JPH0490845A - Recovery method of carbon dioxide - Google Patents

Recovery method of carbon dioxide

Info

Publication number
JPH0490845A
JPH0490845A JP2206790A JP20679090A JPH0490845A JP H0490845 A JPH0490845 A JP H0490845A JP 2206790 A JP2206790 A JP 2206790A JP 20679090 A JP20679090 A JP 20679090A JP H0490845 A JPH0490845 A JP H0490845A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
cooling gas
combustion gases
exhaust combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2206790A
Other languages
Japanese (ja)
Other versions
JP2749976B2 (en
Inventor
Yoshiyuki Takeuchi
善幸 竹内
Kazuto Kobayashi
一登 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2206790A priority Critical patent/JP2749976B2/en
Publication of JPH0490845A publication Critical patent/JPH0490845A/en
Application granted granted Critical
Publication of JP2749976B2 publication Critical patent/JP2749976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To contrive a continuous solidification and separation of CO2 by a method wherein, after separation of solidified matter consisting mainly of carbon dioxide, the cooling gas used in this separation is sent into a fluidized bed cooler having a very low temp. refrigerant flowing therein to be further cooled for use as the cooling gas in direct mixture with exhaust combustion gases. CONSTITUTION:Exhaust combustion gases are mixed directly with a cooling gas so as to cool and solidify carbon dioxide in the exhaust combustion gases and recover the same therefrom. At this time, the solidified matter consisting mainly of the carbon dioxide is produced by a dry ice producing device 3 and subsequently separated by a cyclone 5. The cooling gas thus separated is sent into a cooling pipe having a very low temp. refrigerant LNG flowing therein and then into the fluidized bed cooler 6 contg. fluid medium (e.g. fine-grained sand) to be further cooled for use as the cooling gas in direct mixture with the aforesaid exhaust combustion gases. This recovery method permits the carbon dioxide in the exhaust combustion gases to be solidified and removed therefrom on a continuous basis to prevent such carbon dioxide from being emitted directly to atmospheric air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃焼排ガス中の炭酸ガスを冷却・固化して回収
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for cooling and solidifying carbon dioxide gas in combustion exhaust gas and recovering it.

〔従来の技術〕[Conventional technology]

従来は、排ガス中の一部の炭酸ガスを濃縮し、ガス状及
び液状及びドライアイス化したり、該ガスを出発原料と
して尿素や安息香酸等を製造しており、1987年にお
ける炭酸ガスの前記用途の生産量は、100万トン/年
であった。
Conventionally, some carbon dioxide gas in exhaust gas has been concentrated and turned into gaseous, liquid, and dry ice, and the gas has been used as a starting material to produce urea, benzoic acid, etc. The production volume was 1 million tons/year.

−万国内で排出している炭酸ガスの総量は18、000
 )ンであり、実質的には当該ガスの回収をほとんどお
こなっておらず、そのまま大気へ放出していた。すなわ
ち、現在の大気中の炭酸ガス濃度の増加は、化石燃料の
燃焼により生ずるものが大半で、特に発電所や一般産業
用ボイラ、燃焼炉等の固定発生源が国内の当該発生量の
60%を占めている。
-The total amount of carbon dioxide emitted worldwide is 18,000.
), and virtually no gas was recovered and was released into the atmosphere as is. In other words, most of the current increase in atmospheric carbon dioxide concentration is caused by the combustion of fossil fuels, with stationary sources such as power plants, general industrial boilers, and combustion furnaces accounting for 60% of the domestic carbon dioxide emissions. occupies .

これらの大気中に放出された炭酸ガスの1/2は海洋等
に吸収され、残りは大気中に残存することや、近年の燃
焼排ガスの量の増加とあいまって、海洋等の吸収では追
いつかない状態にある。
Half of the carbon dioxide released into the atmosphere is absorbed by the ocean, and the rest remains in the atmosphere. Combined with the recent increase in the amount of combustion exhaust gas, absorption by the ocean cannot keep up. in a state.

従って、大気中の炭酸ガス量が増加し、近年、室温効果
と呼ばれている大気温度の上昇が問題視されることとな
った。
Therefore, the amount of carbon dioxide gas in the atmosphere has increased, and in recent years, an increase in atmospheric temperature called the room temperature effect has become a problem.

