセントリック
なfθレンズ。
A light beam from a light source device is deflected at a constant angular velocity by a deflecting device, and the deflected light beam is imaged as a light spot on a scanning surface by an imaging lens system and a surface tilt correction lens to perform optical scanning. A lens system used as an imaging lens system in an optical scanning device, comprising a first group to a fourth group sequentially arranged from the object side to the image side, and a second group having a concave surface facing the object side. A negative meniscus lens, the third group is a positive meniscus lens having a concave surface facing the object side,
The group is a positive lens having a convex image-side lens surface. The combined focal length of the entire system is f, the focal length of the third group is f 3 ,
The radii of curvature of the object-side and image-side lens surfaces of the group lens are R III and R IV , respectively, the on-axis air gap between the second and third groups is D IV ,
Assuming that the refractive index of the material of the third lens unit is n III , they are (I) 0.4 <f / f 3 <0.95 (II) −0.3 <R III /f<−0.2 (III) −0.4 <R IV /f<-0.3 (IV) 0 <D IV /f<0.06 (V) 1.6 <n III A telecentric fθ lens characterized by satisfying the following condition:
【請求項2】請求項1に於いて、 第1群が物体側に凸面を向けた負メニスカスレンズであ
ることを特徴とする4群4枚構成のテレセントリックな
fθレンズ。
2. The telecentric fθ lens according to claim 1, wherein the first group is a negative meniscus lens having a convex surface facing the object side.
【請求項3】請求項1に於いて、 第1群が物体側に凸面を向けた正レンズと、この正レン
ズの像側に接合され像側に凹面を向けた負レンズとで構
成されることを特徴とする4群5枚構成のテレセントリ
ックなfθレンズ。
3. The method according to claim 1, wherein the first lens unit includes a positive lens having a convex surface facing the object side, and a negative lens having a concave surface facing the image side of the positive lens joined to the image side. A telecentric fθ lens having a configuration of five elements in four groups.
【請求項4】請求項1に於いて、 第1群が物体側に凸面を向けた正レンズと、この正レン
ズの像側に配備され像側に凹面を向けた負レンズとで構
成されることを特徴とする4群5枚構成のテレセントリ
ックなfθレンズ。
4. The positive lens according to claim 1, wherein the first lens unit includes a positive lens having a convex surface facing the object side, and a negative lens disposed on the image side of the positive lens and having a concave surface facing the image side. A telecentric fθ lens having a configuration of five elements in four groups.
JP2208419A 1990-08-06 1990-08-06 Telecentric fθ lens Expired - Fee Related JP3034565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208419A JP3034565B2 (en) 1990-08-06 1990-08-06 Telecentric fθ lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208419A JP3034565B2 (en) 1990-08-06 1990-08-06 Telecentric fθ lens

Publications (2)

Publication Number Publication Date
JPH0493910A JPH0493910A (en) 1992-03-26
JP3034565B2 true JP3034565B2 (en) 2000-04-17

Family

ID=16555919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208419A Expired - Fee Related JP3034565B2 (en) 1990-08-06 1990-08-06 Telecentric fθ lens

Country Status (1)

Country Link
JP (1) JP3034565B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201394B2 (en) 1999-08-10 2001-08-20 住友電気工業株式会社 fθ lens
WO2004068746A1 (en) * 2003-01-31 2004-08-12 Mitsubishi Denki Kabushiki Kaisha Optical antenna
KR100616643B1 (en) * 2004-12-21 2006-08-28 삼성전기주식회사 Lens System For Subminiature Camera Module
US7466331B2 (en) * 2005-12-07 2008-12-16 Palo Alto Research Center Incorporated Bow-free telecentric optical system for multiple beam scanning systems
JP2015045773A (en) * 2013-08-29 2015-03-12 富士フイルム株式会社 Scanning optical system, optical scanning device, and radiation image reading apparatus

Also Published As

Publication number Publication date
JPH0493910A (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US4850663A (en) Light scanning system
JP2584640B2 (en) Scanning optical system such as laser beam printer
JP2776465B2 (en) Fθ lens system in optical scanning device
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP3061829B2 (en) Fθ lens system in optical scanning device
JP3034565B2 (en) Telecentric fθ lens
JP2550153B2 (en) Optical scanning device
JP2945097B2 (en) Telecentric fθ lens
JP2702516B2 (en) fθ lens
JP2956169B2 (en) Scanning optical device
JP2511904B2 (en) Optical beam scanning device
JP2738857B2 (en) Fθ lens system in optical scanning device
JP3437331B2 (en) Optical scanning optical system and laser beam printer including the same
JPS61175607A (en) Scanning optical system
JPH1184304A (en) Optical scanner
JP2790845B2 (en) Fθ lens system in optical scanning device
JP2695208B2 (en) Fθ lens system in optical scanning device
JP4445059B2 (en) Scanning imaging lens and optical scanning device
JP2583856B2 (en) Optical beam scanning device
JP2775434B2 (en) Scanning optical system
JP2927846B2 (en) Fθ lens system in optical scanning device
JP2856475B2 (en) Fθ lens for optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JP2840354B2 (en) Fθ lens system in optical scanning device
JPS63104009A (en) Constant speed scanning lens

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees