JP3266350B2 - fθ lens and optical scanning device - Google Patents

fθ lens and optical scanning device

Info

Publication number
JP3266350B2
JP3266350B2 JP00590593A JP590593A JP3266350B2 JP 3266350 B2 JP3266350 B2 JP 3266350B2 JP 00590593 A JP00590593 A JP 00590593A JP 590593 A JP590593 A JP 590593A JP 3266350 B2 JP3266350 B2 JP 3266350B2
Authority
JP
Japan
Prior art keywords
lens
group
scanned
optical
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00590593A
Other languages
Japanese (ja)
Other versions
JPH06214153A (en
Inventor
克昭 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Optical Industries Co Ltd
Original Assignee
Ricoh Optical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Optical Industries Co Ltd filed Critical Ricoh Optical Industries Co Ltd
Priority to JP00590593A priority Critical patent/JP3266350B2/en
Publication of JPH06214153A publication Critical patent/JPH06214153A/en
Application granted granted Critical
Publication of JP3266350B2 publication Critical patent/JP3266350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はfθレンズおよび光走
査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an f.theta. Lens and an optical scanning device.

【0002】[0002]

【従来の技術】fθレンズは、回転多面鏡等の光偏向装
置により等角速度的に偏向される偏向光束を被走査面に
向かって集束させ、被走査面上における光スポットの移
動を等速的にするためのレンズとして知られ、種々のも
のが提案されている。
2. Description of the Related Art An fθ lens focuses a deflecting light beam deflected at an equal angular velocity by an optical deflecting device such as a rotary polygon mirror toward a surface to be scanned, and moves the light spot on the surface to be scanned at a constant speed. Various types of lenses have been proposed.

【0003】近来、小型で走査領域が広く、且つ光走査
特性に優れた光走査装置が要請されており、これに伴
い、小型・広画角でfθ特性に優れ、尚且つ光スポット
径の変動の小さいfθレンズが求められている。
In recent years, there has been a demand for an optical scanning device which is small in size, has a wide scanning area, and has excellent optical scanning characteristics. The fθ lens of which is small is required.

【0004】[0004]

【発明が解決しようとする課題】この発明は上述の事情
に鑑みてなされたものであって、主・副走査方向の像面
湾曲が有効走査領域全域にわたって良好に補正され、有
効偏向角が90度近い広角であり、fθ特性に優れ、小
型で安価に製造できる新規なfθレンズと、このfθレ
ンズを用いる光走査装置の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and the curvature of field in the main and sub-scanning directions is satisfactorily corrected over the entire effective scanning area. It is an object of the present invention to provide a novel fθ lens which is close to a wide angle, has excellent fθ characteristics, is small in size and can be manufactured at low cost, and an optical scanning device using the fθ lens.

【0005】[0005]

【課題を解決するための手段】この発明のfθレンズ
は、図1に示すように「光偏向器3側から被走査面8側
へ向かって第1群5,第2群6,第3群7を配してなる
3群3枚構成」である。第1群5は光偏向器3側に凹面
を向けたメニスカスレンズであるが、少なくとも一方の
面が非球面である。第2群6は「被走査面側の面の曲率
が光偏向器側の面の曲率よりも強い」正レンズである。
第3群は単レンズで、光偏向器3側の面および被走査面
8側の面とも「副走査対応方向の曲率が主走査対応方向
の曲率よりも強いトーリック面」であり、光偏向器3側
の面が凹トーリック面、被走査面側の面が凸トーリック
面である。なお上記「凹トーリック面」は、主走査対応
方向の曲率半径が∞の場合、即ち「凹シリンダー面」を
含む(実施例5)。
As shown in FIG. 1, the fθ lens according to the present invention comprises a first group 5, a second group 6, and a third group from the optical deflector 3 toward the surface 8 to be scanned. 7 in a three-group, three-element configuration. The first group 5 has a concave surface on the optical deflector 3 side.
, But at least one surface is an aspheric surface. The second group 6 is a positive lens that has a “curvature on the surface to be scanned side stronger than a curvature on the surface on the optical deflector side”.
The third group is a single lens, and both the surface on the side of the optical deflector 3 and the surface on the side of the scanned surface 8 are “toric surfaces in which the curvature in the sub-scanning direction is stronger than the curvature in the main scanning direction”. The surface on the third side is a concave toric surface, and the surface on the scanned surface side is a convex toric surface. The “concave toric surface” includes the case where the radius of curvature in the main scanning corresponding direction is ∞, that is, the “concave cylinder surface” (Example 5).

【0006】「主走査対応方向」とは、光源装置から被
走査面に到る光路を光軸に沿って直線的に展開した仮想
的な光路上で主走査方向に平行的に対応する方向であ
り、上記光路上で副走査方向に平行的に対応する方向が
「副走査対応方向」である。
The “main scanning corresponding direction” is a direction parallel to the main scanning direction on an imaginary optical path in which an optical path from the light source device to the surface to be scanned is linearly developed along the optical axis. The direction corresponding to the sub-scanning direction on the optical path in parallel to the sub-scanning direction is the “sub-scanning corresponding direction”.