炭酸ガスを分離する方法として、吸収法と吸着法がある
。第1表に吸収法の例を示す。一般に加圧により炭酸ガ
スを吸収液に吸収し、再生工程で圧力を低下するか加熱
して吸収液の再生を行う。
There are absorption methods and adsorption methods as methods for separating carbon dioxide gas. Table 1 shows examples of absorption methods. Generally, carbon dioxide gas is absorbed into an absorption liquid by applying pressure, and the absorption liquid is regenerated by lowering the pressure or heating it in a regeneration step.

第1表 炭酸ガスの吸収法 吸着法も加圧により吸着剤に炭酸ガスを吸着させ、再生
工程で減圧して吸着剤の再生を行う。
Table 1 Carbon dioxide absorption method In the adsorption method, carbon dioxide gas is adsorbed onto an adsorbent by applying pressure, and the pressure is reduced in the regeneration step to regenerate the adsorbent.

この吸着・再生工程は非連続的であり、圧力・温度の変
化を伴う。
This adsorption/regeneration process is discontinuous and involves changes in pressure and temperature.

一方、最近では天然ガスを液化して輸送・貯蔵し、これ
を燃料として用いた高効率ガスタルビン複合発電による
発電所の建設が推進されており、この液化天然ガス(L
NG)をガス燃料として利用する際に放出されるLNG
の保有する冷熱を用いて炭酸ガスをドライアイスとして
固化・回収する方法が提案されている。
On the other hand, recently, the construction of power plants using high-efficiency gas turbine combined cycle power generation, which uses liquefied natural gas to transport and store it as fuel, has been promoted.
LNG released when using NG) as gas fuel
A method has been proposed in which carbon dioxide is solidified and recovered as dry ice using the cold energy possessed by ice.

特開昭61−40808号公報に提案されている方法は
、低温の液化天然ガスを二酸化炭素冷却器(熱交換器)
内に設けられた冷却パイプ内に供給し、冷却パイプ外部
に炭酸ガスを含有する排ガスを流通する。この際に、冷
却パイプ内の低温の液化天然ガスの冷熱により、冷却パ
イプ外の炭酸ガスが間接熱交換されて冷却され、パイプ
表面に固化して付着する。これを時々掻き落として集め
る。
The method proposed in JP-A-61-40808 is to convert low-temperature liquefied natural gas into a carbon dioxide cooler (heat exchanger).
Exhaust gas containing carbon dioxide is supplied to a cooling pipe provided inside the cooling pipe, and exhaust gas containing carbon dioxide is distributed outside the cooling pipe. At this time, the carbon dioxide outside the cooling pipe is indirectly heat exchanged and cooled by the cold heat of the low-temperature liquefied natural gas inside the cooling pipe, and solidifies and adheres to the pipe surface. Scrape this off from time to time and collect it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記特開昭61−40808号公報に提案されている方
法には、以下の問題点がある。
The method proposed in JP-A-61-40808 has the following problems.

(1)  多数の冷却パイプ壁面に付着した固形物を掻
き取る操作は、煩雑である。
(1) The operation of scraping off solid matter adhering to the walls of many cooling pipes is complicated.

(2)壁面に付着した固体を掻き取る方法では、冷却パ
イプの損傷の原因となる。
(2) The method of scraping off solids adhering to the wall surface causes damage to the cooling pipe.

(3)  固化物を多数の管群内から連続的に抜き出す
のは困難である。
(3) It is difficult to continuously extract solidified material from a large number of tube groups.

(4)固化物内に水分が含有されるので、固化した炭酸
ガス(ドライアイス)の純度が低下する。
(4) Since moisture is contained in the solidified product, the purity of the solidified carbon dioxide gas (dry ice) decreases.

(5)従って、工業規模で連続使用が困難である。(5) Therefore, continuous use on an industrial scale is difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は燃焼排ガスを直接冷却ガスと混合することによ
り、該燃焼排ガス中の炭酸ガスを冷却・固化して回収す
る方法において、炭酸ガスを主成分とする固化物を分離
した後の冷排ガスを、極低温冷媒が流れる冷却管と流動
媒体を内蔵す流動床型冷却器内に導いて更に冷却して前
記燃焼排ガスと直接混合させる冷却ガスとして用いるこ
とを特徴とする炭酸ガスの分離回収方法である。
The present invention is a method for cooling and solidifying and recovering carbon dioxide gas in combustion exhaust gas by directly mixing the combustion exhaust gas with cooling gas. , a method for separating and recovering carbon dioxide gas, characterized in that the cryogenic refrigerant is guided into a fluidized bed type cooler having a built-in cooling pipe and a fluidized medium, and is further cooled and used as a cooling gas to be directly mixed with the combustion exhaust gas. be.

