JPH0397613A - Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment - Google Patents

Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment

Info

Publication number
JPH0397613A
JPH0397613A JP1234976A JP23497689A JPH0397613A JP H0397613 A JPH0397613 A JP H0397613A JP 1234976 A JP1234976 A JP 1234976A JP 23497689 A JP23497689 A JP 23497689A JP H0397613 A JPH0397613 A JP H0397613A
Authority
JP
Japan
Prior art keywords
carbon dioxide
heat
gas
combustion gas
waste combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1234976A
Other languages
Japanese (ja)
Inventor
Tomihiko Takegawa
武川 富彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP1234976A priority Critical patent/JPH0397613A/en
Publication of JPH0397613A publication Critical patent/JPH0397613A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Abstract

PURPOSE:To recover high-purity gaseous carbon dioxide at a high recovery rate and a low cost by effectively utilizing the heat and electric energy obtained in the cogeneration equipment and recovering the gaseous carbon dioxide from the waste combustion gas generated from the equipment. CONSTITUTION:A fuel F such as natural gas is supplied to an engine 1 and burned to drive a generator 2, and power is generated. The waste combustion gas from the engine 1 is introduced into an absorption tower 6 through a heat- recovery boiler 3, and the CO2 in the gas is absorbed in an absorbent (e.g. monoethanolamine). The absorbent having absorbed CO2 is sent of a regeneration tower 7 by a circulating pump 10 through a heat-recovery heat exchanger 8, and brought into contact with the vapor generated from a reboiler 12 with the steam from the boiler 3 as its heat source. The regenerated gaseous CO2 is then dehydrated by a dehydrator 16, liquefied in a cooler 17, refined by a fractionating tower 18 to high purity and discharged as liquefied carbon dioxide L.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コジェネレーション設備の燃焼廃ガスから炭
酸ガスを回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for recovering carbon dioxide gas from combustion waste gas of a cogeneration facility.

従来技術とその問題点 近年、飲料用、冷却用などに使用される純度99.99
%程度の液体炭酸および固体炭酸(ドライアイス)に対
する需要の伸びは、著しい。現在、液体炭酸および固体
炭酸(以下液体炭酸をもって代表させる)の原料となる
炭酸ガスは、石油精製、アンモニア精製などのプロセス
において、従来は主に吸収式脱炭酸設備から放散されて
いた炭酸ガス(純度97〜99%程度)を回収すること
により、比較的安価に得られている。しかしながら、既
設の石油精製、アンモニア精製などのプラントに隣接し
て液体炭酸製造設備を新設乃至増設するには、立地的な
制約があり、また、石油精製装置の能力にも制限があっ
て、上記の需要増大に対応することが次第に困難となり
つつある。
Conventional technology and its problems In recent years, purity of 99.99 is used for beverages, cooling, etc.
The growth in demand for liquid carbonic acid and solid carbonic acid (dry ice) on the order of % is remarkable. Currently, carbon dioxide, which is the raw material for liquid carbonic acid and solid carbonic acid (hereinafter referred to as liquid carbonic acid), is produced in processes such as petroleum refining and ammonia refining. It is obtained at a relatively low cost by recovering the purity (about 97-99% purity). However, there are locational constraints in constructing or expanding liquid carbon dioxide manufacturing equipment adjacent to existing oil refining, ammonia refining, etc. plants, and there are also limitations on the capacity of the oil refining equipment, which are mentioned above. It is becoming increasingly difficult to meet the increasing demand for

