JPH0491305A - Steam temperature controller of reheat type combined cycle plant - Google Patents

Steam temperature controller of reheat type combined cycle plant

Info

Publication number
JPH0491305A
JPH0491305A JP20254490A JP20254490A JPH0491305A JP H0491305 A JPH0491305 A JP H0491305A JP 20254490 A JP20254490 A JP 20254490A JP 20254490 A JP20254490 A JP 20254490A JP H0491305 A JPH0491305 A JP H0491305A
Authority
JP
Japan
Prior art keywords
steam
temperature
section
turbine
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20254490A
Other languages
Japanese (ja)
Inventor
Toshimi Matsuura
松浦 敏美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20254490A priority Critical patent/JPH0491305A/en
Publication of JPH0491305A publication Critical patent/JPH0491305A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To settle a steam temerapure at an appropriate value so as to restrain deterioration in material force of a turbine material, in sending steam from a reheater of a waste heat recovery boiler part to an intermediate pressure turbine of a steam turbine plant part, by providing a temerature decreasing equipment, and delivering cooling steam from a drum of the waste heat recovery boiler part to this temperature decreasing equipment. CONSTITUTION:A reheat type combined cycle plant 1 is provided with a gas turbine plant part GP, a waste heat recovery boiler part HRSG, and a steam turbine plant part SP. The waste heat recovery boiler part HRSG is provided with a high tempera ture part 2a, an intermediate temperature part 2b, and a low temperature part 2c. In this case, at the time of a partial load, steam from the waste heat recovery boiler part HRSG is made at an appropriate temperature and sent to the steam turbine plant part SP. That is, a temperature decreasing equipment 24 is provided on the way from a reheater 10 of the high temperature part 2a to an inlet of an intermediate pressure turbine 3b of the steam turbine plant part SP. To a nozzle part of the tempera ture decreasing equipment 24, the cooling steam with relatively high gas degree from a third drum 5 of the high temperature part 2a is introduced, and the flow rate of this cooling steam is controlled by a regulator valve 26.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) この発明は、部分負荷時、排熱回収ボイラの再熱器から
蒸気タービンに送り出される蒸気を適温にする再熱形コ
ンバインドサイクルプラントの蒸気温度制御装置に関す
る。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) This invention relates to a reheat type combined that heats steam sent from a reheater of an exhaust heat recovery boiler to a steam turbine at an appropriate temperature during partial load. This invention relates to a steam temperature control device for a cycle plant.

(従来の技術) 従来のコンバインドサイクルプラントでは、排熱回収ボ
イラのドラムを一つまたは2つにして、ここからの発生
蒸気を蒸気タービンに送り出している。しかし、この種
タイプでは、最近の電力消費増加に追つかず、このため
、排熱回収ボイラのドラムを三つにし、再熱器を備えた
超大形の再熱形コンバインドサイクルプラントの出現を
見ている。
(Prior Art) In a conventional combined cycle plant, the exhaust heat recovery boiler has one or two drums, and the steam generated therefrom is sent to a steam turbine. However, this type of type cannot keep up with the recent increase in power consumption, and for this reason, we are seeing the emergence of ultra-large reheat type combined cycle plants that have three drums in the exhaust heat recovery boiler and are equipped with a reheater. ing.

第3図は従来の再熱形コンバインドサイクルプラントの
概略構成図である。
FIG. 3 is a schematic diagram of a conventional reheat type combined cycle plant.

この従来タイプの構成は、ガスタービンプラント部GP
、排熱回収ボイラ部)IR5G、および蒸気タービンプ
ラント部SPからなる。
This conventional type configuration is the gas turbine plant section GP.
, exhaust heat recovery boiler section) IR5G, and steam turbine plant section SP.

ガスタービンプラント部GPは、共通軸で結ばれた圧縮
機1a、燃焼器1b、およびガスタービン1cを備える
The gas turbine plant section GP includes a compressor 1a, a combustor 1b, and a gas turbine 1c connected by a common shaft.