本発明について、プロセスの例により特徴を説明する。The features of the present invention will be explained using process examples.

LNGは、一般に約−150〜−170℃の低温で発電
所に輸送されてくる。従来は、このLNGを海水等によ
る間接熱交換により常温付近に昇温しで燃料に使用して
いる。
LNG is generally transported to power plants at a low temperature of about -150 to -170°C. Conventionally, this LNG is heated to around room temperature through indirect heat exchange with seawater, etc., and then used as fuel.

第1図に本発明の態様の系統図を示す。ボイラ1の燃焼
排ガス中には水分が含まれており、該排ガスを除湿装置
2を用いて除湿する。排ガス中に水分が多い場合、炭酸
ガスは水分を含有したままドライアイスとして固化され
るため、ドライアイスの純度の低下の原因になる。
FIG. 1 shows a system diagram of an embodiment of the present invention. The combustion exhaust gas of the boiler 1 contains moisture, and the exhaust gas is dehumidified using the dehumidifier 2. When there is a lot of moisture in the exhaust gas, carbon dioxide gas solidifies as dry ice while still containing moisture, which causes a decrease in the purity of the dry ice.

残存する微量水分と炭酸ガスを含む排ガスをドライアイ
ス製造装置3に導き、LNG冷熱と熱交換された低温の
冷却ガス4との直接接触により、残存水分と炭酸ガスが
固化してドライアイスを生成する。生成したドライアイ
スは循環ガスに同伴されてサイクロン5に導かれ、非固
化ガスと固化したドライアイスが分離される。
Exhaust gas containing residual trace moisture and carbon dioxide gas is led to dry ice production equipment 3, and through direct contact with low-temperature cooling gas 4 that has been heat exchanged with LNG cold energy, residual moisture and carbon dioxide solidify to produce dry ice. do. The generated dry ice is guided to the cyclone 5 along with the circulating gas, and non-solidified gas and solidified dry ice are separated.

分離されたドライアイスは、サイクロン5の下部から系
外へ抜き出される。
The separated dry ice is extracted from the lower part of the cyclone 5 to the outside of the system.

一方、微量水分と炭酸ガスをドライアイスとして固化・
分離された後の大半のガス(N2.02が主体)は冷却
器6に導かれる。ここで、LNG冷熱と間接熱交換され
て低温(約−150〜−160℃)の乾きガスとなり、
前記のドライアイス製造装置3に冷却ガスとして循環供
給され、炭酸ガスを含む排ガスと直接接触し、微量水分
及び炭酸ガスをドライアイスとして固化する。
On the other hand, trace amounts of moisture and carbon dioxide are solidified as dry ice.
Most of the gas (mainly N2.02) after being separated is led to the cooler 6. Here, indirect heat exchange is performed with the LNG cold energy, resulting in low-temperature (approximately -150 to -160°C) dry gas.
It is circulated and supplied as a cooling gas to the dry ice production apparatus 3, and comes into direct contact with exhaust gas containing carbon dioxide gas, thereby solidifying trace moisture and carbon dioxide gas as dry ice.

循環ガスの一部は、配管7を経て系外に排出される。A part of the circulating gas is discharged to the outside of the system via piping 7.

この冷却器6の型式としては、多管式間接冷却器、流動
床型冷却器等がある。多管式間接冷却器の場合、冷却用
循環ガスを低温に冷却すると、ガス中に残存するCO2
が伝熱管壁面に凝結して伝熱性能を著しく低下させる欠
点があるが、流動床型冷却器の場合、流動化媒体(例え
ば微細な砂)が常時伝熱管壁面を清掃するため、管壁面
にCO2が凝結することがないので伝熱性能を低下させ
ることなく、連続的に冷却用ガスを低温に熱交換するこ
とができるので、本発明方法においては該冷却器を使用
するものである。
Types of the cooler 6 include multi-tube indirect coolers, fluidized bed coolers, and the like. In the case of a multi-tube indirect cooler, when the cooling circulating gas is cooled to a low temperature, the CO2 remaining in the gas is
However, in the case of fluidized bed coolers, the fluidizing medium (e.g., fine sand) constantly cleans the heat transfer tube walls, causing condensation on the tube walls, significantly reducing heat transfer performance. This cooler is used in the method of the present invention because CO2 does not condense and the cooling gas can be continuously heat exchanged to a low temperature without deteriorating heat transfer performance.

