JP2813473B2 - Carbon dioxide recovery method - Google Patents

Carbon dioxide recovery method

Info

Publication number
JP2813473B2
JP2813473B2 JP2413904A JP41390490A JP2813473B2 JP 2813473 B2 JP2813473 B2 JP 2813473B2 JP 2413904 A JP2413904 A JP 2413904A JP 41390490 A JP41390490 A JP 41390490A JP 2813473 B2 JP2813473 B2 JP 2813473B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
dioxide gas
temperature
dry ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2413904A
Other languages
Japanese (ja)
Other versions
JPH04225777A (en
Inventor
竹内  善幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2413904A priority Critical patent/JP2813473B2/en
Publication of JPH04225777A publication Critical patent/JPH04225777A/en
Application granted granted Critical
Publication of JP2813473B2 publication Critical patent/JP2813473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭酸ガスの回収方法に関
し、特に燃焼排ガス中の炭酸ガスを膜分離法により濃縮
した後、直接低温ガスと混合することにより、炭酸ガス
以外のガスを冷却することなく高熱効率で低温ガスの冷
熱を炭酸ガスの固化・分離に使用する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering carbon dioxide gas, and in particular, to cool a gas other than carbon dioxide gas by concentrating carbon dioxide gas in a combustion exhaust gas by a membrane separation method and directly mixing it with a low-temperature gas. The present invention relates to a method of using cold energy of a low-temperature gas for solidification and separation of carbon dioxide gas without high thermal efficiency.

【0002】[0002]

【従来の技術】従来は排ガス中の一部の炭酸ガスを濃縮
し、ガス状及び液状及びドライアイス化したり、該ガス
を出発原料として尿素や安息香酸等を製造しており、1
987年における炭酸ガスの前記用途の生産量は100
万トン/年であった。
2. Description of the Related Art Conventionally, a part of carbon dioxide in exhaust gas has been concentrated and converted into gaseous, liquid or dry ice, and urea and benzoic acid have been produced using the gas as a starting material.
In 987, the production of carbon dioxide was 100
10,000 tons / year.

【0003】一方国内で排出している炭酸ガスの総量は
18,000トンであり、実質的には当該ガスの回収を
ほとんどおこなっておらず、そのまま大気へ放出してい
た。すなわち、現在の大気中の炭酸ガス濃縮の増加は化
石燃料の燃焼により生ずるものが大半で、特に発電所や
一般産業用ボイラ、燃焼炉等の固定発生源が国内の当該
発生量の60%を占めている。これらの大気中へ放出さ
れた炭酸ガスの1/2 は海洋等に吸収され、残りは大気中
に残存することや、近年の燃焼排ガスの量の増加とあい
まって、海洋等の吸収では追いつかない状態にある。従
って、大気中の炭酸ガス量が増加し、近年、温室効果と
呼ばれている大気温度の上昇が問題視されることとなっ
た。
[0003] On the other hand, the total amount of carbon dioxide gas discharged in Japan is 18,000 tons, and practically, the gas is hardly recovered, and is released to the atmosphere as it is. That is, most of the current increase in atmospheric carbon dioxide enrichment is caused by the burning of fossil fuels. In particular, stationary sources such as power plants, general industrial boilers, and combustion furnaces account for 60% of the domestic emissions. is occupying. One-half of the carbon dioxide released into the atmosphere is absorbed by the ocean, etc., and the rest remains in the atmosphere and, due to the recent increase in the amount of flue gas, cannot be caught by the ocean, etc. In state. Therefore, the amount of carbon dioxide in the atmosphere has increased, and in recent years, an increase in the atmospheric temperature called the greenhouse effect has been regarded as a problem.

【0004】炭酸ガスを分離する方法として吸収法と吸
着法がある。表1に吸収法の例を示す。一般に加圧によ
り炭酸ガスを吸収液に吸収し、再生工程で圧力を低下す
るか加熱して吸収液の再生を行う。
[0004] There are an absorption method and an adsorption method as a method for separating carbon dioxide gas. Table 1 shows an example of the absorption method. Generally, carbon dioxide gas is absorbed by the absorbing solution by pressurization, and the absorbing solution is regenerated by reducing the pressure or heating in the regeneration step.