排熱回収ボイラ部HR3Gは、熱源の受入れ側から9、
再熱器10、および高圧第1過熱器11を次順に配する
とともに、第3ドラム5と一体をなす高圧蒸発器12お
よび高圧節炭器13を備える。また、中温部2bは、第
2ドラム6と一体に結ばれた中圧蒸発器14および中圧
節炭器15を備える。さらに低温部2cは、第1ドラム
7と一体に結ばれた低圧蒸発器16および低圧節炭器1
7を備える。これら高温部2a、中温部2bおよび低温
部2cが一つの超大形の熱交換器群として構成されて排
熱回収ボイラI(R3Oを形成し、熱源を受けて蒸気を
作り出す。
The exhaust heat recovery boiler section HR3G is located at 9 from the heat source receiving side.
A reheater 10 and a high-pressure first superheater 11 are arranged in this order, and a high-pressure evaporator 12 and a high-pressure economizer 13 which are integrated with the third drum 5 are provided. Further, the medium temperature section 2b includes a medium pressure evaporator 14 and a medium pressure economizer 15 that are integrally connected to the second drum 6. Furthermore, the low-temperature section 2c includes a low-pressure evaporator 16 and a low-pressure economizer 1 that are integrally connected to the first drum 7.
Equipped with 7. These high-temperature section 2a, medium-temperature section 2b, and low-temperature section 2c are configured as one super-large heat exchanger group to form an exhaust heat recovery boiler I (R3O), which receives a heat source and produces steam.

一方、蒸気タービンプラントspは、g!電4j&4、
低圧タービン3c、中圧タービン3b、高圧タービン3
aをタービン軸で結ぶ串形配置の構成である。
On the other hand, the steam turbine plant sp is g! Den 4j & 4,
Low pressure turbine 3c, intermediate pressure turbine 3b, high pressure turbine 3
This is a skewer-shaped arrangement in which the turbine shafts connect the turbine shafts.

かような構成において、ガスタービンプラント部GPは
、圧縮機1aで大気を吸い込み、高圧圧縮空気にして燃
焼器1bに送り出し、ここで燃料が加えられて作動ガス
を作り出す。作り出された作動ガスは、ガスタービン1
cに送り出され、膨張仕事して高熱の排気18を出す。
In such a configuration, the gas turbine plant unit GP sucks atmospheric air using the compressor 1a, converts it into high-pressure compressed air, and sends it to the combustor 1b, where fuel is added to create working gas. The created working gas is passed through the gas turbine 1
c, it expands and does work, and emits high-temperature exhaust gas 18.

一方、ガスタービン1cから排熱を受ける排熱回収ボイ
ラ部)IR3Gは、復水・給水が低温部2c、中温部2
b、高温部2aを次順に通過する間に、予熱、蒸発、過
熱作用が繰り返され、最終的に過熱蒸気として蒸気ター
ビンプラント部SPに送り出す。
On the other hand, in the IR3G (exhaust heat recovery boiler section) which receives exhaust heat from the gas turbine 1c, the condensate/supply water is in the low-temperature section 2c and the medium-temperature section 2.
b. Preheating, evaporation, and superheating are repeated while passing through the high-temperature section 2a, and finally the steam is sent to the steam turbine plant section SP as superheated steam.