また、ボイラーなどの燃焼廃ガス(炭酸ガス濃度10%
程度)から化学吸収式脱炭酸設備(吸収液として通常モ
ノエタノールアミン液、熱炭酸カリウム溶液などが使用
される)、吸着分離法であるプレッシャースイングアド
ソープション(PSA)法、テンペラチャースイングア
ドソープション(T S A)法などにより炭酸ガスを
分離し、これから液体炭酸ガスを製造することも考えら
れるが、これらの場合には、高い設備費および低い回収
効率のために製造コストが著しく高くなり、実用的では
ない。また、燃焼廃ガス中の酸素、SOx,NOxなど
の除去が不十分であり、特にSOxおよびNOxは、液
体炭酸中に混入する危険性もある。
In addition, combustion waste gas from boilers (carbon dioxide concentration 10%)
from chemical absorption decarboxylation equipment (usually monoethanolamine solution, hot potassium carbonate solution, etc. are used as the absorption liquid), pressure swing adsorption (PSA) method, which is an adsorption separation method, and temperature swing adsorption. It is also possible to separate carbon dioxide gas using the TSA method and produce liquid carbon dioxide gas from it, but in these cases, the production costs would be extremely high due to high equipment costs and low recovery efficiency. , not practical. Furthermore, removal of oxygen, SOx, NOx, etc. from the combustion waste gas is insufficient, and there is a danger that SOx and NOx in particular may be mixed into the liquid carbonic acid.

問題点を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて、液体炭酸
製造に際しての新たな炭酸ガス源を見出すべく思索を重
ねた結果、エネルギーの高効率的利用手段として注目さ
れているコジェネレーション設備において発生する廃ガ
ス中の炭酸ガスに着目し、さらに研究を重ねて、遂に本
発明を完成するにいたった。
Means for Solving the Problems In view of the current state of the technology as described above, the inventor of the present invention has repeatedly thought to find a new carbon dioxide source for producing liquid carbonic acid, and as a result, has developed a method for highly efficient use of energy. Focusing on carbon dioxide gas in the waste gas generated in cogeneration equipment, which is attracting attention, and conducting further research, the present invention was finally completed.

すなわち、本発明は、下記の炭酸ガス回収方法を提供す
るものである: ■コジェネレーション設備で得られる熱及び電気エネル
ギーを利用して、該コジェネレーション設備で発生する
燃焼廃ガスから炭酸ガスを回収する方法。
That is, the present invention provides the following carbon dioxide recovery method: ■Using the heat and electrical energy obtained by the cogeneration facility, carbon dioxide is recovered from the combustion waste gas generated by the cogeneration facility. how to.

■脱炭酸後に放散されるガスから窒素を回収する上記項
のに記載の方法。
(2) The method described in the above item for recovering nitrogen from the gas released after decarboxylation.

以下に添付図面を参照しつつ、本発明をより詳細に説明
する。
The present invention will be explained in more detail below with reference to the accompanying drawings.

第1図において、天然ガスなどの燃料(F)を燃焼させ
るエンジン(1)は、発電機(2)を駆動し、発電を行
なう。エンジン(1)で発生した燃焼廃ガスは、熱回収
用ボイラー(3)およびクーラー(4)を経てブロワ(
5)から吸収塔(6)に入る。吸収塔(6)には、吸収
液が循環されている。吸収液としては、アルカノールア
ミン系のものが好ましい。吸収液としてモノエタノール
アミン系のものを使用する場合には、酸素と反応して熱
再生不能の塩を発生する、炭酸ガスの回収率が低い、分
離エネルギーコストが高いなどの問題を生ずるので、好
ましくない。吸収塔(6)では、燃焼廃ガスと吸収液と
が向流接触し、燃焼廃ガス中のCO2が吸収液に吸収さ
れるとともに、微量のSOxは、吸収液と反応して熱再
生可能な塩を形成する。吸収液の劣化防止のためには、
必要に応じて、少量の吸収液を補給する。塔頂からは、
N2を主成分とし、02、NOxなどを含有するガスが
放出される。この放出ガスからは、常法にしたがって、
N2を収得することができる。
In FIG. 1, an engine (1) that burns a fuel (F) such as natural gas drives a generator (2) to generate electricity. The combustion waste gas generated by the engine (1) passes through the heat recovery boiler (3) and cooler (4), and then passes through the blower (
5) and enters the absorption tower (6). Absorption liquid is circulated through the absorption tower (6). As the absorption liquid, an alkanolamine type absorption liquid is preferable. When using a monoethanolamine-based absorbent, there are problems such as it reacts with oxygen and generates salts that cannot be thermally regenerated, the recovery rate of carbon dioxide is low, and the separation energy cost is high. Undesirable. In the absorption tower (6), the combustion waste gas and the absorption liquid come into countercurrent contact, and the CO2 in the combustion waste gas is absorbed by the absorption liquid, and a small amount of SOx can be thermally regenerated by reacting with the absorption liquid. Forms salt. To prevent deterioration of the absorption liquid,
Add a small amount of absorbent liquid if necessary. From the top of the tower,
A gas containing N2 as a main component and 02, NOx, etc. is released. From this released gas, according to the usual method,
N2 can be obtained.