【0005】[0005]

【表1】 [Table 1]

【0006】吸着法も加圧により吸着剤に炭酸ガスを吸
着させ、再生工程で減圧して吸着剤の再生を行う。この
吸着・再生工程は非連続的であり、圧力・温度の変化を
伴う。
In the adsorption method, carbon dioxide gas is adsorbed on the adsorbent by applying pressure, and the pressure is reduced in the regeneration step to regenerate the adsorbent. This adsorption / regeneration step is discontinuous and involves changes in pressure and temperature.

【0007】一方、最近では天然ガスを液化して輸送・
貯蔵し、これを燃料として用いた高効率ガスタービン複
合発電による発電所の建設が推進されており、この液化
天然ガス(LNG)をガス燃料として利用する際に放出
されるLNGの保有する冷熱を用いて炭酸ガスをドライ
アイスとして固化・回収する方法が提案されている。
On the other hand, recently, natural gas has been liquefied and transported.
The construction of a power plant using high efficiency gas turbine combined power generation that stores and uses this as fuel is being promoted, and the liquefied natural gas (LNG) is used as a gas fuel. A method for solidifying and recovering carbon dioxide as dry ice by using carbon dioxide has been proposed.

【0008】特開昭61−40808に提案されている
方法は低温の液化天然ガスを二酸化炭素冷却器(熱交換
器)内に設けられた冷却パイプ内に供給し、該冷却パイ
プ外部に炭酸ガスを含有する排ガスを流通する。この際
に、冷却バイプ内の低温の液化天然ガスの冷熱により、
冷却パイプ外の炭酸ガスが間接熱交換されて冷却され、
パイプ表面に固化して付着する。これを時々掻き落とし
て集める。
In the method proposed in Japanese Patent Application Laid-Open No. 61-40808, low-temperature liquefied natural gas is supplied to a cooling pipe provided in a carbon dioxide cooler (heat exchanger), and carbon dioxide gas is supplied outside the cooling pipe. The exhaust gas containing is distributed. At this time, due to the cold heat of the low-temperature liquefied natural gas in the cooling pipe,
The carbon dioxide gas outside the cooling pipe is cooled by indirect heat exchange,
Solidifies and adheres to the pipe surface. This is sometimes scraped off and collected.

【0009】また、LNGの冷熱と熱交換して低温に冷
却されたガスと炭酸ガスを含有する排ガスを直接混合す
ることにより、炭酸ガスを固化・分離する方法の提案も
ある。
There has also been proposed a method of solidifying and separating carbon dioxide gas by directly mixing a gas cooled to a low temperature by exchanging heat with the cold of LNG and an exhaust gas containing carbon dioxide gas.

【0010】[0010]

【発明が解決しようとする課題】前記特開昭61−40
808に提案されている方法や、低濃度の炭酸ガスを含
有する排ガスを低温ガスと直接混合する方法には、以下
の問題点がある。 (1) 炭酸ガス濃度が低いため、炭酸ガス以外のガス(窒
素、酸素等)を低温に冷却するため、冷熱の利用効率が
非常に低い。 (2) 排ガス中には炭酸ガスとほぼ等量の水分が含まれて
おり、炭酸ガスの固化温度(純炭酸ガスの場合は78
℃)より高い温度(約0℃)で先に水分が固化するた
め、伝熱管への凝結による伝熱効率の低下、炭酸ガスの
固化物内への水分混入による固化物(ドライアイス)の
純度の低下の原因となる。 本発明は上記技術水準に鑑み、従来技術におけるような
不具合のない炭酸ガスの回収方法を提供しようとするも
のである。
The above-mentioned Japanese Patent Application Laid-Open No. 61-40 / 1986
The method proposed in 808 and the method of directly mixing exhaust gas containing low-concentration carbon dioxide gas with low-temperature gas have the following problems. (1) Since the concentration of carbon dioxide is low, gases other than carbon dioxide (nitrogen, oxygen, etc.) are cooled to a low temperature, and the utilization efficiency of cold heat is extremely low. (2) The exhaust gas contains almost the same amount of water as carbon dioxide gas, and the solidification temperature of carbon dioxide gas (78% for pure carbon dioxide gas)
℃) at a higher temperature (approximately 0 ℃), the water solidifies first, the heat transfer efficiency decreases due to condensation in the heat transfer tube, and the purity of the solidified matter (dry ice) due to the mixing of moisture in the solidified carbon dioxide gas. It causes a decline. The present invention has been made in view of the above-mentioned state of the art, and is intended to provide a method for recovering carbon dioxide gas which does not have a problem as in the related art.