蒸気タービンプラント部SPは、過熱蒸気の高いエンタ
ルピを利用して膨張仕事を行う。すなわち、高温部2a
の高圧第2過熱器9から過熱蒸気を受けた高圧タービン
3aは、ここで過熱蒸気を断熱塵させ、その排気蒸気を
高温部2aの再熱器10に送り出す。再熱器10はエン
タルピの下った排気蒸気を再び過熱蒸気に戻し、中圧タ
ービン3bを経て低圧タービン3cに送り出す。こうし
て膨張仕事によって得たタービン軸の回転1−ルクは、
発電機4に伝えられ、電気出力を得る。なお、第1ドラ
ム7からの蒸気は低圧タービン3Cに、また第2ドラム
6からの蒸気は高圧タービン3aの出口側に流すように
しているが、これらは低圧タービン3Cに流れる蒸気温
度等あるいは高圧タービン3aの出口蒸気温度等のそれ
ぞれのと整合性をもたせたものである。こうして各蒸気
温度等のもつエンタルピをあますところなく活用し、中
圧タービン3b、低圧タービン3cに多くの膨張仕事を
させている。
The steam turbine plant section SP performs expansion work using the high enthalpy of superheated steam. That is, the high temperature section 2a
The high-pressure turbine 3a that receives superheated steam from the high-pressure second superheater 9 converts the superheated steam into adiabatic dust and sends the exhaust steam to the reheater 10 of the high-temperature section 2a. The reheater 10 returns the enthalpy-depleted exhaust steam to superheated steam, and sends it out to the low-pressure turbine 3c via the intermediate-pressure turbine 3b. In this way, the rotation 1-lux of the turbine shaft obtained by the expansion work is
The signal is transmitted to the generator 4 to obtain electrical output. Note that the steam from the first drum 7 is made to flow to the low pressure turbine 3C, and the steam from the second drum 6 is made to flow to the outlet side of the high pressure turbine 3a. This is made consistent with the outlet steam temperature of the turbine 3a, etc. In this way, the enthalpy of each steam temperature, etc. is fully utilized, and the intermediate pressure turbine 3b and the low pressure turbine 3c are made to perform a large amount of expansion work.

上記発電機4に電気出力を発生させた蒸気タビンプラン
ト部SPからの排気蒸気は、復水器18で凝縮させ、復
水・給水としてポンプ19で昇圧させ、その昇圧水を排
熱回収ボイラ部HR5Gに戻し、その後上述予熱、蒸発
、過熱作用が繰り返される。
Exhaust steam from the steam turbine plant section SP that generates electrical output for the generator 4 is condensed in a condenser 18, boosted in pressure by a pump 19 as condensate/supply water, and the pressurized water is sent to the exhaust heat recovery boiler section. After returning to HR5G, the above-mentioned preheating, evaporation, and superheating operations are repeated.

かようにこの種発電プラントは、ガスタービンlcから
出る排熱が三つのドラムを有する排熱回収ボイラ部1(
R2O等であますところなく活用され、このため一つま
たは二つのドラムを有する排熱回収ボイラ部HR5Gよ
りも発電プラント全体の熱効率を比較した場合、きわめ
て高く、最近では従来のコンバインドサイクル発電の改
良として適用されるに至っている。
As described above, in this type of power generation plant, the exhaust heat emitted from the gas turbine LC is transferred to the exhaust heat recovery boiler section 1 (
The thermal efficiency of the entire power plant is extremely high compared to the exhaust heat recovery boiler section HR5G, which has one or two drums.Recently, improvements to conventional combined cycle power generation It has come to be applied as

(発明が解決しようとする課題) ところでこの種発電プラントは、上述すぐれた特性を有
する反面、排熱回収ボイラ部HR3Gで発生する蒸気の
温度・圧力はガスタービン1cから出る排熱量の過多・
過少の影響をまともに受けている。特に、部分負荷時、
ガスタービン1cから出る排熱18は定格時にくらべて
量的に少ない割合には温度が高くなる特異性を有するも
で、具合いの悪いことが起っている。
(Problem to be Solved by the Invention) Although this type of power generation plant has the excellent characteristics described above, the temperature and pressure of the steam generated in the exhaust heat recovery boiler section HR3G are such that the amount of exhaust heat emitted from the gas turbine 1c is too high.
It has been seriously affected by the underrepresentation. Especially at partial load,
The exhaust heat 18 emitted from the gas turbine 1c has a specificity in that the temperature increases when the amount is small compared to the rated state, and something bad is happening.