次いで、CO2分などを含む吸収液は、循環ポンプ(1
0)により熱回収熱交換器(8)を経て再生塔(7)に
送られる。再生塔(7)の頂部からは、ガス状のCO2
が取り出され、これは、一次クーラー(13) 、圧縮
機(14) 、二次クーラー(15)および脱湿及び脱
水機(t6)を経て、例えばLNGを冷却剤とする三次
クーラー(l7)により液化されて、精留塔(l8)で
高純度に精製され、需要に応じて、液体炭酸(L)とし
て取り出される。冷却剤としてのLNGから生成する気
化天然ガスは、エンジン(1)における燃料(F)とし
て利用することができる。
Next, the absorption liquid containing CO2 etc. is passed through a circulation pump (1
0) is sent to the regeneration tower (7) via the heat recovery heat exchanger (8). From the top of the regeneration tower (7), gaseous CO2
is taken out, which passes through a primary cooler (13), a compressor (14), a secondary cooler (15), and a dehumidifier and dehydrator (t6), and is then cooled by a tertiary cooler (l7) using LNG as a coolant, for example. It is liquefied, purified to high purity in a rectification column (18), and taken out as liquid carbonic acid (L) according to demand. Gasified natural gas produced from LNG as a coolant can be used as fuel (F) in the engine (1).

再生塔(7)では、CO2分などを含む吸収液が塔内を
下降し、リボイラー(12)で発生した蒸気と向流接触
し、CO2ガスを放出するとともに、自らは再生される
In the regeneration tower (7), the absorption liquid containing CO2 and the like descends in the tower, comes into countercurrent contact with the steam generated in the reboiler (12), releases CO2 gas, and is itself regenerated.

リボイラー(l2)の熱源は、ライン(19)から供給
される水が熱回収用ボイラー(3)で加熱されて形成さ
れる水蒸気である。再生された吸収液は、循環ポンプ(
11)および熱回収熱交換器(8)およびクーラー(9
)を経て、吸収塔(6)に循環される。
The heat source of the reboiler (12) is steam formed when water supplied from the line (19) is heated in the heat recovery boiler (3). The regenerated absorption liquid is sent to the circulation pump (
11) and heat recovery heat exchanger (8) and cooler (9)
) and then circulated to the absorption tower (6).

発明の効果 本発明によれば、下記の様な顕著な効果が達成される。Effect of the invention According to the present invention, the following remarkable effects are achieved.

コジェネレーション設備におけるエンジン排熱を有効に
利用することが出来る。すなわち、脱炭酸プロセスに必
要な熱エネルギーを外部から供給する必要はない。
Engine exhaust heat in cogeneration equipment can be used effectively. That is, there is no need to externally supply the thermal energy required for the decarboxylation process.

また、必要な各種の設備で使用する電気エネルギーも、
十分に自給出来、余剰で安価な電気エネルギーは、後続
の液化炭酸製造設備などで利用され、設備投資の回収を
早めることができる。
In addition, the electrical energy used in the various necessary equipment is
The surplus and inexpensive electric energy that is sufficiently self-sufficient can be used in subsequent liquefied carbon dioxide production facilities, etc., allowing for a faster return on capital investment.

炭酸ガスの回収率が高く、液体炭酸などの原料として有
用で安価な高純度の炭酸ガスが得られる。
The recovery rate of carbon dioxide is high, and high-purity carbon dioxide that is useful and inexpensive as a raw material for liquid carbonic acid can be obtained.