【0007】レンズ全系の主走査対応方向における合成
焦点距離をf、第1群の焦点距離をf、第1群の光偏
向器側および被走査面側の面の光軸上曲率半径をそれぞ
れR,R、第3群の副走査対応方向における焦点距
離をf3y、第3群の光偏向器側および被走査面側の面
の主走査対応方向における曲率半径をそれぞれR5x
6xとするとき、これらは条件 (1) 0.7<R/R<1.1 (2) −0.4<R/f<−0.1 (3) −0.4<f/f<0.3 (4) −0.6<R6x/R5x<1.1 (5) 0.3<f 3y /f<0.4 を満足する。第3群7がアナモフィックであることによ
りfθレンズ自体もアナモフィックであり、副走査対応
方向においてより強い正の屈折力を持つ。
The combined focal length in the main scanning direction of the entire lens system is f, the focal length of the first lens unit is f 1 , and the radius of curvature of the first lens unit on the optical deflector side and the surface to be scanned is on the optical axis. R 1 and R 2 , the focal length in the sub-scanning corresponding direction of the third group are f 3y , and the radii of curvature of the third group on the optical deflector side and the surface to be scanned in the main scanning corresponding direction are R 5x and R 5x , respectively.
When the R 6x, these conditions (1) 0.7 <R 1 / R 2 <1.1 (2) -0.4 <R 1 /f<-0.1 (3) -0.4 < f / f 1 <0.3 (4) −0.6 <R 6x / R 5x <1.1 (5) 0.3 <f 3y /f<0.4 is satisfied. Since the third lens unit 7 is anamorphic, the fθ lens itself is also anamorphic and has a stronger positive refractive power in the sub-scanning corresponding direction.

【0008】上記第1群の非球面は、「被走査面側の
面」に採用しても良いし(請求項2)、「光偏向器側の
面」に採用しても良く(請求項3)、「光偏向器側およ
び被走査面側の面」をともに非球面としてもよい(請求
項4)。また第2群のレンズ形態は「両凸レンズ」とし
ても良いし(請求項5)、「光偏向器側に凹面を向けた
正メニスカスレンズ」としても良い(請求項6)。
The first group of aspherical surfaces may be used for the “surface on the side to be scanned” (claim 2) or may be used for the “surface on the optical deflector side” (claim). 3) The "surface on the optical deflector side and the surface to be scanned side" may both be aspherical. The lens configuration of the second group may be a “biconvex lens” (Claim 5) or a “positive meniscus lens having a concave surface facing the optical deflector” (Claim 6).

【0009】この発明の光走査装置は、図1に示すよう
に、光源装置1からから放射される実質的な平行光束を
線像結像光学系2により主走査対応方向に長い線像とし
て結像させ、上記線像の結像位置の近傍に偏向反射面4
を有する光偏向器3により等角速度的に偏向させ、偏向
光束を結像光学系により被走査面8上に光スポットとし
て集光させて上記被走査面の等速的な光走査を行う光走
査装置であって、上記結像光学系として、請求項1また
は2または3または4または5または6記載のアナモフ
ィックなfθレンズを用いることを特徴とする(請求項
7)。上記線像結像光学系2としては例えばシリンダレ
ンズを用いることができ、光偏向器としては回転多面鏡
の外に、回転2面鏡や回転単面鏡を用いることができ
る。
As shown in FIG. 1, the optical scanning device according to the present invention forms a substantially parallel light beam emitted from a light source device 1 as a line image long in a main scanning corresponding direction by a line image forming optical system 2. And a deflecting reflecting surface 4 near the image forming position of the line image.
An optical deflector 3 having an optical deflector 3 having a constant angular velocity, and converging a deflected light beam as a light spot on a surface 8 to be scanned by an image forming optical system to perform uniform optical scanning of the surface to be scanned. An apparatus, wherein an anamorphic fθ lens according to claim 1, 2, 3, 4, 5, or 6 is used as the imaging optical system (claim 7). For example, a cylinder lens can be used as the line image forming optical system 2, and a rotary two-sided mirror or a rotary single-sided mirror can be used as the optical deflector in addition to the rotary polygonal mirror.