第4図は、かかる事象を示すグラフである。このグラフ
によると、定格時、蒸気タービンプラント部SPが求め
ている基準温度線53に対し、部分負荷時のガスタービ
ン1cからの排熱温度50が突変して突出し、付随時に
排熱回収ボイラ部HR5Gの高圧第2過熱器9からの蒸
気温度線51、再熱器10からの再熱蒸気温度線52も
突変し、上記基準温度線53を上廻る。このため部分負
荷時の蒸気タービンプラント部SPでは、定格時の蒸気
温度を求めていないのに、過温蒸気のまま受ける。
FIG. 4 is a graph illustrating such an event. According to this graph, the exhaust heat temperature 50 from the gas turbine 1c during partial load suddenly changes and stands out compared to the reference temperature line 53 determined by the steam turbine plant part SP during rated operation, and when associated, the exhaust heat recovery boiler The steam temperature line 51 from the high-pressure second superheater 9 and the reheated steam temperature line 52 from the reheater 10 in section HR5G also suddenly change and exceed the reference temperature line 53. For this reason, the steam turbine plant part SP at partial load receives overtemperature steam even though the steam temperature at the rated time is not determined.

したがって、必要としない高い蒸気温度を受ける高圧タ
ービン3a、中圧タービン3bは、急変的な熱衝撃を受
けることによるタービン打力の著しい低下につながる問
題がある。また、排熱回収ボイラ部HR5Gの高圧第2
過熱器9、再熱器10の財力を考えると、かような熱衝
撃は望ましくない。
Therefore, the high-pressure turbine 3a and the intermediate-pressure turbine 3b, which are subjected to an unnecessarily high steam temperature, have a problem in that the turbine striking force is significantly reduced due to sudden thermal shock. In addition, the high pressure second
Considering the financial resources of the superheater 9 and the reheater 10, such thermal shock is not desirable.

この発明は、部分負荷時、排熱回収ボイラ部から蒸気タ
ービンプラント部に送り出される蒸気温度をコントロー
ルしないと上述の問題点があることに鑑み、排熱回収ボ
イラ部からの蒸気を適温にして蒸気タービンプラント部
に送り出させるようにした再熱形コンバインドサイクル
プラントの蒸気温度制御装置を提供することを目的とす
る。
In view of the fact that the above-mentioned problem occurs unless the temperature of steam sent from the exhaust heat recovery boiler section to the steam turbine plant section is controlled during partial load, this invention has been developed to control the steam from the exhaust heat recovery boiler section to an appropriate temperature to create steam. It is an object of the present invention to provide a steam temperature control device for a reheat type combined cycle plant, in which steam is sent to a turbine plant section.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明は、ガスタービンプラント部から受けた排熱を
利用して蒸気を発生させる排熱回収ボイラ部であって、
この排熱回収ボイラ部は熱源費は入れ側から次順に高温
部、中温部、低温部を配設し、この高温部の高圧第2過
熱器を出た蒸気を蒸気タービンプラント部の高圧タービ
ンを経て再熱器に戻し、ここから中圧タービン、低圧タ
ービンに送り出す再熱形コンバインドサイクルプラント
において、前記中圧タービンの入口側に減温器を設け、
この減温器を通過する前記再熱器からの蒸気に、前記高
温部または中温部のドラムからのt己 蒸気を加えて適温に調整体調整弁を設けたことを特徴と
する。
(Means for Solving the Problems) The present invention is an exhaust heat recovery boiler section that generates steam using exhaust heat received from a gas turbine plant section,
This exhaust heat recovery boiler section has a high temperature section, a medium temperature section, and a low temperature section in order from the input side, and the steam exiting the high pressure second superheater of this high temperature section is sent to the high pressure turbine of the steam turbine plant section. In a reheat type combined cycle plant where the heat is returned to a reheater and sent from there to an intermediate pressure turbine and a low pressure turbine, a desuperheater is provided on the inlet side of the intermediate pressure turbine,
The apparatus is characterized in that a regulating valve is provided to add steam from the drum in the high temperature section or the medium temperature section to the steam from the reheater passing through the attemperator to adjust the temperature to an appropriate temperature.