窒素ガスの収得も可能である。It is also possible to obtain nitrogen gas.

実施例 以下に実施例を示し、本発明の特徴とするところをより
一層明確にする。
EXAMPLES Examples will be shown below to further clarify the features of the present invention.

実施例1 第1図に示す設備を使用して、炭酸ガスの回収および液
体炭酸の製造を行なった。
Example 1 Using the equipment shown in FIG. 1, carbon dioxide gas was recovered and liquid carbonic acid was produced.

まず、都市ガス4 1 4 Nm3/hrをガスエンジ
ン(1)において燃焼させることにより、電力1475
KWI1 、スチーム1.5トン/hrおよびC02含
有量約10%の燃焼廃ガス5000Nm3/hrを生成
させた。
First, by burning city gas 4 1 4 Nm3/hr in the gas engine (1), electric power 1475
KWI1 produced 1.5 tons/hr of steam and 5000 Nm3/hr of combustion waste gas with a CO2 content of about 10%.

得られた燃焼廃ガスを吸収塔(6)に送り、アルカノー
ルアミン系吸収液と接触させるとともに、N2を主成分
とするガスを塔頂から回収した。この回収ガスからは、
常法により純度99%のN244B9Nm’ /hrを
収得することができた。
The obtained combustion waste gas was sent to the absorption tower (6) and brought into contact with an alkanolamine-based absorption liquid, and a gas containing N2 as a main component was recovered from the top of the tower. From this recovered gas,
N244B9Nm'/hr with a purity of 99% could be obtained by a conventional method.

一方、上記のアルカノールアミン系吸収液を再生塔(7
)に送り、純度99%のCO2531Nm3/hrを得
た。
On the other hand, the above alkanolamine-based absorption liquid was transferred to a regeneration tower (7
) to obtain CO2531Nm3/hr with a purity of 99%.

このようにして得たC 0 2 531 N m 3/
 hrを常法による液体炭酸製造装置に送り、純度99
.99%の液体炭酸約95kg/hrを得た。
C 0 2 531 N m 3/ thus obtained
hr is sent to a liquid carbonic acid production device using a conventional method, and the purity is 99.
.. Approximately 95 kg/hr of 99% liquid carbonate was obtained.

なお、上記の脱炭酸工程で使用した電力は、80KW1
1であり、余剰の電力は、1395KWl1であった。
The electricity used in the above decarboxylation process was 80KW1
1, and the surplus power was 1395KWl1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法による燃焼廃ガスからの炭酸ガス
回収工程とそれに引続く液体炭酸製造工程とを示すフロ
ーダイヤグラムである。 (1)・・・ガスエンジン (2)・・・発電機 (3)・・・熱回収用ボイラー (4)・・・クーラー (5)・・・ブロワ (6)・・・吸収塔 (7)・・・再生塔 (8)・・・熱回収熱交換器 (9)・・・クーラー (10)・・・循環ポンプ (11)・・・循環ポンプ (12)・・・リボイラー (13)・・・第一次クーラー (14)・・・圧縮機 (15)・・・第二次クーラー (16)・・・脱湿脱水機 (l7)・・・第三次クーラー (18)・・・精留塔 (以 上)
FIG. 1 is a flow diagram showing the process of recovering carbon dioxide gas from combustion waste gas and the subsequent process of producing liquid carbon dioxide according to the method of the present invention. (1) Gas engine (2) Generator (3) Heat recovery boiler (4) Cooler (5) Blower (6) Absorption tower (7 )...Regeneration tower (8)...Heat recovery heat exchanger (9)...Cooler (10)...Circulation pump (11)...Circulation pump (12)...Reboiler (13) ...Primary cooler (14)...Compressor (15)...Second cooler (16)...Dehumidifier/dehydrator (l7)...Tertiary cooler (18)...・Rectification tower (and above)

Claims (2)