【0011】[0011]

【課題を解決するための手段】本発明は燃焼排ガス中の
炭酸ガスを直接低温ガスと混合することにより、該炭酸
ガスを冷却して固化・回収する方法において、排ガス中
の水分を第1段の膜分離法により分離・除去し、更に炭
酸ガスを第2段の膜分離法で分離・濃縮した後に、該炭
酸ガス主成分とするガスを低温ガスと直接混合すること
により冷却して固化・回収することを特徴とする炭酸ガ
スの回収方法である。
According to the present invention, there is provided a method for cooling and solidifying and recovering carbon dioxide gas by directly mixing carbon dioxide gas in a combustion exhaust gas with a low-temperature gas. After the carbon dioxide gas is separated and concentrated by the second-stage membrane separation method, the gas mainly composed of the carbon dioxide gas is cooled and solidified by directly mixing with the low-temperature gas. A method for recovering carbon dioxide gas, comprising recovering carbon dioxide gas.

【0012】図1に本発明の原理を説明するプロセスフ
ローを示す。ボイラ1の燃焼排ガス中には水分が含まれ
ており、該排ガスを除湿装置2を用いて除湿する。排ガ
ス中に水分が多い場合、炭酸ガスは水分を含有したまま
ドライアイスとして固化されるため、ドライアイスの純
度の低下の原因になるからである。
FIG. 1 shows a process flow for explaining the principle of the present invention. Moisture is contained in the combustion exhaust gas of the boiler 1, and the exhaust gas is dehumidified using the dehumidifier 2. This is because, when the exhaust gas has a large amount of water, the carbon dioxide gas is solidified as dry ice while containing the water, which causes a decrease in the purity of the dry ice.

【0013】残存する微量水分と炭酸ガスを含む排ガス
をドライアイス製造装置3に導き、LNG冷熱と熱交換
された低温の冷却ガス4との直接接触により、残存水分
と炭酸ガスが固化してドライアイスを生成する。生成し
たドライアイスは循環ガスに同伴されてサイクロン5に
導かれ、非固化ガスと固化したドライアイスが分離され
る。分離されたドライアイスはサイクロン5の下部から
系外へ抜き出される。
Exhaust gas containing residual trace moisture and carbon dioxide gas is led to the dry ice manufacturing apparatus 3, and the residual moisture and carbon dioxide gas are solidified by direct contact with the low-temperature cooling gas 4 which has been subjected to heat exchange with LNG cold heat. Generate ice. The generated dry ice is guided by the cyclone 5 with the circulating gas, and the non-solidified gas and the solidified dry ice are separated. The separated dry ice is extracted from the lower part of the cyclone 5 to the outside of the system.

【0014】一方、微量水分と炭酸ガスをドライアイス
として固化・分離された後の大半のガス(N2 、O2
主体)は熱交換器6に導かれる。ここで、LNG冷熱と
間接熱交換されて低温(約−150〜−160℃)の乾
きガスとなり、前記のドライアイス製造装置3に冷却ガ
ス4として循環供給され、炭酸ガスを含む排ガスと直接
接触し、微量水分及び炭酸ガスをドライアイスとして固
化する。循環ガスの一部は配管7を経て系外に排出され
る。
On the other hand, most of the gas (mainly N 2 and O 2 ) after solidification and separation of trace water and carbon dioxide as dry ice is led to the heat exchanger 6. Here, it is indirectly exchanged with the LNG cold heat to become a low-temperature (about -150 to -160 ° C.) dry gas, which is circulated and supplied as the cooling gas 4 to the above-mentioned dry ice manufacturing apparatus 3 and directly contacts the exhaust gas containing carbon dioxide gas. Then, the trace water and carbon dioxide gas are solidified as dry ice. Part of the circulating gas is discharged out of the system via the pipe 7.