(作 用) 従来からこの種タイプに、おいては、部分負荷時(特に
定格時の80%前後)、排熱の温度は定格時にくらべて
高くなる。このため再熱器がら中圧タービン、低タービ
ンに送り出される蒸気温度は高く、各タービンの財力上
の問題がある。
(Function) Conventionally, in this kind of type, during partial load (particularly around 80% of the rated state), the temperature of the exhaust heat is higher than during the rated state. For this reason, the temperature of the steam sent from the reheater to the intermediate pressure turbine and the low turbine is high, which poses financial problems for each turbine.

この発明にかかる構成によれば、中圧タービンの入口側
に減温器を設け、この減温器を通過する再熱器からの蒸
気に、高温部または中温部のドラムからの蒸気を加える
際、そのドラムからの比較的低温の蒸気を調整弁で適量
にコントロールすることにより、再熱器からの蒸気は適
温にして中圧タービンなどに送り出せる。したがって、
部分負荷時のように、蒸気流量変動の激しい運転であっ
て、財力の低サイクル疲労の起し易いときでも、タービ
ン材の財力低下をおさえることができる。
According to the configuration of the present invention, the attemperator is provided on the inlet side of the intermediate pressure turbine, and when the steam from the drum in the high temperature section or the medium temperature section is added to the steam from the reheater passing through the attemperator. By controlling the amount of relatively low-temperature steam from the drum using a regulating valve, the steam from the reheater can be heated to an appropriate temperature and sent to an intermediate-pressure turbine. therefore,
Even when operating with severe steam flow rate fluctuations such as during partial load, when low-cycle fatigue of the turbine material is likely to occur, it is possible to suppress a decline in the financial strength of the turbine material.

(実施例) 以下、この発明の第1実施例に適用した再熱形コンバイ
ンドサイクルプラントの蒸気温度制御装置について図を
参照して説明する。
(Example) Hereinafter, a steam temperature control device for a reheat type combined cycle plant applied to a first example of the present invention will be described with reference to the drawings.

第1図はこの発明にかかる再熱形コンバインドサイクル
プラントの全体概略図である。
FIG. 1 is an overall schematic diagram of a reheat type combined cycle plant according to the present invention.

ガスタービンプラント部GP、排熱回収ボイラ部HR5
G、蒸気タービンプラント部SPを有し、また排熱回収
ボイラ部+1R3Gに高温部2a、中温部2b、低温部
2cを備える従来の再熱形コンバインドサイクルプラン
トにおいて、この発明では、部分負荷時、排熱回収ボイ
ラ部HR5Gからの蒸気を適温にして蒸気タービンプラ
ント部SPに送るようにしたものである。すなわち、高
温部2aの再熱器10から蒸気タービンプラント部SP
の中圧タービン3bの入口に至る間に、減温器24が設
けられている。この減温器24は冷却用の蒸気を高速噴
射させる噴口部と、再熱器10からの高温蒸気を受けて
混合させる合流混合部からなる。減温器24の噴口部に
は、高温部2aの第3ドラム5からの比較的気体度合が
高い冷却用の蒸気が導かれるようになっており、この冷
却用の蒸気は調整弁26により流量コントロールがなさ
れている。
Gas turbine plant section GP, exhaust heat recovery boiler section HR5
In a conventional reheat type combined cycle plant having a steam turbine plant part SP and a high temperature part 2a, medium temperature part 2b, and low temperature part 2c in the exhaust heat recovery boiler part +1R3G, in this invention, at partial load, Steam from the exhaust heat recovery boiler section HR5G is heated to an appropriate temperature and sent to the steam turbine plant section SP. That is, from the reheater 10 of the high temperature section 2a to the steam turbine plant section SP
A desuperheater 24 is provided between the intermediate pressure turbine 3b and the inlet thereof. The desuperheater 24 consists of a nozzle part that injects cooling steam at high speed, and a confluence mixing part that receives and mixes the high-temperature steam from the reheater 10. Cooling steam with a relatively high gas content from the third drum 5 of the high temperature section 2a is guided to the spout of the desuperheater 24, and the flow rate of this cooling steam is adjusted by the regulating valve 26. control is in place.