該流動床型冷却器は伝熱管内に低温のLNG(−160
〜−170℃)を流通し、伝熱管外に冷却用ガスを供給
する。また、伝熱管外には流動化媒体(例えば粒径的0
.1〜1此の川砂)が充填してあり、該熱交換器下部か
ら供給する冷却用ガスにより流動化される。冷却用ガス
は流動媒体間を上昇しながら伝熱間に接触して低温(約
−140〜−160℃)に冷却される。
The fluidized bed cooler has low temperature LNG (-160
~-170°C), and a cooling gas is supplied to the outside of the heat exchanger tube. In addition, a fluidizing medium (for example, particle size 0
.. The heat exchanger is filled with 1 to 1 river sand, and is fluidized by the cooling gas supplied from the lower part of the heat exchanger. The cooling gas is cooled to a low temperature (approximately -140 to -160°C) while rising through the fluidized medium and coming into contact with the heat transfer medium.

〔作用〕[Effect]

純炭酸ガスの固化により生成するドライアイスの昇華温
度は−78,5℃(760mm)Ig)である。そこで
、排ガスと低温ガスを直接混合して混合ガスの温度を昇
華温度以下に保持することにより炭酸ガスを固化できる
。しかしながら、排ガス中には炭酸ガス以外のN2 、
02 、820等が含まれているので炭酸ガスの分圧が
低い。従って、−78,5℃以下に冷却しないと排ガス
中の炭酸ガスの固化は生成しない。
The sublimation temperature of dry ice produced by solidifying pure carbon dioxide gas is -78.5°C (760 mm) Ig). Therefore, carbon dioxide gas can be solidified by directly mixing exhaust gas and low-temperature gas and maintaining the temperature of the mixed gas below the sublimation temperature. However, the exhaust gas contains N2 other than carbon dioxide,
02, 820, etc., so the partial pressure of carbon dioxide gas is low. Therefore, unless the exhaust gas is cooled to -78.5°C or lower, the carbon dioxide gas in the exhaust gas will not solidify.

方、LNGは−160〜−170℃の低温状態にあり、
これを気化する時に発生する潜熱を有効利用することに
より、炭酸ガスを固化温度以下に冷却できる。排ガスと
LNGの気化ガスを直接混合する方法ではLNGのガス
組成が変化して低発熱量ガスになるため好ましくなく、
LNGと冷却用低温ガスを熱交換器を使用して間接熱交
換する方が熱量的には有利である。
On the other hand, LNG is at a low temperature of -160 to -170℃,
By effectively utilizing the latent heat generated during vaporization, carbon dioxide gas can be cooled to below its solidification temperature. The method of directly mixing exhaust gas and vaporized LNG gas is not preferable because the gas composition of LNG changes and it becomes a low calorific value gas.
It is more advantageous in terms of heat quantity to indirectly exchange heat between LNG and cooling low-temperature gas using a heat exchanger.

そこで、排ガス中の炭酸ガスを固化・分離した後のN2
及び02を主成分とする残留ガスを冷却用ガスとして循
環使用する。
Therefore, after solidifying and separating carbon dioxide gas in exhaust gas, N2
The residual gas containing 02 and 02 as main components is recycled and used as a cooling gas.

炭酸ガスを含む排ガスはLNGと熱交換されて低温にな
った該冷却用ガスとドライアイス製造装置内で直接混合
されて炭酸ガスの固化温度以下になりドライアイスを生
成する。生成したドライアイスの固体粒子はサイクロン
でガス中から分離・除去される。
The exhaust gas containing carbon dioxide is directly mixed with the cooling gas, which has become low temperature through heat exchange with LNG, in the dry ice production apparatus, and the temperature becomes lower than the solidification temperature of carbon dioxide gas, thereby producing dry ice. The generated solid particles of dry ice are separated and removed from the gas using a cyclone.

排ガス中には微量の水分が残存しており、固化したドラ
イアイス中に混入してドライアイスの純度を低下する。
A trace amount of moisture remains in the exhaust gas, which mixes into the solidified dry ice and reduces the purity of the dry ice.