【0015】本発明においては、図2に示すように前記
ドライアイス製造装置3の前の除湿装置2に代え、膜分
離装置21及び炭酸ガスを選択的に分離する性能を有す
る分離膜を備えた膜分離装置22を設置するものであ
る。図2におけるその他のフローの主要部は図1と同じ
であるので説明は省略する。
In the present invention, as shown in FIG. 2, instead of the dehumidifying device 2 in front of the dry ice producing device 3, a membrane separating device 21 and a separation membrane having a performance of selectively separating carbon dioxide gas are provided. A membrane separation device 22 is provided. The other main parts of the flow in FIG. 2 are the same as those in FIG.

【0016】[0016]

【作用】燃料の性状にもよるが、炭酸ガスとほぼ等量の
水分が排ガス中に存在しており、ガス供給ノズル内での
凝結トラブルの原因や固化したドライアイス中に混入し
てドライアイスの純度を低下する等の影響を及ぼすし、
また、本発明で使用する炭酸ガス分離・濃縮する分離膜
としては一般的に有機膜を使用するが、一般に有機膜
はH2 O中での長時間運転により加水分解しやすい。
2 Oの透過係数が他のガスに比べて大きいので、他成
分ガスの透過性能を抑制する作用があるので、まず除湿
する必要がある。
[Function] Although it depends on the properties of the fuel, almost the same amount of water as the carbon dioxide gas is present in the exhaust gas, causing coagulation problems in the gas supply nozzle and mixing into the solidified dry ice to form dry ice. Influences such as lowering the purity of
In addition, an organic membrane is generally used as a separation membrane for separating and concentrating carbon dioxide used in the present invention. Generally, the organic membrane is easily hydrolyzed by a long-time operation in H 2 O.
Since the permeability coefficient of H 2 O is larger than that of other gases, it has an effect of suppressing the permeability of other component gases.

【0017】この除湿に用いる分離膜としては一般的に
無機膜が使用され、特に高性能を水分を分離するシリカ
系無機分離膜が使用される。シリカ系無機分離膜として
は特開昭60−180979、特開昭60−18098
0、特開昭61−192314号各公報で提案されてい
るシリカ・アルミナ系分離膜や耐酸性複合分離膜(特願
平2−172639号)等があげられる。これらのシリ
カ系無機膜は、低圧で水分を高性能で分離する。そこ
で、図2に示すように、まず排ガス中の水分をこのシリ
カ系分離膜を備えた膜分離装置21で分離・除去する。
As the separation membrane used for the dehumidification, an inorganic membrane is generally used, and in particular, a silica-based inorganic separation membrane for separating water with high performance is used. Examples of silica-based inorganic separation membranes include JP-A-60-180979 and JP-A-60-18098.
And silica / alumina-based separation membranes and acid-resistant composite separation membranes (Japanese Patent Application No. 2-172636) proposed in JP-A-61-192314. These silica-based inorganic membranes separate water with high performance at low pressure. Therefore, as shown in FIG. 2, first, the water in the exhaust gas is separated and removed by the membrane separation device 21 provided with the silica-based separation membrane.