調整弁26は、中圧タービン36の入口側に設けた温度
検出器27からの信号を受けている。温度検出器27は
、中圧タービン3bに入る蒸気温度を常時検出し、この
検出信号をPID演算器28に送り、ここで弁開閉信号
を作り出し、減温器24から出る混合蒸気が適温になる
ように調整弁26に弁開閉信号を与える。
The regulating valve 26 receives a signal from a temperature detector 27 provided on the inlet side of the intermediate pressure turbine 36. The temperature detector 27 constantly detects the temperature of the steam entering the intermediate pressure turbine 3b, sends this detection signal to the PID calculator 28, which generates a valve opening/closing signal, and the mixed steam coming out of the desuperheater 24 reaches an appropriate temperature. A valve opening/closing signal is given to the regulating valve 26 in such a manner.

したがって、部分負荷時、再熱器10から出る蒸気が過
温の場合、この過温の大小によって調整弁26は開度調
整がなされて第3ドラム5からの蒸気が減温器24に送
り出されるので、減温器24からの混合蒸気は適温にし
て中圧タービン3bに送り出すことができる。ちなみに
、再熱器10からの蒸気条件と、第3ドラム5からの蒸
気条件との温度バランス度合を試算する。再熱器10か
らの蒸気は、温度540°C1圧力27ataであり、
また第3ドラム5からの冷却用の蒸気は、温度300〜
330℃、圧力100ataである。このことから、再
熱器10からの蒸気に、第3ドラム5からの冷却用の蒸
気を加えてやれば、中圧タービン3bにとって望ましい
蒸気温度になる。
Therefore, when the steam coming out of the reheater 10 is overtemperature during partial load, the opening degree of the regulating valve 26 is adjusted depending on the magnitude of the overtemperature, and the steam from the third drum 5 is sent to the attemperator 24. Therefore, the mixed steam from the attemperator 24 can be brought to an appropriate temperature and sent to the intermediate pressure turbine 3b. Incidentally, the degree of temperature balance between the steam conditions from the reheater 10 and the steam conditions from the third drum 5 will be estimated. The steam from the reheater 10 has a temperature of 540° C. and a pressure of 27 ata,
Also, the cooling steam from the third drum 5 has a temperature of 300 to
The temperature was 330°C and the pressure was 100 ata. From this, if the cooling steam from the third drum 5 is added to the steam from the reheater 10, the steam temperature becomes desirable for the intermediate pressure turbine 3b.

第2図はこの発明の第2実施例を示す。FIG. 2 shows a second embodiment of the invention.

第1実施例では、第3トラム5からの冷却用の蒸気を、
再熱器10からの蒸気に加えて中圧タービン3bに送り
出していたが、第2実施例では中温部2bの第2ドラム
6から冷却用の蒸気を取り出し。
In the first embodiment, the cooling steam from the third tram 5 is
In addition to the steam from the reheater 10, it was sent to the intermediate pressure turbine 3b, but in the second embodiment, cooling steam is taken out from the second drum 6 of the intermediate temperature section 2b.