従って、除湿装置の操作温度がドライアイスの純度に影
響する。
Therefore, the operating temperature of the dehumidifier affects the purity of the dry ice.

ドライアイスを分離した後のガスは、前記LNG熱交換
器に導かれて低温に冷却された後、再度ドライアイス製
造装置に冷却用ガスとして循環使用する。
After the dry ice has been separated, the gas is guided to the LNG heat exchanger and cooled to a low temperature, and then recycled to the dry ice manufacturing apparatus as a cooling gas.

この熱交換器として、流動床型熱交換器(冷却器)を使
用することにより、ガス中に残存するC02を伝熱管壁
面に凝結することなく連続的にLNGと冷熱を熱交換す
ることができる。
By using a fluidized bed heat exchanger (cooler) as this heat exchanger, it is possible to continuously exchange cold heat with LNG without condensing the CO2 remaining in the gas on the wall surface of the heat transfer tube. .

一方、循環ガスは徐々に蓄積されるので一部を排気ガス
として系外に抜き出す。この排気ガス中の炭酸ガス濃度
は非常に低い。
On the other hand, since the circulating gas gradually accumulates, a portion is extracted from the system as exhaust gas. The carbon dioxide concentration in this exhaust gas is extremely low.

〔実施例1〕 小型装置を使用して流動層型熱交換器の性能確認を行っ
た。
[Example 1] Performance of a fluidized bed heat exchanger was confirmed using a small device.

(1)装置仕様 流動床型冷却器:径300 x 3.000高さ(mm
)伝熱管: 径50X 1.500長さ(mm)(2)
運転条件; ガス流速:  0.45 m/sec 排ガス:空気中にCD2を混合した模擬ガスを使用 CO,S度= 2.3 vol、% 熱交換器出口排ガス温度=−160℃ (3)運転方法 上記仕様の小型装置を製作し、模擬排ガスを冷却器下部
から供給し、流動化媒体を流動させながらガスを流通さ
せた。
(1) Equipment specifications Fluidized bed cooler: Diameter 300 x 3,000 height (mm
) Heat exchanger tube: Diameter 50X 1.500 Length (mm) (2)
Operating conditions: Gas flow rate: 0.45 m/sec Exhaust gas: Using simulated gas mixed with CD2 in air CO, S degree = 2.3 vol, % Heat exchanger outlet exhaust gas temperature = -160°C (3) Operation Method: A small device with the above specifications was manufactured, simulated exhaust gas was supplied from the bottom of the cooler, and gas was circulated while fluidizing the fluidizing medium.

一方、冷熱源としてLNGの代わりに液化窒素を使用し
、伝熱管内に流入した。
On the other hand, liquefied nitrogen was used instead of LNG as a cold source and flowed into the heat transfer tube.

熱交換器出口の排ガス温度が一160℃になるように液
体窒素流量を設定した後、同一流量に対して排ガスの温
度変化を計測した。
After setting the liquid nitrogen flow rate so that the exhaust gas temperature at the heat exchanger outlet was 1160° C., the temperature change of the exhaust gas was measured for the same flow rate.

(4)運転結果 流動化媒体を使用して流動床冷却器とした場合には、殆
ど温度変化がなかったが、流動化媒体を除去して多管式
冷却器とした場合には、排ガス温度が徐々に上昇した。
(4) Operation results When using a fluidized bed cooler using a fluidizing medium, there was almost no temperature change, but when removing the fluidizing medium and using a multi-tube cooler, the exhaust gas temperature gradually increased.