【特許請求の範囲】[Claims] (1)コジェネレーション設備で得られる熱及び電気エ
ネルギーを利用して、該コジェネレーション設備で発生
する燃焼廃ガスから炭酸ガスを回収する方法。
(1) A method of recovering carbon dioxide gas from combustion waste gas generated by cogeneration equipment by using heat and electrical energy obtained by the cogeneration equipment.
(2)脱炭酸後に放散されるガスから窒素を回収する請
求項(1)に記載の方法。
(2) The method according to claim (1), wherein nitrogen is recovered from the gas released after decarboxylation.
JP1234976A 1989-09-11 1989-09-11 Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment Pending JPH0397613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1234976A JPH0397613A (en) 1989-09-11 1989-09-11 Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1234976A JPH0397613A (en) 1989-09-11 1989-09-11 Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment

Publications (1)

Publication Number Publication Date
JPH0397613A true JPH0397613A (en) 1991-04-23

Family

ID=16979200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1234976A Pending JPH0397613A (en) 1989-09-11 1989-09-11 Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment

Country Status (1)

Country Link
JP (1) JPH0397613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695756A1 (en) * 2005-02-23 2006-08-30 Mitsubishi Heavy Industries, Ltd. Apparatus and method for CO2 recovery
JP2009264348A (en) * 2008-04-30 2009-11-12 Hitachi Ltd Humid air gas turbine system
KR101375645B1 (en) * 2012-06-12 2014-03-19 한국전력기술 주식회사 CO2 Absorption Device using heat of reboiler steam condensate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1695756A1 (en) * 2005-02-23 2006-08-30 Mitsubishi Heavy Industries, Ltd. Apparatus and method for CO2 recovery
US7485274B2 (en) 2005-02-23 2009-02-03 Mitsubishi Heavy Industries, Ltd. Apparatus and method for CO2 recovery
JP2009264348A (en) * 2008-04-30 2009-11-12 Hitachi Ltd Humid air gas turbine system
KR101375645B1 (en) * 2012-06-12 2014-03-19 한국전력기술 주식회사 CO2 Absorption Device using heat of reboiler steam condensate

Similar Documents

Publication Publication Date Title
US3823222A (en) Separation of co2 and h2s from gas mixtures
JP4105689B2 (en) Improved diversion device
EP0469781B1 (en) Separation of carbon dioxide and nitrogen from combustion exhaust gas with nitrogen and argon by-product recovery
US20090199566A1 (en) Co2 emission-free energy production by gas turbine
BRPI0718958A2 (en) IMPROVED ABSORBENT REGENERATION
US4797141A (en) Method for obtaining CO2 and N2 from internal combustion engine or turbine generated gases
WO2000048709A1 (en) A method for removing and recovering co2 from exhaust gas
WO2007012143A1 (en) Recovery of carbon dioxide from flue gases
JP2001019416A (en) Recovering method of carbon dioxide from oxygen- containing mixture and device therefor
AU2012322914A1 (en) Process for the removal of carbon dioxide from a gas
KR900002817B1 (en) Cascade heat recovery with coproduct gas production
AU2009259548B2 (en) Method and apparatus for the removal of a sorbate component from a process stream
EP2335813A1 (en) Method and apparatus for the removal of a sorbate component from a process stream with subsequent regeneration of the sorbent using solar energy
JPH04244504A (en) Carbon dioxide recovery type coal thermal power system
JPH0448185A (en) Recovering method of carbon dioxide discharged out of lng burning thermal power station
US20090098035A1 (en) Co2 capture method with thermal intergration of regenerator
JP2003165707A (en) Method and apparatus for manufacturing hydrogen
CA2316136A1 (en) Nitrogen system for regenerating chemical solvent
JPH0397613A (en) Method for recovering gaseous carbon dioxide from waste combustion gas of cogeneration equipment
CN105222525B (en) The preparation facilities and method of oxygen-enriched air product
JPH06287001A (en) Production of hydrogen and carbon dioxide
JP2813473B2 (en) Carbon dioxide recovery method
JPH04350303A (en) Carbon dioxide gas recovery type thermal power generation system
KR20230038222A (en) Method and system for removing carbon dioxide from a solvent using low grade heat
JPH05287284A (en) Process for reforming liquefied natural gas