再熱器10からの蒸気に加えるようにしている。この場
合、第2ドラム6の蒸気は、温度220〜250℃、圧
力30ataになっているので、再熱器10から出る蒸
気が思ったように高くないときは、混合時の温度バラン
ス上、望ましい。したがって、第1実施例と同様の効果
を奏することができる。
It is added to the steam from the reheater 10. In this case, the steam in the second drum 6 has a temperature of 220 to 250°C and a pressure of 30 ata, so if the steam coming out of the reheater 10 is not as high as expected, it is desirable for the temperature balance during mixing. . Therefore, the same effects as in the first embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、この発明にがかる再熱形コンバインドサ
イクルプラントの蒸気温度制御装置によれば、排熱回収
ボイラ部の再熱器からの蒸気を、蒸気タービンプラント
部の中圧タービンに送る際、減温器を設け、この減温器
に排熱回収ボイラ部のドラムからの冷却用の蒸気を送り
出すようにしたので、中圧タービンは適温の蒸気を受け
、このため、タービン材の打力低下を抑えることができ
る。
As described above, according to the steam temperature control device for a reheat type combined cycle plant according to the present invention, when steam from the reheater of the exhaust heat recovery boiler section is sent to the intermediate pressure turbine of the steam turbine plant section, A heating device was installed, and the cooling steam from the drum of the exhaust heat recovery boiler section was sent to this desuperheater, so the intermediate pressure turbine received steam at an appropriate temperature, thereby reducing the impact force of the turbine material. It can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の第1実施例を示す全体概略図、第
2図はこの発明の第2実施例を示す全体概略図、第3図
は従来の実施例を示す全体概略図、第4図は従来のガス
タービンの負荷変化と温度変化とを座標にして排熱温度
と蒸気温度とを対比させたグラフである。 GP・・・ガスタービンプラン1一部 HR3G・・・
排熱回収ボイラ部sp・・・蒸気タービンプラン1一部
 2a・・・高温部2b・・・中温部        
 2c・・・低温部3a・・・高圧タービン     
 3b・・中圧タービン3c・・・低圧タービン   
   5・・・第3ドラム6・・第2ドラム     
  7・・・第3ドラム10・・・再熱器      
   24・・減温器26・・調整弁        
 27・・・温度検出器28・・・PID演算器 代理人 弁理士 則 近 憲 佑
FIG. 1 is an overall schematic diagram showing a first embodiment of the present invention, FIG. 2 is an overall schematic diagram showing a second embodiment of the invention, and FIG. 3 is an overall schematic diagram showing a conventional embodiment. FIG. 4 is a graph comparing exhaust heat temperature and steam temperature using the load change and temperature change of a conventional gas turbine as coordinates. GP...Gas turbine plan 1 part HR3G...
Exhaust heat recovery boiler part sp...Steam turbine plan 1 part 2a...High temperature section 2b...Medium temperature section
2c...Low temperature section 3a...High pressure turbine
3b...Intermediate pressure turbine 3c...Low pressure turbine
5...Third drum 6...Second drum
7...Third drum 10...Reheater
24... Temperature reducer 26... Regulating valve
27...Temperature detector 28...PID calculator Agent Patent attorney Noriyuki Chika

Claims (2)