これは、伝熱管壁面にドライアイスが凝結して伝熱抵抗
が増加したため、初期の液体窒素量では熱交換量が不足
したためである。
This is because dry ice condensed on the walls of the heat transfer tubes, increasing heat transfer resistance, and the amount of heat exchanged was insufficient with the initial amount of liquid nitrogen.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃焼排ガス中の炭酸ガスを連続的に固
化分離することができ、燃焼排ガス中の炭酸ガスを直接
大気中に放出することが防止できる。
According to the present invention, carbon dioxide gas in combustion exhaust gas can be continuously solidified and separated, and carbon dioxide gas in combustion exhaust gas can be prevented from being directly released into the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図である。 FIG. 1 is a system diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 燃焼排ガスを直接冷却ガスと混合することにより、該燃
焼排ガス中の炭酸ガスを冷却・固化して回収する方法に
おいて、炭酸ガスを主成分とする固化物を分離した後の
冷排ガスを、極低温冷媒が流れる冷却管と流動媒体を内
蔵す流動床型冷却器内に導いて更に冷却して前記燃焼排
ガスと直接混合させる冷却ガスとして用いることを特徴
とする炭酸ガスの分離回収方法。
In this method, the carbon dioxide gas in the combustion exhaust gas is cooled, solidified, and recovered by directly mixing the combustion exhaust gas with cooling gas. A method for separating and recovering carbon dioxide gas, which is used as a cooling gas that is further cooled by being guided into a fluidized bed type cooler that includes a cooling pipe through which a refrigerant flows and a fluidized medium, and is directly mixed with the combustion exhaust gas.
JP2206790A 1990-08-06 1990-08-06 Carbon dioxide recovery method Expired - Lifetime JP2749976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2206790A JP2749976B2 (en) 1990-08-06 1990-08-06 Carbon dioxide recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2206790A JP2749976B2 (en) 1990-08-06 1990-08-06 Carbon dioxide recovery method

Publications (2)

Publication Number Publication Date
JPH0490845A true JPH0490845A (en) 1992-03-24
JP2749976B2 JP2749976B2 (en) 1998-05-13

Family

ID=16529140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2206790A Expired - Lifetime JP2749976B2 (en) 1990-08-06 1990-08-06 Carbon dioxide recovery method

Country Status (1)

Country Link
JP (1) JP2749976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257341A (en) * 2008-12-19 2011-11-23 乔治洛德方法研究和开发液化空气有限公司 Method for trapping carbon dioxide by cryocondensation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023069960A1 (en) * 2021-10-18 2023-04-27 Project Vesta, PBC System for accelerating dissolution of mafic and ultramafic materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477308A (en) * 1990-07-16 1992-03-11 Chugoku Electric Power Co Inc:The Method and device for recovering co2

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477308A (en) * 1990-07-16 1992-03-11 Chugoku Electric Power Co Inc:The Method and device for recovering co2

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257341A (en) * 2008-12-19 2011-11-23 乔治洛德方法研究和开发液化空气有限公司 Method for trapping carbon dioxide by cryocondensation

Also Published As

Publication number Publication date
JP2749976B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
US10393432B2 (en) Configurations and methods of CO2 capture from flue gas by cryogenic desublimation
US20110302955A1 (en) Method For Trapping CO2 By Solid Cryocondensation In A Turbine
JP4971356B2 (en) Method and system for collecting carbon dioxide from combustion gases
AU2012235841B2 (en) Cryogenic CO2 separation using a refrigeration system
JP2013503808A (en) Process for producing at least one gas having a low CO2 content and at least one fluid having a high CO2 content
WO2011140117A2 (en) Carbon dioxide capture from power or process plant gases
JP5597135B2 (en) Method for separating CO2 from a gas feed stream
WO2013053235A1 (en) Process for removing acid gas from flue gas by using waste heat of same
WO2007012143A1 (en) Recovery of carbon dioxide from flue gases
US20110252828A1 (en) Carbon Dioxide Recovery Method Using Cryo-Condensation
US20110296866A1 (en) Method For Trapping Carbon Dioxide By Cryocondensation
KR20160067121A (en) A multi-compression system and process for capturing carbon dioxide
JP3784966B2 (en) Combustion exhaust gas treatment method and apparatus
TW504563B (en) PFC recovery using condensation
JPH0490845A (en) Recovery method of carbon dioxide
JP2627144B2 (en) Method for separating carbon dioxide in exhaust gas and system treatment system for carbon dioxide
JP2813473B2 (en) Carbon dioxide recovery method
JPH04347307A (en) Method for separating carbon dioxide from exhaust gas and device thereof
JP2994818B2 (en) Dry ice molding and unloading equipment
JP2698967B2 (en) Exhaust gas dehumidification method and dehumidifier
JPH0477308A (en) Method and device for recovering co2
JPS56100603A (en) Method and apparatus for recovery of hydrocarbon in gas
JP2023138414A (en) Carbon dioxide recovery apparatus
JPH0397613A (en) Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment
JPS6086015A (en) Purification of liquefied carbonic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13