【0018】炭酸ガス分離膜としては一般的に有機膜が
適用されるが、その例としては下記のものがあげられ
る。 松下電器作業(株)製シリコン膜:(酸素富化用と
して販売中) 東洋紡績(株)製酢酸セルロース膜:(酸素富化用
として販売中) 宇部興産製ポリイミド膜:(H2 、CH4 、O2
のガス分離用で販売中) そこで、図2に示すように、除湿後の排ガスを前記炭酸
ガスの選択分離性能が高い分離膜を設けた膜分離装置2
2に供給し、排ガス中の炭酸ガスを濃縮する。この炭酸
ガスを濃縮したガスをドライアイス製造装置3に供給す
る。
An organic membrane is generally used as the carbon dioxide gas separation membrane, and examples thereof include the following. Silicon film manufactured by Matsushita Electric Works Co., Ltd .: (sold for oxygen enrichment) Cellulose acetate film manufactured by Toyobo Co., Ltd .: (sold for oxygen enrichment) Polyimide film manufactured by Ube Industries: (H 2 , CH 4 , sale gas separation such as O 2) Therefore, as shown in FIG. 2, the dehumidifying membrane separator exhaust gas is provided selective separation performance high separation membrane of the carbon dioxide gas after 2
2 to concentrate the carbon dioxide gas in the exhaust gas. The gas obtained by concentrating the carbon dioxide gas is supplied to the dry ice manufacturing device 3.

【0019】ところで、純炭酸ガスの固化により生成す
るドライアイスの昇華温度は−78.5℃(760mmH
g) である。そこで、排ガスと低温ガスを直接混合して
混合ガスの温度を昇華温度以下に保持することにより炭
酸ガスを固化できる。しかしながら、排ガス中には炭酸
ガス以外のN2 、O2 、H2 O等が含まれているので炭
酸ガスの分圧が低い。従って、−78.5℃以下に冷却
しないと排ガス中の炭酸ガスの固化は生成しない。
The sublimation temperature of dry ice generated by solidification of pure carbon dioxide gas is -78.5 ° C. (760 mmH
g). Therefore, the carbon dioxide gas can be solidified by directly mixing the exhaust gas and the low-temperature gas and maintaining the temperature of the mixed gas at a sublimation temperature or lower. However, a low partial pressure of carbon dioxide since the flue gas contains N 2, O 2, H 2 O or the like other than carbon dioxide. Therefore, solidification of carbon dioxide in the exhaust gas does not occur unless the temperature is cooled to −78.5 ° C. or lower.

【0020】一方、LNGは−160〜−170℃の低
温状態にあり、これを気化する時に発生する潜熱を有効
利用することにより、炭酸ガスを固化温度以下に冷却で
きる。そこで膜分離装置22で排ガス中の炭酸ガスを濃
縮することにより、炭酸ガスの固化に必要な冷熱を
2 、O2 等の他のガスに与えて損失することなく、有
効に使用できる。
On the other hand, LNG is in a low temperature state of -160 to -170 ° C., and the carbon dioxide gas can be cooled below the solidification temperature by effectively utilizing the latent heat generated when the LNG is vaporized. Therefore, by concentrating the carbon dioxide gas in the exhaust gas with the membrane separation device 22, it is possible to effectively use the carbon dioxide gas without solidifying the carbon dioxide gas to other gases such as N 2 and O 2 without losing heat.

【0021】炭酸ガスを含む排ガスはLNGと熱交換さ
れて低温になった該冷却用ガスとドライアイス製造装置
23内で直接混合されて炭酸ガスの固化温度以下になり
ドライアイスを生成する。生成したドライアイスの固体
粒子はサイクロンでガス中から分離・除去される。
Exhaust gas containing carbon dioxide gas is directly mixed with the cooling gas, which has undergone heat exchange with LNG and has a low temperature, in the dry ice producing device 23 to have a temperature lower than the solidification temperature of the carbon dioxide gas to produce dry ice. The generated dry ice solid particles are separated and removed from the gas by a cyclone.

【0022】ドライアイスを分離した後のガスは、前記
LNG熱交換器に導かれて低温に冷却された後、再度ド
ライアイス製造装置に冷却用ガスとして循環使用する。
The gas from which the dry ice has been separated is led to the LNG heat exchanger, cooled to a low temperature, and then circulated and used again as a cooling gas in the dry ice producing apparatus.