【0010】[0010]

【作用】この発明のfθレンズは、光走査装置に用いら
れるときは上記請求項7に記載されたように、副走査対
応方向に関しては、光偏向器3の偏向反射面4近傍に結
像する線像を被走査面8上に結像するので、fθレンズ
は副走査対応方向に関して被走査面位置と偏向反射面位
置とを「幾何光学的な共役関係」としており、従って請
求項7記載の光走査装置は、光偏向器における所謂「面
倒れ」を補正する機能を持つ。
When the fθ lens of the present invention is used in an optical scanning device, as described in claim 7, an image is formed in the vicinity of the deflecting / reflecting surface 4 of the optical deflector 3 in the sub-scanning corresponding direction. Since the line image is formed on the surface 8 to be scanned, the fθ lens sets the position of the surface to be scanned and the position of the deflecting / reflecting surface in the sub-scanning corresponding direction in a “geometric optical conjugate relationship”. The optical scanning device has a function of correcting a so-called "surface tilt" in the optical deflector.

【0011】条件(1)は、fθ特性を補正するための
条件である。条件(1)の上限を超えるとfθ特性はア
ンダーとなり、逆に下限を超えるとオーバーとなる。
The condition (1) is a condition for correcting the fθ characteristic. When the value exceeds the upper limit of the condition (1), the fθ characteristic becomes under, and when the value exceeds the lower limit, the value becomes over.

【0012】条件(2)も条件(1)と同じく、fθ特
性を補正するための条件である。条件(2)の上限を超
えると、第1群の光偏向器側面の負の屈折力が弱くな
り、fθ特性はオーバーとなる。逆に条件(2)の下限
を超えると、上記面の負の屈折力が強くなり、fθ特性
はアンダーとなる。
Condition (2) is a condition for correcting the fθ characteristic, similarly to condition (1). When the value exceeds the upper limit of the condition (2), the negative refractive power on the side surface of the optical deflector of the first group becomes weak, and the fθ characteristic becomes over. Conversely, when the value goes below the lower limit of the condition (2), the negative refractive power of the surface becomes strong, and the fθ characteristic becomes under.

【0013】条件(3)は、主走査方向の像面湾曲とf
θ特性とを補正するための条件であり、上限を越える
と、主走査方向の像面湾曲はオーバーとなり、fθ特性
はアンダーとなる。下限を越えると、主走査方向の像面
湾曲はアンダーとなり、fθ特性はオーバーとなる。
Condition (3) is that the curvature of field in the main scanning direction and f
This is a condition for correcting the θ characteristic. If the upper limit is exceeded, the curvature of field in the main scanning direction becomes over, and the fθ characteristic becomes under. Below the lower limit, the curvature of field in the main scanning direction is under, and the fθ characteristic is over.

【0014】条件(4)は、副走査方向の像面湾曲とf
θ特性とを補正する条件である。条件(4)の上限を越
えると第3群の主走査対応方向の屈折力が負の側に強く
なり、fθ特性はオーバーとなり、副走査方向の像面湾
曲は残存する像面湾曲量が大きくなる。また条件(4)
の下限を越えると第2群の主走査対応方向の屈折力が正
の側に強くなり、fθ特性はアンダーになる。
Condition (4) is that the curvature of field in the sub-scanning direction and f
This is a condition for correcting the θ characteristic. When the value exceeds the upper limit of the condition (4), the refractive power of the third lens unit in the main scanning corresponding direction becomes strong to the negative side, the fθ characteristic becomes over, and the field curvature in the sub-scanning direction has a large remaining field curvature. Become. Condition (4)
If the lower limit is exceeded, the refracting power of the second group in the main scanning corresponding direction becomes positive, and the fθ characteristic becomes under.

【0015】条件(5)は副走査方向の像面湾曲を補正
するための条件である。条件(5)の上限を越えると第
3群の副走査対応方向の屈折力が相対的に強くなりす
ぎ、下限を越えると上記屈折力が相対的に弱くなりす
ぎ、条件(5)の範囲外では残存する像面湾曲量が大き
くなる。
Condition (5) is a condition for correcting the curvature of field in the sub-scanning direction. When the value exceeds the upper limit of the condition (5), the refractive power of the third lens unit in the sub-scanning corresponding direction becomes too strong, and when the value goes below the lower limit, the refractive power becomes relatively weak, which is outside the range of the condition (5). In this case, the remaining field curvature becomes large.

【0016】[0016]

【実施例】以下、具体的な実施例を8例挙げる。[Embodiments] Hereinafter, eight specific embodiments will be described.