【特許請求の範囲】[Claims] (1)ガスタービンプラント部から受けた排熱を利用し
て蒸気を発生させる排熱回収ボイラ部であって、この排
熱回収ボイラ部は熱源受け入れ側から次順に高温部、中
温部、低温部を配設し、この高温部の高圧第2過熱器を
出た蒸気を蒸気タービンプラント部の高圧タービンを経
て再熱器に戻し、ここから中圧タービン、低圧タービン
に送り出す再熱形コンバインドサイクルプラントにおい
て、前記中圧タービンの入口側に減温器を設け、この減
温器を通過する前記再熱器からの蒸気に、前記高温部の
ドラムからの蒸気を加えて適温に調整する調整弁を設け
たことを特徴とする再熱形コンバインドサイクルプラン
トの蒸気温度制御装置。
(1) An exhaust heat recovery boiler section that generates steam by using the exhaust heat received from the gas turbine plant section, and the exhaust heat recovery boiler section consists of a high-temperature section, a medium-temperature section, and a low-temperature section in order from the heat source receiving side. A reheat type combined cycle plant in which the steam exiting the high-pressure second superheater in the high-temperature section is returned to the reheater through the high-pressure turbine in the steam turbine plant section, and from there is sent to the intermediate-pressure turbine and low-pressure turbine. A regulating valve is provided on the inlet side of the intermediate pressure turbine to adjust the temperature to an appropriate temperature by adding steam from the drum of the high temperature section to the steam from the reheater that passes through the attemperator. A steam temperature control device for a reheat type combined cycle plant, characterized in that:
(2)ガスタービンプラント部から受けた排熱を利用し
て蒸気を発生させる排熱回収ボイラであって、この排熱
回収ボイラ部は熱源受け入れ側から次順に高温部、中温
部、低温部を配設し、この高温部の高圧第2過熱器を出
た蒸気を蒸気タービンプラント部の高圧タービンを経て
再熱器に戻し、ここから中圧タービン、低圧タービンに
送り出す再熱形コンバインドサイクルプラントにおいて
、前記中圧タービンの入口側に減温器を設け、この減温
器を通過する前記再熱器からの蒸気に、前記中温部のド
ラムからの蒸気を加えて適温に調整する調整弁を設けた
ことを特徴とする再熱形コンバインドサイクルプラント
の蒸気温度制御装置。
(2) An exhaust heat recovery boiler that generates steam using exhaust heat received from a gas turbine plant section, and this exhaust heat recovery boiler section has a high temperature section, a medium temperature section, and a low temperature section in order from the heat source receiving side. In a reheat type combined cycle plant, the steam exiting the high-pressure second superheater in the high-temperature section is returned to the reheater through the high-pressure turbine in the steam turbine plant section, and from there is sent to the intermediate-pressure turbine and the low-pressure turbine. , an attemperator is provided on the inlet side of the intermediate pressure turbine, and a regulating valve is provided for adding steam from the drum of the intermediate temperature section to the steam from the reheater passing through the attemperator to adjust the temperature to an appropriate temperature. A steam temperature control device for a reheat type combined cycle plant, characterized by:
JP20254490A 1990-08-01 1990-08-01 Steam temperature controller of reheat type combined cycle plant Pending JPH0491305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20254490A JPH0491305A (en) 1990-08-01 1990-08-01 Steam temperature controller of reheat type combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20254490A JPH0491305A (en) 1990-08-01 1990-08-01 Steam temperature controller of reheat type combined cycle plant

Publications (1)

Publication Number Publication Date
JPH0491305A true JPH0491305A (en) 1992-03-24

Family

ID=16459265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20254490A Pending JPH0491305A (en) 1990-08-01 1990-08-01 Steam temperature controller of reheat type combined cycle plant

Country Status (1)

Country Link
JP (1) JPH0491305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238228A (en) * 2012-05-15 2013-11-28 General Electric Co <Ge> System and method for active temperature control in steam turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238228A (en) * 2012-05-15 2013-11-28 General Electric Co <Ge> System and method for active temperature control in steam turbine

Similar Documents

Publication Publication Date Title
KR100592144B1 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
US5375410A (en) Combined combustion and steam turbine power plant
US5251432A (en) Method for operating a gas and steam turbine plant
RU2070293C1 (en) Method of operation of steam turbine plant and steam turbine plant for realization of this method
JP3095745B1 (en) Ultra high temperature power generation system
JP2595046B2 (en) Steam temperature control system for reheat type combined plant
WO2016047400A1 (en) Boiler, combined cycle plant, and steam cooling method for boiler
JPH0491305A (en) Steam temperature controller of reheat type combined cycle plant
JP2000154704A (en) Combined cycle power generation plant
JPH10292902A (en) Main steam temperature controller
JP2587419B2 (en) Supercritical once-through boiler
WO2020255719A1 (en) Power plant
KR101887971B1 (en) Low load turndown for combined cycle power plants
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JPS6157446B2 (en)
JP3133183B2 (en) Combined cycle power plant
JP2558740B2 (en) How to start up a two-stage reheat steam turbine plant
JP2999122B2 (en) Control equipment for complex plant
JP3068972B2 (en) Combined cycle power plant
JP2013142357A (en) Combined cycle power generation plant
JP2012082971A (en) Boiler, gas turbine combined cycle plant, and temperature control method
JP2642954B2 (en) How to start a reheat combined plant
JPH04110507A (en) Steam temperature controller of superheater and reheater in cogeneration power plant
JPH05296401A (en) Exhaust heat recoverying boiler system and its main steam temperature controller
JPH0419306A (en) Steam temperature control system of combined cycle plant