【0023】[0023]

【実施例】小型装置を使用して図2に示したフローに従
って炭酸ガスの固化実験を行った。 (1)装置仕様 (i) 除湿工程用分離膜として以下のものを使用した。 特開昭60−180975号公報に提案されている方法
によりシリカ・アルミナゲル膜を製造した。ガス透過性
能を表2に示す。 膜型式・・・平膜、膜面積・・・1.9m2
EXAMPLE An experiment for solidifying carbon dioxide was carried out using a small apparatus in accordance with the flow shown in FIG. (1) Equipment specifications (i) The following was used as the separation membrane for the dehumidification process. A silica / alumina gel film was produced by the method proposed in JP-A-60-180975. Table 2 shows the gas permeation performance. Membrane type: flat membrane, membrane area: 1.9 m 2

【0024】[0024]

【表2】 [Table 2]

【0025】(ii) 炭酸ガス分離膜として以下のものを
使用した。 シリコン系有機膜:松下電器産業(株)製シリコン膜を
購入して使用した。ガス透過性能を表3に示す。 膜型式・・・平膜型、膜面積・・・1m2
(Ii) The following was used as the carbon dioxide gas separation membrane. Silicon-based organic film: A silicon film manufactured by Matsushita Electric Industrial Co., Ltd. was purchased and used. Table 3 shows the gas permeation performance. Membrane type: flat membrane type, membrane area: 1 m 2

【0026】[0026]

【表3】 [Table 3]

【0027】(2) 運転条件 排ガスとして、容量%でCO2 :8%、H2 O:19
%、N2 :75%、O2 :2%に示す組成のものを使用
した。 ガス量−100Nm3 /h 以上の装置を使用して運転した結果、膜分離装置透過後
のガスについて表4に示すものが得られた。
(2) Operating conditions As exhaust gas, CO 2 : 8% by volume, H 2 O: 19
%, N 2: 75%, O 2: it was used having the composition shown in 2%. As a result of operation using an apparatus having a gas amount of −100 Nm 3 / h or more, the gases shown in Table 4 were obtained after passing through the membrane separation apparatus.

【0028】[0028]

【表4】 [Table 4]

【0029】この実施例によればドライアイス生成量は
0.6kg/kg−LNGであったが、従来法によれば0.
11kg/kg−LNGにすぎなかった。
According to this embodiment, the amount of dry ice produced was 0.6 kg / kg-LNG.
It was only 11 kg / kg-LNG.

【0030】[0030]

【発明の効果】以上、説明したように本発明は第1段の
膜分離装置で排ガス中のH2 Oを分離・除去した後に、
さらに第2段の膜分離装置で排ガス中の炭酸ガスを濃縮
してドライアイス製造装置に導入するので、限られたL
NG冷熱を有効に使用することができるのみでなく、膜
分離装置により連続的に排ガス中の炭酸ガスを固化分離
するのみでなく、固定化することにより炭酸ガスの大気
中への再放出を抑制するものであり、工業規模の装置と
して有益である。
As described above, according to the present invention, after the H 2 O in the exhaust gas is separated and removed by the first-stage membrane separation device,
Furthermore, since the carbon dioxide gas in the exhaust gas is concentrated in the second-stage membrane separation device and introduced into the dry ice production device, a limited L
Not only can NG refrigeration be used effectively, but also the carbon dioxide gas in the exhaust gas can be continuously solidified and separated by a membrane separation device, and the re-emission of carbon dioxide gas into the atmosphere can be suppressed by fixing it. And is useful as an industrial-scale device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明するプロセスフローを示す
図。
FIG. 1 is a diagram showing a process flow illustrating the principle of the present invention.