【0017】図1に示すように各実施例において、光偏
向器3の側から数えて第i番目のレンズ面の曲率半径
(非球面にあっては光軸上の曲率半径)を主走査対応方
向に就きRix、副走査対応方向に就きRiy(i=1〜
6、但し、i=1〜4に就いてはRix=Riy=Ri)、
第i番目と第i+1番目のレンズ面の光軸上の面間隔を
i(i=1〜5)とし、光偏向器3の偏向の起点(偏
向反射面4による偏向光束の主光線がfθレンズ光軸と
一致するときの、上記光軸と偏向反射面4との交点)か
ら第1番目のレンズ面までの光軸上の距離をD0(i=
0)とする。また光偏向器3側から数えて第j番目のレ
ンズの、波長780nmの光に対する屈折率をNj(j
=1〜3)とする。さらにfは全系の焦点距離であり1
00に規格化する。2θは有効偏向角を表す。また、条
件(1)〜(5)の各式の値をそれぞれJ1〜J5で表
す。
As shown in FIG. 1, in each embodiment, the radius of curvature of the i-th lens surface counted from the side of the optical deflector 3 (the radius of curvature on the optical axis for an aspheric surface) corresponds to the main scanning. R ix in the direction and R iy (i = 1 to
6, provided that R ix = R iy = R i for i = 1 to 4,
The distance between the i-th lens surface and the (i + 1) -th lens surface on the optical axis is D i (i = 1 to 5). The distance on the optical axis from the optical axis and the deflecting / reflecting surface 4 at the time of coincidence with the lens optical axis to the first lens surface is D 0 (i =
0). The refractive index of the j-th lens counted from the optical deflector 3 with respect to light having a wavelength of 780 nm is represented by N j (j
= 1 to 3). Further, f is the focal length of the entire system and is 1
Standardize to 00. 2θ represents the effective deflection angle. Also represent conditions (1) to the value of each expression (5) J 1 through J 5 respectively.

【0018】非球面は周知の如く、光軸に合致させてZ
座標を取り、光軸に直交させてY座標を設定するとき、
光軸上の曲率半径をR、円錐定数をK、4次の非球面係
数をAとするとき、 Z=(1/R)・Y2/{1+√[1−(1+K)・(Y
/R)2]}+A・Y4 で表される曲線を光軸の回りに回転させて得られる曲面
であり、光軸上の曲率半径:Rと円錐定数:Kと非球面
係数:Aとを与えて形状を特定する。
As is well known, the aspherical surface is made to coincide with the
When taking the coordinates and setting the Y coordinate perpendicular to the optical axis,
When the radius of curvature on the optical axis is R, the conic constant is K, and the fourth-order aspheric coefficient is A, Z = (1 / R) · Y 2 / {1 +} [1- (1 + K) · (Y
/ R) 2 ]} + A · Y 4 is a curved surface obtained by rotating the curve around the optical axis, and has a radius of curvature on the optical axis: R, a conical constant: K, an aspheric coefficient: A To specify the shape.

【0019】全実施例を通じて光偏向器は図1に示した
偏向反射面を6面持つ回転多面鏡であり、その内接円半
径は18(全系の焦点距離を100に規格化したときの
値)、偏向反射面4への入射光束とfθレンズ光軸との
なす角は80度、光源装置1における光源である半導体
レーザーの発信波長は780nmである。
Throughout the embodiments, the optical deflector is a rotary polygon mirror having six deflecting and reflecting surfaces as shown in FIG. 1, and its inscribed circle radius is 18 (when the focal length of the entire system is standardized to 100). Value), the angle between the light beam incident on the deflecting / reflecting surface 4 and the optical axis of the fθ lens is 80 degrees, and the transmission wavelength of the semiconductor laser as the light source in the light source device 1 is 780 nm.

【0020】実施例1 f=100,2θ=88.798度 i Rixiyi j Nj 0 12.546 1 −24.428 4.258 1 1.48601 2 −25.798 6.916 3 2214.022 8.856 2 1.48601 4 −79.705 4.112 5 −191.882 −17.269 8.856 3 1.51920 6 −85.609 −10.140 。[0020] Example 1 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 12.546 1 -24.428 4.258 1 1.48601 2 -25.798 6.916 3 2214.022 8.856 2 1.48601 4-79.705 4.1125 5-191.882-17.269 8.856 3 1.51920 6-85.609-10.140.

【0021】非球面:第1面 K=0.6770513,A=0 非球面:第2面 K=0.4387636,A=0.1727613×1
0~6 条件式のパラメータの値 J1=0.947,J2=−0.244,J3=0.17
8×10~2,J4=0.446,J5=0.332
Aspherical surface: first surface K = 0.6770513, A = 0 Aspherical surface: second surface K = 0.38876636, A = 0.12761313 × 1
Parameter values of 0 to 6 conditional expressions J 1 = 0.947, J 2 = −0.244, J 3 = 0.17
8 × 10 to 2 , J 4 = 0.446, J 5 = 0.332
.

【0022】実施例2 f=100,2θ=88.798度 i Rixiyi j Nj 0 11.808 1 −24.428 4.258 1 1.48601 2 −25.904 8.118 3 −3690.037 8.856 2 1.48601 4 −75.277 7.011 5 −191.882 −20.295 8.856 3 1.51920 6 −84.133 −10.923 。[0022] Example 2 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 11.808 1 -24.428 4.258 1 1.48601 2 -25.904 8.118 3-3690.037 8.856 2 1.48601 4 -75.277 7.011 5 -191.882 -20.295 8.856 3 1.51920 6 -84.133-10.923.

【0023】非球面:第1面 K=0.6703141,A=0 非球面:第2面 K=0.4735150,A=0.1806106×1
0~6 条件式のパラメータの値 J1=0.943,J2=−0.244,J3=−0.6
40×10~2,J4=0.438,J5=0.344
Aspherical surface: first surface K = 0.7031411, A = 0 Aspherical surface: second surface K = 0.4735150, A = 0.1806106 × 1
0-6 Condition parameter values J 1 = 0.943, J 2 = -0.244, J 3 = -0.6
40 × 10 ~ 2 , J 4 = 0.438, J 5 = 0.344
.

【0024】実施例3 f=100,2θ=88.798度 i Rixiyi j Nj 0 12.546 1 −29.812 4.796 1 1.48601 2 −30.888 7.010 3 −295.203 8.856 2 1.48601 4 −66.421 1.668 5 3690.037 −17.638 8.118 3 1.51920 6 −147.601 −9.934 。[0024] Example 3 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 12.546 1 -29.812 4.796 1 1.48601 2 -30.888 7.010 3-295.203 8.856 2 1.48601 4 -66.421 1.6685 3690.037 -17.638 8.118 3 1.51920 6 147.601 -9.934.

【0025】非球面:第1面 K=0.7357533,A=0 非球面:第2面 K=0.7472923,A=0.5146346×1
0~6 条件式のパラメータの値 J1=0.965,J2=−0.298,J3=0.26
0×10~1,J4=−0.400×10~1,J5=0.3
22 。
Aspherical surface: first surface K = 0.357533, A = 0 Aspherical surface: second surface K = 0.747923, A = 0.5146346 × 1
0-6 Condition parameter values J 1 = 0.965, J 2 = -0.298, J 3 = 0.26
0 × 10 to 1 , J 4 = −0.400 × 10 to 1 , J 5 = 0.3
22.

【0026】実施例4 f=100,2θ=88.798度 i Rixiyi j Nj 0 8.587 1 −30.406 4.258 1 1.51920 2 −32.327 11.552 3 −3690.037 8.856 2 1.48601 4 −75.277 4.887 5 −118.081 −19.557 8.856 3 1.51920 6 −61.945 −10.635 。[0026] Example 4 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 8.587 1 -30.406 4.258 1 1.51920 2 -32.327 11.552 3-3690.037 8.856 2 1.48601 4-75.277 4.8875 5-118.081-19.557 8.856 3 1.51920 6-61.945-10.635.

【0027】非球面:第1面 K=0.8230621,A=0 非球面:第2面 K=0.4600602,A=0.2070036×1
0~6 条件式のパラメータの値 J1=0.941,J2=−0.304,J3=0.24
6×10~1,J4=0.550,J5=0.335
Aspherical surface: first surface K = 0.2302611, A = 0 Aspherical surface: second surface K = 0.46000602, A = 0.2070036 × 1
Parameter values of 0 to 6 conditional expressions J 1 = 0.941, J 2 = −0.304, J 3 = 0.24
6 × 10 -1 , J 4 = 0.550, J 5 = 0.335
.

【0028】実施例5 f=100,2θ=88.798度 i Rixiyi j Nj 0 11.070 1 −22.135 4.797 1 1.48601 2 −22.890 8.856 3 −221.402 9.594 2 1.48601 4 −66.421 8.118 5 ∞ −26.199 9.594 3 1.48601 6 −129.151 −11.661 。[0028] Example 5 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 11.070 1 -22.135 4.797 1 1.48601 2 -22.890 8.856 3-221.402 9.594 2 1.48601 4 -66.421 8.1185} -26.199 9.594 3 1.48601 6 -129.151 -11.661.

【0029】非球面:第1面 K=1.3043490,A=−0.7181326×
10~6 非球面:第2面 K=0.9203333,A=0 条件式のパラメータの値 J1=0.967,J2=−0.221,J3=0.78
1×10~1,J4=0 ,J5=0.356
Aspherical surface: first surface K = 1.304490, A = −0.7181326 ×
10 to 6 aspherical surface: second surface K = 0.9203333, A = 0 Parameter values of conditional expressions J 1 = 0.967, J 2 = −0.221, J 3 = 0.78
1 × 10 to 1 , J 4 = 0, J 5 = 0.356
.

【0030】実施例6 f=100,2θ=88.798度 i Rixiyi j Nj 0 11.808 1 −24.428 4.258 1 1.48601 2 −25.951 8.118 3 −199.262 7.380 2 1.48601 4 −75.277 7.011 5 −738.007 −36.531 11.070 3 1.51920 6 −81.181 −13.048 。[0030] Example 6 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 11.808 1 -24.428 4.258 1 1.48601 2 -25.951 8.118 3-199.262 7.380 2 1.48601 4-75.277 7.011 5-738.007-36.531 11.070 3 1.51920 6-81.181-13.048.