【図2】本発明の一実施例のプロセスフローを示す図。FIG. 2 is a diagram showing a process flow of one embodiment of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼排ガス中の炭酸ガスを直接低温ガス
と混合することにより、該炭酸ガスを冷却して固化・回
収する方法において、排ガス中の水分を第1段の膜分離
法により分離・除去し、更に炭酸ガスを第2段の膜分離
法で分離・濃縮した後に、該炭酸ガス主成分とするガス
を低温ガスと直接混合することにより冷却して固化・回
収することを特徴とする炭酸ガスの回収方法。
1. A method for cooling and solidifying and recovering carbon dioxide gas by directly mixing carbon dioxide gas in a combustion exhaust gas with a low-temperature gas, wherein water in the exhaust gas is separated and separated by a first-stage membrane separation method. After removing and further separating and concentrating the carbon dioxide gas by the second-stage membrane separation method, the gas mainly composed of the carbon dioxide gas is directly mixed with the low-temperature gas to be cooled and solidified and recovered. How to recover carbon dioxide.
JP2413904A 1990-12-26 1990-12-26 Carbon dioxide recovery method Expired - Fee Related JP2813473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2413904A JP2813473B2 (en) 1990-12-26 1990-12-26 Carbon dioxide recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413904A JP2813473B2 (en) 1990-12-26 1990-12-26 Carbon dioxide recovery method

Publications (2)

Publication Number Publication Date
JPH04225777A JPH04225777A (en) 1992-08-14
JP2813473B2 true JP2813473B2 (en) 1998-10-22

Family

ID=18522455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413904A Expired - Fee Related JP2813473B2 (en) 1990-12-26 1990-12-26 Carbon dioxide recovery method

Country Status (1)

Country Link
JP (1) JP2813473B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825440B2 (en) * 1994-07-06 1998-11-18 アロカ株式会社 Carbon dioxide gas separation and capture device
US7378561B2 (en) * 2006-08-10 2008-05-27 University Of Southern California Method for producing methanol, dimethyl ether, derived synthetic hydrocarbons and their products from carbon dioxide and water (moisture) of the air as sole source material
JP2011250759A (en) * 2010-06-03 2011-12-15 Ihi Corp Carbon dioxide recovery utilization system
JP6102130B2 (en) * 2012-09-10 2017-03-29 宇部興産株式会社 Carbon dioxide recovery system and carbon dioxide recovery method
DE112019004951T5 (en) * 2018-10-04 2021-06-17 Ngk Insulators, Ltd. Gas separation process and gas separator

Also Published As

Publication number Publication date
JPH04225777A (en) 1992-08-14

Similar Documents

Publication Publication Date Title
US20080127632A1 (en) Carbon dioxide capture systems and methods
US8747520B2 (en) Carbon dioxide capture from power or process plant gases
US8425655B2 (en) Gas pressurized separation column and process to generate a high pressure product gas
JP5312759B2 (en) Carbon dioxide capture system
US8728201B2 (en) Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion
US20110252827A1 (en) CO2 Recovery And Cold Water Production Method
US20100064889A1 (en) Ultra cleaning of combustion gas including the removal of co2
US20080011160A1 (en) Carbon dioxide capture systems and methods
JP2009508056A (en) Energy generation without carbon dioxide emissions by gas turbines
JP2012503593A (en) Multi-stage process for purifying carbon dioxide to produce sulfuric acid and nitric acid
US9919259B2 (en) Gas pressurized separation column and process to generate a high pressure product gas
CN102695935A (en) Method and apparatus for producing at least one argon-enriched fluid and at least one oxygen-enriched fluid from a residual fluid
GB2203674A (en) Co2/n2 production process
CN111495113A (en) Fixed bed type low-temperature flue gas adsorption desulfurization system and method
JPH0663699B2 (en) Recovery method of carbon dioxide emitted from liquefied natural gas-fired power plant
JP2813473B2 (en) Carbon dioxide recovery method
Yuan et al. Recent enlightening strategies for co2 capture: a review
JPH0699034A (en) Liquefying separation recovery method of carbon dioxide from waste combustion gas
JPH04359785A (en) Device for collecting liquid carbon dioxide
Wang et al. Carbon dioxide capture
US9067173B2 (en) Method and equipment for treating CO2-rich smoke
JP2627144B2 (en) Method for separating carbon dioxide in exhaust gas and system treatment system for carbon dioxide
JP2698967B2 (en) Exhaust gas dehumidification method and dehumidifier
JPH04350303A (en) Carbon dioxide gas recovery type thermal power generation system
JP2749976B2 (en) Carbon dioxide recovery method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980714

LAPS Cancellation because of no payment of annual fees