【0031】非球面:第1面 K=0.6493995,A=0 非球面:第2面 K=0.5980850,A=0.2783577×1
0~6 条件式のパラメータの値 J1=0.941,J2=−0.244,J3=−0.1
00×10~1,J4=0.110,J5=0.337
Aspherical surface: first surface K = 0.64993995, A = 0 Aspherical surface: second surface K = 0.580850, A = 0.2835771 × 1
Parameter values of conditional expressions 0 to 6 J 1 = 0.941, J 2 = −0.244, J 3 = −0.1
00 × 10 ~ 1, J 4 = 0.110, J 5 = 0.337
.

【0032】実施例7 f=100,2θ=88.798度 i Rixiyi j Nj 0 11.808 1 −22.878 4.428 1 1.48601 2 −24.707 11.070 3 −701.107 8.118 2 1.51920 4 −81.181 7.011 5 −214.022 −26.937 11.070 3 1.51920 6 −77.491 −12.686 。[0032] Example 7 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 11.808 1 -22.878 4.428 1 1.48601 2 -24.707 11.070 3-701.107 8.118 2 1.51920 4 -81.181 7.011 5-214.022 -26.937 11.070 3 1.51920 6-77.491-12.686.

【0033】非球面:第2面 K=−0.01804904,A=−0.185660
0×10~6 条件式のパラメータの値 J1=0.926,J2=−0.229,J3=−0.3
27×10~1,J4=0.362,J5=0.365
Aspherical surface: second surface K = -0.0180904, A = -0.185660
0 × 10 to 6 Parameter values of conditional expressions J 1 = 0.926, J 2 = −0.229, J 3 = −0.3
27 × 10 -1 , J 4 = 0.362, J 5 = 0.365
.

【0034】実施例8 f=100,2θ=88.798度 i Rixiyi j Nj 0 11.808 1 −26.568 4.428 1 1.51920 2 −30.901 11.070 3 −590.406 10.332 2 1.51920 4 −59.041 4.059 5 −147.601 −19.188 7.380 3 1.51920 6 −79.705 −10.923 。[0034] Example 8 f = 100,2θ = 88.798 degrees i R ix R iy D i j N j 0 11.808 1 -26.568 4.428 1 1.51920 2 -30.901 11.070 3-590.406 10.332 2 1.51920 4-59.041 4.059 5 -147.601 -19.188 7.380 3 1.51920 6 -79.705-10.923.

【0035】非球面:第1面 K=0.3353956 ,A=0.7985245×
10~6 条件式のパラメータの値 J1=0.860,J2=−0.266,J3=−0.1
78,J4=0.540,J5=0.374
Aspherical surface: first surface K = 0.3539556, A = 0.79852545 ×
10-6 condition parameter values J 1 = 0.860, J 2 = -0.266, J 3 = -0.1
78, J 4 = 0.540, J 5 = 0.374
.

【0036】第2図乃至第9図に実施例1〜8に関する
像面湾曲図とfθ特性図を順次示す。像面湾曲図に於け
る実線は副走査方向、破線は主走査方向の結像位置を表
す。図1において、fθレンズとしてこれら実施例1〜
8の各々を用いたものは、請求項7記載の光走査装置の
実施例である。
FIGS. 2 to 9 show field curvature diagrams and fθ characteristic diagrams for Examples 1 to 8, respectively. In the curvature of field diagram, a solid line indicates an image forming position in the sub-scanning direction, and a broken line indicates an image forming position in the main scanning direction. In FIG. 1, these Examples 1 to 3 are used as fθ lenses.
The embodiment using the optical scanning device according to claim 7 employs each of the embodiments.

【0037】[0037]

【発明の効果】以上のように、この発明によれば新規な
fθレンズおよび光走査装置を提供できる。このfθレ
ンズは上記の如く主・副走査方向の像面湾曲が良好に補
正されているため、被走査面上における光スポット径の
変動が小さく、fθ特性が良好で面倒れ補正機能を持
つ。従って、このようなfθレンズを用いるこの発明の
光走査装置は極めて良好な光走査を実現できる。
As described above, according to the present invention, a novel fθ lens and optical scanning device can be provided. Since the fθ lens has a good correction of the curvature of field in the main and sub-scanning directions as described above, the fluctuation of the light spot diameter on the surface to be scanned is small, the fθ characteristics are good, and the lens has a tilt correction function. Therefore, the optical scanning device of the present invention using such an fθ lens can realize extremely good optical scanning.

【0038】また、この発明のfθレンズは全系が3枚
構成と構成枚数が少ないので低コストに実現でき、光走
査装置の低コスト化・小型化が可能である。
Further, the fθ lens of the present invention can be realized at low cost because the whole system has three lenses and the number of components is small, and the cost and size of the optical scanning device can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のfθレンズのレンズ構成と、このf
θレンズを用いた光走査装置の光学配置を示す図であ
る。
FIG. 1 shows a lens configuration of an fθ lens according to the present invention,
FIG. 3 is a diagram illustrating an optical arrangement of an optical scanning device using a θ lens.

【図2】実施例1に関する像面湾曲とfθ特性の図であ
る。
FIG. 2 is a diagram illustrating field curvature and fθ characteristics according to the first embodiment.

【図3】実施例2に関する像面湾曲とfθ特性の図であ
る。
FIG. 3 is a diagram illustrating field curvature and fθ characteristics according to a second embodiment.

【図4】実施例3に関する像面湾曲とfθ特性の図であ
る。
FIG. 4 is a diagram illustrating field curvature and fθ characteristics according to a third embodiment.

【図5】実施例4に関する像面湾曲とfθ特性の図であ
る。
FIG. 5 is a diagram illustrating field curvature and fθ characteristics according to a fourth embodiment.

【図6】実施例5に関する像面湾曲とfθ特性の図であ
る。
FIG. 6 is a diagram illustrating field curvature and fθ characteristics according to a fifth embodiment.

【図7】実施例6に関する像面湾曲とfθ特性の図であ
る。
FIG. 7 is a diagram illustrating field curvature and fθ characteristics according to a sixth embodiment.

【図8】実施例7に関する像面湾曲とfθ特性の図であ
る。
FIG. 8 is a diagram illustrating field curvature and fθ characteristics according to a seventh embodiment.

【図9】実施例8に関する像面湾曲とfθ特性の図であ
る。
FIG. 9 is a diagram illustrating field curvature and fθ characteristics according to an eighth embodiment.

【符号の説明】[Explanation of symbols]

1 光源装置 2 線像結像光学系 3 光偏向器 5 第1群 6 第2群 7 第3群 REFERENCE SIGNS LIST 1 light source device 2 line image forming optical system 3 optical deflector 5 first group 6 second group 7 third group

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光偏向器により等角速度的に偏向される光
束を被走査面上に光スポットとして集光し、上記被走査
面を等速的に光走査するためのfθレンズであって、 光偏向器側から被走査面側へ向かって順次、第1〜第3
群を配してなり、 第1群は、光偏向器側に凹面を向けたメニスカスレンズ
で、少なくとも一方の面が非球面であり、 第2群は、被走査面側の面の曲率が光偏向器側の面の曲
率よりも強い正レンズであり、 第3群は、各面とも副走査対応方向の曲率が主走査対応
方向の曲率よりも強いトーリック面で、光偏向器側の面
が凹トーリック面、被走査面側の面が凸トーリック面で
ある単レンズであり、 レンズ全系の主走査対応方向における合成焦点距離を
f、第1群の焦点距離をf、第1群の光偏向器側およ
び被走査面側の面の光軸上曲率半径をそれぞれR,R
、第3群の副走査対応方向における焦点距離を
3y、第3群の光偏向器側および被走査面側の面の主
走査対応方向における曲率半径をそれぞれR5x,R
6xとするとき、これらが条件 (1) 0.7<R/R<1.1 (2) −0.4<R/f<−0.1 (3) −0.4<f/f<0.3 (4) −0.6<R6x/R5x<1.1 (5) 0.3<f 3y /f<0.4 を満足することを特徴とする3群3枚構成のアナモフィ
ックなfθレンズ。
An fθ lens for converging a light beam deflected at an equal angular velocity by an optical deflector as a light spot on a surface to be scanned and optically scanning the surface to be scanned at a constant speed, From the optical deflector side toward the surface to be scanned, the first to third
The first group is a meniscus lens having a concave surface facing the optical deflector , and at least one surface is an aspheric surface. The second group is a surface on the surface to be scanned. Is a positive lens whose curvature is stronger than the curvature of the surface on the optical deflector side. The third group is a toric surface in which the curvature in the sub-scanning corresponding direction is stronger than the curvature in the main scanning corresponding direction. A single lens having a concave toric surface on the side and a convex toric surface on the surface to be scanned, the combined focal length of the entire lens system in the main scanning corresponding direction is f, the focal length of the first group is f 1 , The radii of curvature of the first group on the optical axis on the optical deflector side and on the surface to be scanned are R 1 and R, respectively.
2 , the focal length of the third group in the sub-scanning corresponding direction is f 3y , and the radii of curvature of the third group on the optical deflector side and the surface to be scanned in the main scanning corresponding direction are R 5x and R 5 .
When the 6x, they condition (1) 0.7 <R 1 / R 2 <1.1 (2) -0.4 <R 1 /f<-0.1 (3) -0.4 <f / F 1 <0.3 (4) -0.6 <R 6x / R 5x <1.1 (5) The third lens group 3 characterized by satisfying 0.3 <f 3y /f<0.4. An anamorphic fθ lens with a single lens configuration.
【請求項2】請求項1記載のfθレンズにおいて、 第1群の被走査面側の面が非球面であることを特徴とす
るアナモフィックなfθレンズ。
2. An anamorphic fθ lens according to claim 1, wherein the surface of the first group on the surface to be scanned is an aspherical surface.
【請求項3】請求項1記載のfθレンズにおいて、 第1群の光偏向器側の面が非球面であることを特徴とす
るアナモフィックなfθレンズ。
3. An anamorphic fθ lens according to claim 1, wherein the surface of the first group on the optical deflector side is an aspheric surface.
【請求項4】請求項1記載のfθレンズにおいて、 第1群の光偏向器側および被走査面側の面がともに非球
面であることを特徴とするアナモフィックなfθレン
ズ。
4. The anamorphic fθ lens according to claim 1, wherein both the first group of optical deflectors and the surface to be scanned have aspheric surfaces.
【請求項5】請求項1記載のfθレンズにおいて、 第2群が両凸レンズであることを特徴とするアナモフィ
ックなfθレンズ。
5. An anamorphic fθ lens according to claim 1, wherein the second group is a biconvex lens.
【請求項6】請求項1記載のfθレンズにおいて、 第2群が光偏向器側に凹面を向けた正メニスカスレンズ
であることを特徴とするアナモフィックなfθレンズ。
6. An anamorphic fθ lens according to claim 1, wherein the second group is a positive meniscus lens having a concave surface facing the optical deflector.
【請求項7】光源装置から放射される実質的な平行光束
を線像結像光学系により主走査対応方向に長い線像とし
て結像させ、上記線像の結像位置の近傍に偏向反射面を
有する光偏向器により等角速度的に偏向させ、偏向光束
を結像光学系により被走査面上に光スポットとして集光
させて上記被走査面の等速的な光走査を行う光走査装置
であって、 結像光学系として、請求項1または2または3または4
または5または6記載のアナモフィックなfθレンズを
用いることを特徴とする光走査装置。
7. A substantially parallel light beam emitted from a light source device is formed as a long line image in a main scanning corresponding direction by a line image forming optical system, and a deflecting reflection surface is provided near an image forming position of the line image. An optical deflector having an optical deflector having a uniform angular velocity, and a deflected light beam condensed as a light spot on a surface to be scanned by an imaging optical system to perform uniform optical scanning of the surface to be scanned. Claim 1 or 2 or 3 or 4 as an imaging optical system
Or an optical scanning device using the anamorphic fθ lens described in 5 or 6.
JP00590593A 1993-01-18 1993-01-18 fθ lens and optical scanning device Expired - Fee Related JP3266350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00590593A JP3266350B2 (en) 1993-01-18 1993-01-18 fθ lens and optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00590593A JP3266350B2 (en) 1993-01-18 1993-01-18 fθ lens and optical scanning device

Publications (2)

Publication Number Publication Date
JPH06214153A JPH06214153A (en) 1994-08-05
JP3266350B2 true JP3266350B2 (en) 2002-03-18

Family

ID=11623919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00590593A Expired - Fee Related JP3266350B2 (en) 1993-01-18 1993-01-18 fθ lens and optical scanning device

Country Status (1)

Country Link
JP (1) JP3266350B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104769474B (en) 2012-10-31 2017-03-29 大族激光科技产业集团股份有限公司 A kind of Submillineter Wave Technology processing F θ camera lenses and laser process equipment

Also Published As

Publication number Publication date
JPH06214153A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
EP0433953A2 (en) F-theta lens and scanning optical system using the same
JP3266350B2 (en) fθ lens and optical scanning device
JP3339934B2 (en) f / θ lens
EP1376196B1 (en) Optical scanner comprising a compact f-theta lens with high cromatic aberration correctabilty
EP1376195B1 (en) Optical scanner
JP3034565B2 (en) Telecentric fθ lens
JP2986949B2 (en) Imaging lens system in optical scanning device
JP3364525B2 (en) Scanning imaging lens and optical scanning device
JPH06208053A (en) Ftheta lens and optical scanning device
JP2860176B2 (en) fθ lens
JP2927846B2 (en) Fθ lens system in optical scanning device
JP3558847B2 (en) Multi-beam scanner
JP2856475B2 (en) Fθ lens for optical scanning device
JP2945247B2 (en) Optical scanning optical system
JP3441008B2 (en) Scanning imaging lens and optical scanning device
JP4445059B2 (en) Scanning imaging lens and optical scanning device
JPH055853A (en) Light scanning optical system and optical scanner
JP2790845B2 (en) Fθ lens system in optical scanning device
JPH1068876A (en) Ftheta lens
JP3386206B2 (en) Telecentric fθ lens and optical scanning device
JPH0943509A (en) Scanning and image forming lens and optical scanning device
JP3293662B2 (en) Telecentric fθ lens and optical scanning device
JP2840340B2 (en) Telecentric fθ lens
JP2000121976A (en) Scanning image forming lens and optical scanner
JP2000047133A (en) Scanning image forming lens and optical scanner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees