JPH04347307A - Method for separating carbon dioxide from exhaust gas and device thereof - Google Patents
Method for separating carbon dioxide from exhaust gas and device thereofInfo
- Publication number
- JPH04347307A JPH04347307A JP3145434A JP14543491A JPH04347307A JP H04347307 A JPH04347307 A JP H04347307A JP 3145434 A JP3145434 A JP 3145434A JP 14543491 A JP14543491 A JP 14543491A JP H04347307 A JPH04347307 A JP H04347307A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- carbon dioxide
- separating
- temperature
- expander
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 582
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 289
- 239000001569 carbon dioxide Substances 0.000 title claims description 258
- 238000000034 method Methods 0.000 title claims description 53
- 238000002485 combustion reaction Methods 0.000 claims abstract description 19
- 238000007710 freezing Methods 0.000 claims abstract description 7
- 230000008014 freezing Effects 0.000 claims abstract description 7
- 238000001179 sorption measurement Methods 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 30
- 239000003463 adsorbent Substances 0.000 claims description 29
- 238000000926 separation method Methods 0.000 claims description 21
- 238000007711 solidification Methods 0.000 claims description 13
- 230000008023 solidification Effects 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 12
- 238000011084 recovery Methods 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910001868 water Inorganic materials 0.000 claims description 8
- 239000010410 layer Substances 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 5
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 239000013535 sea water Substances 0.000 claims description 4
- 239000011253 protective coating Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 3
- 230000005611 electricity Effects 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 158
- 239000007788 liquid Substances 0.000 description 12
- 239000000567 combustion gas Substances 0.000 description 11
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 11
- 239000007787 solid Substances 0.000 description 8
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 235000011089 carbon dioxide Nutrition 0.000 description 3
- 235000013842 nitrous oxide Nutrition 0.000 description 3
- 229910052815 sulfur oxide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229960001730 nitrous oxide Drugs 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/067—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/066—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/24—Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/40—Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/70—Flue or combustion exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、二酸化炭素(CO2)
を含むガスからCO2を効率よく分離する方法及び装置
、詳しくは、CO2を含むガスを冷却した後、膨張機に
導入し膨張させて低温にすることにより、CO2ととも
に、水、硫黄酸化物(SOx)、窒素酸化物(NOx)
、一酸化二窒素(N2O)の1種以上を液化又は/及び
固化させて分離するか、又はCO2を吸着分離する方法
及び装置に関するものである。[Industrial Application Field] The present invention deals with carbon dioxide (CO2)
A method and apparatus for efficiently separating CO2 from a gas containing CO2, specifically, after cooling the gas containing CO2, it is introduced into an expander and expanded to a low temperature, thereby separating CO2, water, sulfur oxides (SOx), etc. ), nitrogen oxides (NOx)
The present invention relates to a method and apparatus for separating one or more types of dinitrogen monoxide (N2O) by liquefying and/or solidifying them, or for adsorbing and separating CO2.
【0002】0002
【従来の技術】炭素系燃料を燃焼させると、燃焼ガス中
にCO2が含まれる。地球温暖化の最大の原因と目され
ているCO2の燃焼ガスからの分離技術は、いまだ模索
段階で、各種の方法が試みられているが、いずれも実用
化に程遠い。炭素系燃料、例えば石炭には硫黄分や窒素
分が多量に含まれており、燃焼時に発生するSOx、N
Oxの除去も、設置スペースやコストの点で大きな課題
となっている。そこで、現在検討されている方式として
、ボイラ等の燃焼系を圧力容器内に収納し、3〜20k
g/cm2 Aの高圧下で燃料を燃焼させ、かつ、ボイ
ラ内に脱硫剤を投入して炉内脱硫する加圧ボイラ方式、
例えば加圧流動床方式が知られている。このように、加
圧することにより、ボイラ部が大幅にコンパクト化でき
ることも特徴となっている。炉内脱硫するには、燃焼部
分である流動層の温度を850℃前後にすることが有効
で、従来の常圧の流動床ボイラは、殆ど850℃前後の
温度が選定されている。一方、NOxは、温度が高いと
多く発生し、その点850℃は他の燃焼方式の1600
〜1700℃に比べると大幅に温度が下がっており、通
常の微粉炭焚きボイラがNOx濃度200ppm位が下
限といわれているのに比べ、一般にNOx濃度100p
pm以下にすることも難しくない。この加圧ボイラ方式
を構成するには、燃焼用の空気を高圧にすることが必要
で、ガスタービンが使用される。2. Description of the Related Art When carbon-based fuel is combusted, CO2 is contained in the combustion gas. The technology to separate CO2 from combustion gas, which is considered the biggest cause of global warming, is still in the exploratory stage, and various methods are being tried, but none of them are close to being put to practical use. Carbon-based fuels, such as coal, contain large amounts of sulfur and nitrogen, and they generate SOx and N during combustion.
Removal of Ox is also a major issue in terms of installation space and cost. Therefore, as a method currently being considered, the combustion system such as a boiler is housed in a pressure vessel, and the
A pressurized boiler method that burns fuel under high pressure of g/cm2 A and injects a desulfurizing agent into the boiler for in-furnace desulfurization;
For example, a pressurized fluidized bed system is known. Another feature is that the boiler section can be made significantly more compact by pressurizing it in this way. For in-furnace desulfurization, it is effective to set the temperature of the fluidized bed, which is the combustion part, to around 850°C, and in most conventional normal pressure fluidized bed boilers, a temperature of around 850°C is selected. On the other hand, a lot of NOx is generated when the temperature is high, and 850℃ is compared to 1600℃ of other combustion
The temperature is significantly lower than ~1700℃, and the NOx concentration is generally 100ppm compared to the lower limit of NOx concentration of 200ppm for normal pulverized coal-fired boilers.
It is not difficult to make it below pm. To configure this pressurized boiler system, it is necessary to make the air for combustion high pressure, and a gas turbine is used.
【0003】また、特開昭60−40733号公報には
、閉サイクル・ガスタービン装置において、発生するC
O2を、炭酸カリウム溶液等の吸収性液体媒質に吸収さ
せて除去する装置が記載されている。[0003] Furthermore, Japanese Patent Laid-Open No. 60-40733 discloses that carbon generated in a closed cycle gas turbine system is
Apparatus have been described in which O2 is removed by absorption into an absorbent liquid medium, such as a potassium carbonate solution.
【0004】0004
【発明が解決しようとする課題】上記のように、CO2
を吸収液に吸収させて除去する方式では、吸収されたC
O2と吸収液とを分離する装置、すなわち吸収液再生装
置が必要である。燃焼ガス中に含まれる各種ガス化合物
の物性は、表1の通りである。なお各数値は常圧下の値
である。[Problem to be solved by the invention] As mentioned above, CO2
In the method of removing C by absorbing it in an absorption liquid, the absorbed C
A device for separating O2 and the absorption liquid, that is, an absorption liquid regeneration device is required. Table 1 shows the physical properties of various gas compounds contained in the combustion gas. Note that each numerical value is a value under normal pressure.
【0005】[0005]
【表1】[Table 1]
【0006】また、燃焼ガス中に含まれる固化物質の物
性は、表2の通りである。Table 2 shows the physical properties of the solidified substances contained in the combustion gas.
【0007】[0007]
【表2】[Table 2]
【0008】CO2は−60℃前後で液化し(加圧下で
はもっと高い温度、例えば、−50℃前後で液化する)
、−78.9℃で固化し、ドライアイスとなる。他の公
害物質(N2O、NO2、NO、SO2)も、NOを除
いて−100℃位までに液化する。本発明者は、上記の
諸点に鑑み、加圧燃焼装置から排出される燃焼ガスの温
度を熱交換等により下げた後、ガスタービンに導入し膨
張させて、−60℃前後より低温にすることにより、C
O2等を液化又は/及び固化させて、効率よく容易に分
離することができる方法及び装置を開発し、平成3年5
月2日付で既に特許出願している。[0008] CO2 liquefies at around -60°C (under pressure, it liquefies at a higher temperature, for example around -50°C).
, it solidifies at -78.9°C and becomes dry ice. Other pollutants (N2O, NO2, NO, SO2) also liquefy at around -100°C, except for NO. In view of the above points, the present inventor has devised a method to lower the temperature of combustion gas discharged from a pressurized combustion device through heat exchange, etc., and then introduce it into a gas turbine and expand it to lower it to a temperature lower than around -60°C. Accordingly, C
In 1991, we developed a method and device that can liquefy and/or solidify O2, etc. and separate it efficiently and easily.
A patent application has already been filed on April 2nd.
【0009】しかし、この既出願の方式は、加圧するこ
とにより高温となる空気の熱がボイラや炉において有効
に利用できること、燃焼ガスは多量の水分を含んでおり
、加圧状態の方が水分を除去しやすい(40℃位でも圧
力によっては、水分を無視できる位まで除去できる)こ
と、という利点を有しているが、加圧系にしか適用でき
ないという制約がある。[0009] However, in the method of this previously applied application, the heat of the air that becomes high temperature by pressurization can be effectively used in the boiler or furnace, and the combustion gas contains a large amount of moisture, so it is better to use the pressurized state. Although it has the advantage of being easy to remove (moisture can be removed to a negligible level even at about 40°C depending on the pressure), it has the limitation that it can only be applied to pressurized systems.
【0010】本発明者は、さらに研究を進めて、加圧系
、常圧系を問わずCO2を含むあらゆるガスに適用する
方法及び装置を開発するために、以下のような種々の検
討を行なった。まず、CO2を分離するときに必要な動
力、熱量について検討した。
(1) 凝縮及び固化の熱量
温度、圧力によって若干変化するが、1kgのCO2が
凝縮するときに88.12kcalの熱量を放出し、ま
た液体から固体に変化するときに45.56kcalの
熱量を放出する。逆にCO2が固体からガスになるとき
、136.89kcalの熱量を他から奪う(88.1
2+45.56=133.68)。
(2) 燃焼ガス中のCO2の量
燃焼の種類、燃焼装置の種類により相当の幅があるが、
モル濃度で4〜15%位(重量では6〜20%位)とみ
てよい。一般にボイラは空気過剰率が小さいので、CO
2の濃度は高い。
(3) CO2分離の従来の方法
従来は、20%以上の高濃度のCO2を含むガスか、大
気中のきわめて低濃度のCO2を除去することが行なわ
れている。高濃度の場合は、化学的吸収や物理的吸着、
膜分離の方法がとられているが、これらはいずれにして
も5〜20kg/cm2にガスを圧縮して、高圧下で分
離を行なっている。低濃度の場合には、極低温に保持さ
れた蓄冷剤上に凝縮・付着させるか、高圧下で吸着剤に
吸着させる方法がとられている。高濃度のCO2含有ガ
スでは、分離したCO2の量に対する動力の割合は小さ
くなるが、低濃度ガスでは不利である。一方、極低温で
微量のCO2を凝固させ付着させて分離する方法も、極
低温のための動力が大きく、分離CO2の割に動力使用
量が大きい。したがって、これも低CO2濃度ガスから
のCO2の分離としては有利ではないが、極低温装置で
は低温の熱源があり、また低CO2濃度であるから、C
O2の凝縮、固化の熱量が少ないので、このようなケー
スにのみ許容される方法といえる。つまり、低濃度CO
2のガスにこの方法を適用してCO2を分離することは
、経済的にもエネルギー利用又はCO2削減の点からみ
て有利な方法とはいえない。本発明は上記の諸点に鑑み
なされたもので、ボイラ、炉、内燃機関等から排出され
るCO2を含むガスからCO2を効率よく容易に分離す
る方法及び装置を提供することを目的とするものである
。[0010] The present inventor has conducted various studies as described below in order to further advance his research and develop a method and apparatus that can be applied to any gas containing CO2, regardless of whether it is a pressurized system or a normal pressure system. Ta. First, we examined the power and amount of heat required to separate CO2. (1) Calorific value of condensation and solidification It varies slightly depending on temperature and pressure, but when 1 kg of CO2 condenses, it releases 88.12 kcal, and when it changes from liquid to solid, it releases 45.56 kcal. do. Conversely, when CO2 changes from solid to gas, it takes away 136.89 kcal of heat from others (88.1
2+45.56=133.68). (2) The amount of CO2 in the combustion gas varies considerably depending on the type of combustion and the type of combustion device, but
It can be estimated that the molar concentration is about 4 to 15% (6 to 20% by weight). In general, boilers have a small excess air ratio, so CO
The concentration of 2 is high. (3) Conventional methods for separating CO2 Conventionally, gas containing a high concentration of CO2 of 20% or more or extremely low concentration of CO2 from the atmosphere has been removed. At high concentrations, chemical absorption, physical adsorption,
Membrane separation methods have been used, but in any case, the gas is compressed to 5 to 20 kg/cm 2 and separation is performed under high pressure. In the case of low concentrations, methods are used such as condensing and depositing on a regenerator kept at an extremely low temperature, or adsorbing it on an adsorbent under high pressure. With a high concentration of CO2-containing gas, the ratio of power to the amount of separated CO2 is small, but with a low concentration of gas this is disadvantageous. On the other hand, the method of solidifying and depositing a small amount of CO2 at an extremely low temperature and separating it also requires a large amount of power due to the extremely low temperature, and the amount of power used is large in comparison to the amount of separated CO2. Therefore, this is also not advantageous for separating CO2 from low CO2 concentration gas, but since cryogenic equipment has a low temperature heat source and low CO2 concentration, it is possible to
Since the amount of heat for condensing and solidifying O2 is small, this method can be said to be acceptable only in such cases. In other words, low concentration CO
Applying this method to gas No. 2 to separate CO2 cannot be said to be an advantageous method economically, from the point of view of energy use or CO2 reduction. The present invention was made in view of the above points, and aims to provide a method and apparatus for efficiently and easily separating CO2 from gas containing CO2 discharged from boilers, furnaces, internal combustion engines, etc. be.
【0011】[0011]
【課題を解決するための手段及び作用】上記の目的を達
成するために、請求項1の排ガスから二酸化炭素を分離
する方法は、図1、図3及び図4に示すように、排ガス
を冷却した後、膨張機10に導入し膨張させて二酸化炭
素の凝固温度以下にし、ついで、凝縮又は凝固した二酸
化炭素を分離することを特徴としている。また、請求項
2の方法は、請求項1の方法において、CO2を分離し
た残ガスを圧縮機18で圧縮・昇圧して大気に放出する
ことを特徴としている。圧縮後のガス圧力は、一例とし
て、大気圧より若干高い圧力(例えば大気圧+100m
mAq)である。なお、100mmAqは大気へ放出す
るための抵抗分である。膨張機10では、膨張後の排ガ
ス温度がCO2の凝固温度(−78.9℃)以下になる
ように膨張比εを選定して膨張させる。図5は、一例と
して膨張比εが10〜30の場合の膨張機入口ガス温度
と膨張機出口ガス温度との関係を示している。なお効率
ηTが0.87の場合の値である。[Means and Actions for Solving the Problems] In order to achieve the above object, the method of separating carbon dioxide from exhaust gas according to claim 1 includes cooling exhaust gas as shown in FIGS. 1, 3 and 4. After that, the carbon dioxide is introduced into an expander 10 and expanded to a temperature below the solidification temperature of carbon dioxide, and then the condensed or solidified carbon dioxide is separated. Furthermore, the method according to claim 2 is characterized in that in the method according to claim 1, the remaining gas from which CO2 has been separated is compressed and pressurized by the compressor 18, and then released into the atmosphere. The gas pressure after compression is, for example, a pressure slightly higher than atmospheric pressure (for example, atmospheric pressure + 100 m
mAq). Note that 100 mmAq is the resistance for releasing into the atmosphere. In the expander 10, the expansion ratio ε is selected so that the temperature of the exhaust gas after expansion is equal to or lower than the solidification temperature of CO2 (-78.9° C.). FIG. 5 shows, as an example, the relationship between the expander inlet gas temperature and the expander outlet gas temperature when the expansion ratio ε is 10 to 30. Note that this value is when the efficiency ηT is 0.87.
【0012】請求項3の方法は、図6に示すように、排
ガスを冷却した後、圧縮機18に導入して圧縮し、つい
で、圧縮された排ガスを膨張機10に導入し膨張させて
二酸化炭素の液化温度以下又は凝固温度以下にし、凝縮
又は凝固した二酸化炭素を分離することを特徴としてい
る。請求項3の方法において、圧縮工程を多段として、
中間冷却を行なうようにする場合もある。In the method of claim 3, as shown in FIG. 6, after the exhaust gas is cooled, it is introduced into a compressor 18 and compressed, and then the compressed exhaust gas is introduced into an expander 10 and expanded to produce carbon dioxide. It is characterized by separating the condensed or solidified carbon dioxide by reducing the temperature to below the liquefaction temperature or solidification temperature of carbon. In the method of claim 3, the compression step is performed in multiple stages,
In some cases, intermediate cooling is performed.
【0013】請求項5の方法は、図9に示すように、内
燃機関70からの排ガスを圧力を減ずることなく排熱回
収ボイラ72へ導き給水及び蒸気を加熱した後、冷却し
、ついで膨張機10に導入し膨張させて二酸化炭素の凝
固温度以下にし、凝縮又は凝固した二酸化炭素を分離す
ることを特徴としている。そして、排熱回収ボイラ72
で発生した蒸気を蒸気タービン78に導入して発電する
ことや、蒸気タービン78の復水器80に捨てる熱を第
2の発電装置の高温熱源とし、膨張機出口の低温ガスを
第2の発電装置の低温熱源とすることが行なわれる。In the method of claim 5, as shown in FIG. 9, the exhaust gas from the internal combustion engine 70 is guided to the exhaust heat recovery boiler 72 without reducing the pressure, and after heating the feed water and steam, it is cooled, and then the exhaust gas is passed to the expander. It is characterized in that the carbon dioxide is introduced into a carbon dioxide tube 10 and expanded to a temperature below the solidification temperature of carbon dioxide, and the condensed or solidified carbon dioxide is separated. And exhaust heat recovery boiler 72
The steam generated in the steam turbine 78 can be introduced into the steam turbine 78 to generate power, or the heat discarded to the condenser 80 of the steam turbine 78 can be used as a high-temperature heat source for the second power generation device, and the low-temperature gas at the outlet of the expander can be used as the second power generation device. It is used as a low-temperature heat source for the device.
【0014】請求項8の方法は、図10及び図11に示
すように、排ガスを冷却した後、圧縮機18に導入して
圧縮し、ついで、圧縮された排ガスをさらに冷却した後
、温度の低下した排ガスを膨張機10に導入し膨張させ
てさらに温度を下げ、この低温ガスを二酸化炭素吸着材
84と接触させることを特徴としている。請求項8の方
法において、二酸化炭素吸着材84を加熱流体で加熱し
て吸着されていた二酸化炭素を分離し、分離した二酸化
炭素を二酸化炭素収納容器102に移送する。また、二
酸化炭素が分離された残ガスで、膨張機10入口の排ガ
スを予冷する。さらに、二酸化炭素吸着材84の加熱に
、予冷した後の残ガスを用いる。また、二酸化炭素吸着
材84を加熱して自らは低温になった残ガスを、他の冷
却設備104の冷熱源とすることもある。In the method of claim 8, as shown in FIGS. 10 and 11, after the exhaust gas is cooled, it is introduced into the compressor 18 and compressed, and then, after the compressed exhaust gas is further cooled, the temperature is lowered. The reduced exhaust gas is introduced into the expander 10 and expanded to further lower the temperature, and this low-temperature gas is brought into contact with the carbon dioxide adsorbent 84. In the method of claim 8, the carbon dioxide adsorbent 84 is heated with a heating fluid to separate the adsorbed carbon dioxide, and the separated carbon dioxide is transferred to the carbon dioxide storage container 102. Furthermore, the exhaust gas at the inlet of the expander 10 is precooled with the residual gas from which carbon dioxide has been separated. Further, the residual gas after pre-cooling is used to heat the carbon dioxide adsorbent 84. Further, the residual gas that has become low temperature after heating the carbon dioxide adsorbent 84 may be used as a cold source for other cooling equipment 104 .
【0015】請求項13の方法は、図12に示すように
、排ガスを冷却した後、膨張機10に導入し膨張させて
二酸化炭素の凝固温度以下にし、ついで、凝縮又は凝固
した二酸化炭素の一部を分離した後、残ガスを二酸化炭
素吸着材84に接触させて、残ガス中の残りの二酸化炭
素を吸着・除去することを特徴としている。また、二酸
化炭素の一部を分離した残ガスで、膨張機10入口の排
ガスを予冷した後、この残ガスを二酸化炭素吸着材84
に接触させることもある。In the method of claim 13, as shown in FIG. 12, after the exhaust gas is cooled, it is introduced into an expander 10 and expanded to below the freezing temperature of carbon dioxide, and then part of the condensed or solidified carbon dioxide is After the gas is separated, the residual gas is brought into contact with a carbon dioxide adsorbent 84 to adsorb and remove the remaining carbon dioxide in the residual gas. Further, after pre-cooling the exhaust gas at the inlet of the expander 10 with the residual gas from which a part of the carbon dioxide has been separated, this residual gas is transferred to the carbon dioxide adsorbent 84.
may be brought into contact with.
【0016】請求項15の排ガスから二酸化炭素を分離
する装置は、図1、図3及び図4に示すように、排ガス
を冷却する予冷却器14と、冷却された排ガスを膨張さ
せる膨張機10と、膨張後の温度の下がった排ガスから
、凝縮又は凝固した二酸化炭素を分離するCO2セパレ
ータ16と、を包含することを特徴としている。また、
二酸化炭素を分離した残ガスを圧縮する圧縮機18を設
けるのが実用的である。上記の装置において、図2に示
すように、CO2セパレータ16に、前後に仕切弁26
、28を備えたCO2分離槽30を接続し、このCO2
分離槽30に、CO2セパレータ内の二酸化炭素を導入
できるように真空ポンプ32を接続する。さらに、CO
2セパレータ16にCO2レベル検出装置36を介して
シーケンス制御指示装置38を接続し、このシーケンス
制御指示装置の信号により、真空ポンプ32の作動と仕
切弁26、28の開閉をコントロールするように構成す
る。そして、CO2分離槽30を密閉できる構造とする
か、又はCO2分離槽にCO2収納容器34を接続し、
CO2を充填した後のCO2分離槽又はCO2収納容器
の外面に、海水に対する保護被覆層を設けるようにする
のが望ましい。さらに、図3に示すように、膨張機10
と圧縮機18とを同軸にして、原動機46で駆動するよ
うにし、原動機46の排気導管48を膨張機10入口の
排ガス導管に接続するように構成する場合もある。The apparatus for separating carbon dioxide from exhaust gas according to claim 15, as shown in FIGS. 1, 3, and 4, includes a precooler 14 that cools the exhaust gas, and an expander 10 that expands the cooled exhaust gas. and a CO2 separator 16 that separates condensed or solidified carbon dioxide from the exhaust gas whose temperature has decreased after expansion. Also,
It is practical to provide a compressor 18 for compressing the residual gas from which carbon dioxide has been separated. In the above device, as shown in FIG.
, 28 is connected to the CO2 separation tank 30, and this CO2
A vacuum pump 32 is connected to the separation tank 30 so that carbon dioxide in the CO2 separator can be introduced. Furthermore, CO
A sequence control instruction device 38 is connected to the 2 separator 16 via a CO2 level detection device 36, and the operation of the vacuum pump 32 and the opening and closing of the gate valves 26 and 28 are controlled by signals from the sequence control instruction device. . Then, the CO2 separation tank 30 is configured to be airtight, or the CO2 storage container 34 is connected to the CO2 separation tank,
It is desirable that the outer surface of the CO2 separation tank or CO2 storage container after being filled with CO2 is provided with a protective coating layer against seawater. Furthermore, as shown in FIG.
In some cases, the compressor 18 and the compressor 18 are coaxially driven by a prime mover 46, and the exhaust conduit 48 of the prime mover 46 is connected to the exhaust gas conduit at the inlet of the expander 10.
【0017】請求項21の装置は、図6に示すように、
排ガスを冷却する予冷却器14と、予冷却された排ガス
を加圧する圧縮機18と、圧縮された排ガスを冷却する
少なくとも1個の冷却器50、52と、冷却された排ガ
スを膨張させる膨張機10と、膨張後の温度の下がった
排ガスから、凝縮又は凝固した二酸化炭素を分離するC
O2セパレータ16と、を包含することを特徴としてい
る。請求項21の装置において、図7に示すように、C
O2セパレータ16が、側部に接線方向の冷却排ガス入
口54を有し、上部に排ガス出口56を有するサイクロ
ン本体57と、このサイクロン本体57の下部に水平方
向に設けられた凝縮・凝固CO2排出用のピストン60
と、このピストン60の進行方向に設けられたCO2排
出口61と、このCO2排出口61に接続された密閉可
能な容器62とからなるように構成される。そして、図
8に示すように、凝縮・凝固CO2を充填した密閉可能
な容器62を密閉し、この容器62の周囲にコンクリー
ト被覆層68を設けるように構成するのが望ましい。[0017] The apparatus according to claim 21, as shown in FIG.
A precooler 14 that cools exhaust gas, a compressor 18 that pressurizes the precooled exhaust gas, at least one cooler 50, 52 that cools the compressed exhaust gas, and an expander that expands the cooled exhaust gas. 10, and C for separating condensed or solidified carbon dioxide from the exhaust gas whose temperature has decreased after expansion.
It is characterized by including an O2 separator 16. 22. The apparatus of claim 21, as shown in FIG.
The O2 separator 16 includes a cyclone body 57 having a tangential cooling exhaust gas inlet 54 on the side and an exhaust gas outlet 56 on the top, and a cyclone body 57 provided horizontally at the bottom of the cyclone body 57 for condensed and solidified CO2 discharge. piston 60
, a CO2 outlet 61 provided in the direction of movement of the piston 60, and a sealable container 62 connected to the CO2 outlet 61. As shown in FIG. 8, it is desirable that a sealable container 62 filled with condensed and solidified CO2 is sealed and a concrete covering layer 68 is provided around the container 62.
【0018】請求項24の装置は、図9に示すように、
内燃機関70からの排ガスを熱源とする排熱回収ボイラ
72と、排熱回収ボイラ72からの排ガスを冷却する少
なくとも1個の冷却器74、76と、冷却された排ガス
を膨張させる膨張機10と、膨張後の温度の下がった排
ガスから、凝縮又は凝固した二酸化炭素を分離するCO
2セパレータ16と、を包含することを特徴としている
。[0018] The apparatus according to claim 24, as shown in FIG.
An exhaust heat recovery boiler 72 that uses exhaust gas from the internal combustion engine 70 as a heat source, at least one cooler 74 and 76 that cools the exhaust gas from the exhaust heat recovery boiler 72, and an expander 10 that expands the cooled exhaust gas. , CO that separates condensed or solidified carbon dioxide from the exhaust gas whose temperature has decreased after expansion.
2 separator 16.
【0019】請求項25の装置は、図10に示すように
、排ガスを圧縮する圧縮機18と、圧縮された排ガスを
冷却する予冷却器52と、予冷却された排ガスを膨張さ
せる膨張機10と、膨張後の温度の下がった排ガスを導
入して、二酸化炭素を吸着分離するCO2吸着分離器8
6と、を包含することを特徴としている。請求項25の
装置において、図11に示すように、CO2吸着分離器
86が、一方に冷却排ガス入口88を有し、他方に排ガ
ス出口90を有する本体92と、この本体92内に収納
された二酸化炭素吸着材84を保持する伝熱管94群と
からなり、二酸化炭素吸着材と冷却排ガスとが接触する
ように構成される。また、CO2吸着分離器86を複数
基並列に設け、CO2吸着分離器86の前後に仕切弁9
8、100を設けて、二酸化炭素の吸着が飽和して吸着
能力の低下したとき、仕切弁で遮断し、排ガスを他のC
O2吸着分離器へ導くようにする。さらに、仕切弁98
、100で遮断されたCO2吸着分離器86の伝熱管9
4群の吸着材保持面と異なる面側に、加熱流体を流通で
きるように、本体92の一方に加熱流体入口97を設け
、本体92の他方に加熱流体出口99を設け、排ガス出
口90にCO2収納容器102を接続するとともに、本
体92に真空ポンプ又は圧縮機を接続して、真空ポンプ
又は圧縮機で脱着した二酸化炭素をCO2収納容器10
2に移すように構成するのが望ましい。As shown in FIG. 10, the apparatus of claim 25 includes a compressor 18 for compressing exhaust gas, a precooler 52 for cooling the compressed exhaust gas, and an expander 10 for expanding the precooled exhaust gas. and a CO2 adsorption separator 8 which introduces the exhaust gas whose temperature has decreased after expansion and adsorbs and separates carbon dioxide.
It is characterized by including 6 and 6. In the apparatus according to claim 25, as shown in FIG. It consists of a group of heat transfer tubes 94 that hold a carbon dioxide adsorbent 84, and is configured so that the carbon dioxide adsorbent and the cooled exhaust gas are in contact with each other. In addition, a plurality of CO2 adsorption separators 86 are provided in parallel, and gate valves 9 are provided before and after the CO2 adsorption separators 86.
8,100 is installed, and when the adsorption capacity of carbon dioxide is saturated and the adsorption capacity is reduced, it is shut off with a gate valve and the exhaust gas is diverted to other carbon dioxide.
Direct it to the O2 adsorption separator. Furthermore, the gate valve 98
, 100 of the heat exchanger tube 9 of the CO2 adsorption separator 86
A heated fluid inlet 97 is provided on one side of the main body 92, a heated fluid outlet 99 is provided on the other side of the main body 92, and a CO2 At the same time as connecting the storage container 102, a vacuum pump or a compressor is connected to the main body 92, and the carbon dioxide desorbed by the vacuum pump or compressor is transferred to the CO2 storage container 10.
It is desirable to configure it so that it moves to 2.
【0020】請求項29の装置は、図12に示すように
、排ガスを冷却する少なくとも1個の冷却器50、52
と、冷却された排ガスを膨張させる膨張機10と、膨張
後の温度の下がった排ガスから、凝縮又は凝固した二酸
化炭素を分離するCO2セパレータ16と、CO2セパ
レータからの排ガスを導入して排ガス中に残存する二酸
化炭素を吸着分離するCO2吸着分離器86と、を包含
することを特徴としている。CO2は水などと異なり、
相変化につき特殊な挙動を示す。つまり、−56.6℃
以下では、液体状態は過冷状態以外は存在しない。低温
の加圧状態においては、圧力が5.11ata以下にな
ると液状のCO2はガスと固体とに変化して液状では存
在しない。つまり、大気圧から膨張させて低温にしても
、液状態にはならず直接固体となる。一方、高圧の状態
から膨張させると、膨張機入口の状態(温度、圧力)に
よっては一時液化し、その後、過冷状態で液で存在する
か、ガスと固体に分かれるかどちらかの挙動をする。例
えば、入口圧力20ataから膨張させるとき、入口温
度が25℃位だと液化しないが、0℃以下位から膨張さ
せれば、必ず一時5.11ata以上で−56.6℃以
下となるから液化する。[0020] The apparatus according to claim 29, as shown in FIG. 12, includes at least one cooler 50, 52 for cooling the exhaust gas.
, an expander 10 that expands the cooled exhaust gas, a CO2 separator 16 that separates condensed or solidified carbon dioxide from the exhaust gas whose temperature has dropped after expansion, and an exhaust gas from the CO2 separator that is introduced into the exhaust gas. It is characterized by including a CO2 adsorption separator 86 that adsorbs and separates remaining carbon dioxide. CO2 is different from water,
Shows special behavior due to phase change. In other words, -56.6℃
Below, the liquid state does not exist except in the supercooled state. In a pressurized state at a low temperature, when the pressure becomes 5.11 ata or less, liquid CO2 changes to gas and solid and does not exist in liquid form. In other words, even if it is expanded from atmospheric pressure to a low temperature, it does not become a liquid state but directly becomes a solid. On the other hand, when expanded from a high pressure state, depending on the conditions at the expander inlet (temperature, pressure), it temporarily liquefies, and then either exists as a liquid in a supercooled state or separates into gas and solid. . For example, when expanding from an inlet pressure of 20 ata, it will not liquefy if the inlet temperature is around 25 degrees Celsius, but if it is expanded from around 0 degrees Celsius or lower, it will always liquefy at a time of 5.11 ata or higher and below -56.6 degrees Celsius. .
【0021】[0021]
【実施例】以下、図面を参照して本発明の好適な実施例
を詳細に説明する。ただし、この実施例に記載されてい
る構成機器の形状、その相対配置、図面に記載されてい
る温度などは、とくに特定的な記載がない限りは、本発
明の範囲をそれらのみに限定する趣旨のものではなく、
単なる説明例にすぎない。図1は、本発明の排ガスから
二酸化炭素を分離する装置の一実施例で、膨張機10で
膨張させ、低温にしてCO2を除去する装置を示してい
る。図1において、CO2を含むガスをできるだけ冷却
水や空気などで低温にして水分を除去した後で、膨張機
10で膨張させる。図5に示すように、膨張機入口ガス
温度と膨張比εを適当に選定すれば、膨張機出口ガス温
度はCO2が凝固する温度に達する。しかし、CO2の
分圧は低圧になったために低下しており、膨張比15の
ときには膨張後の全圧は760/15=50.7mmH
gとなる。したがって、入口でCO2モル濃度15%で
あったものは、膨張後760×0.15/15=7.6
mmHgとなる。この圧力のCO2の飽和温度は−12
0.2℃であり、膨張機出口温度をこれ以下に下げる必
要がある。
これを満足するには、膨張機入口の温度を10℃まで下
げる必要がある。ただし、−120.2℃のときの固体
CO2の蒸気圧は10mmHgであるから、実際には凝
固しない。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. However, unless there is a specific description, the shapes of the components described in this example, their relative positions, the temperatures described in the drawings, etc. are intended to limit the scope of the present invention to only those described. not of
This is just an illustrative example. FIG. 1 is an embodiment of the apparatus for separating carbon dioxide from exhaust gas according to the present invention, and shows an apparatus that expands the carbon dioxide using an expander 10 and lowers the temperature to remove CO2. In FIG. 1, the CO2-containing gas is made as low as possible using cooling water, air, etc. to remove moisture, and then expanded in an expander 10. As shown in FIG. 5, if the expander inlet gas temperature and expansion ratio ε are appropriately selected, the expander outlet gas temperature reaches the temperature at which CO2 solidifies. However, the partial pressure of CO2 has decreased due to the lower pressure, and when the expansion ratio is 15, the total pressure after expansion is 760/15 = 50.7 mmH
g. Therefore, if the CO2 molar concentration was 15% at the inlet, 760 x 0.15/15 = 7.6 after expansion.
mmHg. The saturation temperature of CO2 at this pressure is -12
This is 0.2°C, and it is necessary to lower the expander outlet temperature below this value. To satisfy this requirement, it is necessary to lower the temperature at the inlet of the expander to 10°C. However, since the vapor pressure of solid CO2 at -120.2°C is 10 mmHg, it does not actually solidify.
【0022】これから逆算すると、膨張比ε=15で膨
張機入口温度10℃のときには、CO2の膨張機入口で
の濃度が10.0/7.6×15=20%モル濃度以上
の場合でないと凝固しない。この場合はεをもっと大き
くするか、膨張機入口温度を下げて膨張機出口温度を下
げる必要がある。ε=30で膨張機入口を−75℃とす
ると、膨張機出口温度は−180.4℃位まで下げられ
る。−140℃でCO2の蒸気圧は0.5mmHgであ
るから、760×0.15/30=3.8mmHgであ
る。つまり3.8−0.5=3.3mmHg分だけCO
2を凝固することができる。しかし、全体のガスの流量
1kgに対し、CO2が0.25kg位含まれたもの(
15%モル濃度ガス)であり、ガスが−180.4℃か
ら−140℃まで昇温するのがCO2の固化熱によると
考えると、ガス比熱0.24kcal/kgとして、(
−140+180.4)×0.24×1=9.7kca
lの熱が必要となる。一方、CO2の固化熱が136.
89×0.25×3.3/3.8=29.7kcalで
CO2の固化熱の方がはるかに大きく、ガス温度は−1
40℃より高くなる。つまり、CO2は3.3mmHg
分固化できず、−140℃より高い温度でバランスする
。これを求めると、−129℃位でバランスし、1.4
mmHg分、つまり1.4/3.8=0.37(37%
)だけCO2が固化し、63%はN2やO2とともに残
ガスとして放出される。図1における方式は、CO2の
含有率が高い場合に有利になることがわかる。さらにC
O2の割合が高く除去するCO2が多いということは、
残ガス量が減じ、大気圧まで圧縮する動力が減るので、
この点でもCO2濃度が高いとき有利である。しかし実
際には、膨張機入口のガスに含まれていた水分が多いと
(40℃まで冷やしても、大気圧では除去した後も水蒸
気の分圧は高い)、これが凝縮して、又は雪状となって
発熱するので、上記試算より不利になる。
したがって水分の含有量の少ないガスに適用できる。Calculating backwards from this, when the expansion ratio ε=15 and the expander inlet temperature is 10°C, the concentration of CO2 at the expander inlet must be 10.0/7.6×15=20% molar concentration or higher. Does not coagulate. In this case, it is necessary to make ε larger or to lower the expander inlet temperature to lower the expander outlet temperature. When ε=30 and the expander inlet is set to -75°C, the expander outlet temperature is lowered to about -180.4°C. Since the vapor pressure of CO2 at -140°C is 0.5 mmHg, it is 760 x 0.15/30 = 3.8 mmHg. In other words, 3.8-0.5=3.3mmHg of CO
2 can be solidified. However, for 1 kg of total gas flow rate, about 0.25 kg of CO2 is included (
15% molar concentration gas), and considering that the temperature rise of the gas from -180.4℃ to -140℃ is due to the solidification heat of CO2, the gas specific heat is 0.24kcal/kg, (
-140+180.4)×0.24×1=9.7kca
l of heat is required. On the other hand, the solidification heat of CO2 is 136.
89 x 0.25 x 3.3/3.8 = 29.7 kcal, the solidification heat of CO2 is much larger, and the gas temperature is -1
It becomes higher than 40℃. In other words, CO2 is 3.3mmHg
It cannot be solidified and balances at a temperature higher than -140°C. When calculating this, it is balanced at around -129℃, and it is 1.4
mmHg minute, or 1.4/3.8 = 0.37 (37%
) of CO2 solidifies, and 63% is released as residual gas along with N2 and O2. It can be seen that the method in FIG. 1 is advantageous when the CO2 content is high. Further C
The fact that the percentage of O2 is high and there is a lot of CO2 to be removed means that
The amount of residual gas decreases, and the power to compress it to atmospheric pressure decreases.
In this respect as well, it is advantageous when the CO2 concentration is high. However, in reality, if there is a lot of water contained in the gas at the inlet of the expander (even if it is cooled to 40 degrees Celsius, the partial pressure of water vapor is still high at atmospheric pressure even after removal), this will condense or form snow. This results in heat generation, which is less favorable than the above estimate. Therefore, it can be applied to gases with low moisture content.
【0023】具体的には、図1に示すように、CO2を
含む排ガスを発生する排ガス発生源(例えば、ボイラ、
炉、その他の燃焼装置)12からの排ガスを、予冷却器
14で空気又は冷却水等の冷却源で冷却(例えば0℃付
近まで)して、排ガス中の水分を除去し、かつ、膨張機
10での膨張比をCO2の凝固点(−78.9℃)以下
に燃焼ガス温度を下げるよう選び、膨張させた後、CO
2を凝固させてCO2セパレータ16で分離し、CO2
を分離した残ガスを圧縮機18で所定の圧力まで昇圧し
て、大気に放出する。20は発電機、22は駆動機、2
4は排気筒である。Specifically, as shown in FIG. 1, an exhaust gas generation source (such as a boiler,
The exhaust gas from the furnace (furnace, other combustion equipment) 12 is cooled (e.g. to around 0°C) with a cooling source such as air or cooling water in the precooler 14 to remove moisture from the exhaust gas, and The expansion ratio at 10 was selected to lower the combustion gas temperature below the freezing point of CO2 (-78.9°C), and after expansion, CO
2 is solidified and separated by a CO2 separator 16, CO2
The residual gas separated is pressurized to a predetermined pressure by the compressor 18 and released to the atmosphere. 20 is a generator, 22 is a drive machine, 2
4 is an exhaust stack.
【0024】膨張機10出口におけるCO2の分離にお
いて、図2に示すように、仕切弁26、28で切り離し
できるように前後に仕切弁をもつCO2分離槽30を設
け、このCO2分離槽30に真空ポンプ32を接続し、
真空ポンプ32でCO2分離槽30内を低圧にし、膨張
機10の出口の分離されたCO2を、低圧のCO2分離
槽30内に導き、燃焼ガス系から分離する。また、CO
2セパレータ16内のCO2の貯留量(例えばレベル)
を検知して、その信号によりCO2分離槽30の真空ポ
ンプ32の作動と仕切弁26、28の開閉をコントロー
ルするように構成する。さらに、CO2分離槽30を密
閉できる構造とするか、又はCO2分離槽30にCO2
収納容器34を接続し、CO2を充填した後のCO2分
離槽30又はCO2収納容器34の外面に、海水に対す
る保護被覆層(例えばコンクリートで固める等)を設け
る。36はCO2レベル検出装置(例えばレベル計)、
38はシーケンス制御指示装置、40は圧縮空気供給管
、42、44は制御弁である。In the separation of CO2 at the outlet of the expander 10, as shown in FIG. Connect the pump 32,
The inside of the CO2 separation tank 30 is brought to a low pressure by the vacuum pump 32, and the separated CO2 at the outlet of the expander 10 is introduced into the low pressure CO2 separation tank 30 and separated from the combustion gas system. Also, CO
2 The amount of CO2 stored in the separator 16 (e.g. level)
is detected, and the operation of the vacuum pump 32 of the CO2 separation tank 30 and the opening/closing of the gate valves 26 and 28 are controlled based on the signal. Furthermore, the CO2 separation tank 30 may have a structure that can be sealed, or the CO2 separation tank 30 may contain CO2.
After the storage container 34 is connected and filled with CO2, a protective coating layer against seawater (for example, hardened with concrete) is provided on the outer surface of the CO2 separation tank 30 or the CO2 storage container 34. 36 is a CO2 level detection device (for example, a level meter);
38 is a sequence control instruction device, 40 is a compressed air supply pipe, and 42 and 44 are control valves.
【0025】また、図3に示すように、膨張機10の軸
と圧縮機18の軸とを同軸にして、原動機46で駆動す
るようにし、原動機46の排気ガスを排ガス導管48を
介して膨張機10の入口に導入することもある。さらに
、図4に示すように、CO2セパレータ16からの低温
ガスと、膨張機10入口の排ガスとを予冷器49で熱交
換させることもある。Further, as shown in FIG. 3, the axis of the expander 10 and the axis of the compressor 18 are made coaxial and driven by a prime mover 46, and the exhaust gas of the prime mover 46 is expanded through an exhaust gas conduit 48. It may also be introduced at the entrance of the machine 10. Furthermore, as shown in FIG. 4, heat exchange may be performed between the low temperature gas from the CO2 separator 16 and the exhaust gas at the inlet of the expander 10 in a precooler 49.
【0026】図6は本発明の他の実施例で、圧縮機18
で圧縮してから膨張させる方式を示している。水分が多
いガスは、凝縮するときに放出する熱量が多いので、予
め分離してから膨張工程を行なってガスの温度を下げる
方が有利である。特に、天然ガスなどのガス体燃料や、
水分を多量に含む石炭などを燃焼させる場合がこれに該
当する。そして、中間冷却を行なうことにより、圧縮機
18の動力が減って、駆動機22の動力が少なくて済む
。具体的には、図6に示すように、排ガスを予冷却器1
4を通して冷却した後、圧縮機18で例えば20〜30
kg/cm2 Aに圧縮し、ついで冷却器50で冷却し
た後、さらに冷却器52でCO2セパレータ16からの
冷却ガスにより冷却し、膨張機10の入口での排ガス温
度ができるだけ0℃近くになるように冷却してから膨張
機10に導き、膨張させ、かつその膨張比をCO2の凝
縮点又は凝固点(−78.9℃)以下にガス温度を下げ
るように選定し、凝縮又は凝固したCO2をCO2セパ
レータ16で分離する。圧縮機18で圧縮する際、圧縮
工程を多段として、中間冷却を行なうように構成する場
合もある。図7はCO2セパレータ16の一例を示して
いる。
低温排ガス入口54から接線方向に導入された低温燃焼
ガスは、旋回している間に固体CO2(ドライアイス)
又は液化CO2が分離され、清浄ガスは排ガス出口56
から排出される。下部に溜った分離CO258は、ピス
トン60により押し出され、密閉可能な容器62に落下
する。64は断熱材である。57はサイクロン本体、6
1はCO2排出口である。図8に示すように、分離され
たドライアイス又は液化CO2を密閉可能な容器62に
入れ、フランジ66で密閉するか、又は破線で示すよう
に栓をして周りを溶接した後、容器62の周りをコンク
リート被覆層68で固めて放置する。場合によっては、
深海に投棄する。万一、容器62が破損しても、深海の
圧力のため、CO2は洩れ出さない。仮に少量ずつ洩れ
出しても、海水中に吸収されたり、液体のまま深海に滞
留する。FIG. 6 shows another embodiment of the present invention, in which the compressor 18
This shows a method of compressing and then expanding. Since a gas with a high water content releases a large amount of heat when condensed, it is advantageous to perform the expansion step after separating the gas in advance to lower the temperature of the gas. In particular, gaseous fuels such as natural gas,
This is the case when burning coal, etc. that contains a large amount of moisture. By performing intercooling, the power of the compressor 18 is reduced, and the power of the drive machine 22 can be reduced. Specifically, as shown in FIG.
After cooling through 4, for example, 20 to 30
kg/cm2 A, then cooled in a cooler 50, and further cooled in a cooler 52 with cooling gas from the CO2 separator 16 so that the exhaust gas temperature at the inlet of the expander 10 is as close to 0°C as possible. The condensed or solidified CO2 is converted into CO2 by selecting the expansion ratio so as to lower the gas temperature below the condensation point or freezing point (-78.9°C) of CO2. They are separated by a separator 16. When compressing with the compressor 18, the compression process may be performed in multiple stages and intermediate cooling may be performed. FIG. 7 shows an example of the CO2 separator 16. The low-temperature combustion gas introduced tangentially from the low-temperature exhaust gas inlet 54 turns into solid CO2 (dry ice) while swirling.
Or the liquefied CO2 is separated and the clean gas is passed through the exhaust gas outlet 56.
is discharged from. The separated CO258 accumulated at the bottom is pushed out by the piston 60 and falls into a sealable container 62. 64 is a heat insulating material. 57 is the cyclone body, 6
1 is a CO2 exhaust port. As shown in FIG. 8, the separated dry ice or liquefied CO2 is placed in a sealable container 62, and the container 62 is sealed with a flange 66 or with a stopper as shown by the broken line and welded around the container 62. The surrounding area is hardened with a concrete covering layer 68 and left alone. In some cases,
Dump into the deep sea. Even if the container 62 were to break, CO2 would not leak out due to the pressure of the deep sea. Even if it leaks out in small quantities, it will be absorbed into the seawater or remain as a liquid in the deep sea.
【0027】図9は本発明の他の実施例で、ディーゼル
エンジンなどの内燃機関70の膨張工程から高圧・高温
のガスを排出せしめ、ボイラ等で熱回収して低温となっ
たガスを膨張させる方式を示している。通常、内燃機関
では大気圧よりかなり高い圧力でシリンダーからガスが
放出されている。本発明は、従来の排出圧力より、若干
排出圧力を上げて排出させ、圧力の上昇した分だけ排ガ
ス温度が高くなるので、図9のごとく排気系に排熱回収
ボイラ72を設けて、燃焼ガスの温度を下げた後に、必
要に応じて他の冷却器74、76で、さらに温度を下げ
、ついで、膨張機10で膨張させガスを低温にして、C
O2を凝縮・固化させる方法である。本実施例では、排
ガスを過給用のタービンを通すか、過給用のタービンの
ないときは、圧力を減ずることなく排熱回収ボイラ72
へ導く。16はCO2セパレータ、78は蒸気タービン
、80はコンデンサ、82は発電機である。なお、内燃
機関の場合、排ガス中のCO2の濃度が低いことがあり
、本実施例は、あまり濃度の低いケースには不適である
。FIG. 9 shows another embodiment of the present invention, in which high-pressure and high-temperature gas is discharged from the expansion process of an internal combustion engine 70 such as a diesel engine, the heat is recovered by a boiler, etc., and the low-temperature gas is expanded. The method is shown. In an internal combustion engine, gas is normally released from the cylinder at a pressure significantly higher than atmospheric pressure. In the present invention, the exhaust pressure is slightly increased compared to the conventional exhaust pressure, and the exhaust gas temperature increases by the increased pressure. Therefore, an exhaust heat recovery boiler 72 is installed in the exhaust system as shown in FIG. After lowering the temperature of the gas, the temperature is further lowered using other coolers 74 and 76 as necessary, and then the expander 10 expands the gas to a low temperature to reduce the temperature of the gas to C.
This is a method of condensing and solidifying O2. In this embodiment, the exhaust gas is passed through the turbocharging turbine, or when there is no turbocharging turbine, the exhaust gas is passed through the exhaust heat recovery boiler 72 without reducing the pressure.
lead to. 16 is a CO2 separator, 78 is a steam turbine, 80 is a condenser, and 82 is a generator. Note that in the case of an internal combustion engine, the concentration of CO2 in the exhaust gas may be low, and this embodiment is not suitable for cases where the concentration is very low.
【0028】図10は本発明の他の実施例で、低温にお
いてCO2吸着材に吸着させる方式を示している。CO
2を吸着する物質として、活性炭、ゼオライト、モレキ
ュラーシーブなどが知られている。また、これらの吸着
材の性質は、共通して圧力が高いほど、温度が低いほど
吸着しやすいことは一般によく知られたことである。排
ガスに含有されているCO2を、すべて液化分離又は固
化分離することは、発電効率の低下を招いたり、装置の
大型化やコストアップ、さらには必要な圧縮動力が大き
くなるなど不利な点が生じてくる。本実施例の発明は、
これらを解決することができる。図10で説明すると、
図10は、図6の場合と同じく、CO2を含むガスを予
冷却器14で可能なかぎり冷却水などで冷却して、水分
の除去も含め圧縮動力を減らしてから、圧縮機18で圧
縮し、高圧になったガスをさらに冷却水等で冷却し、水
分を除去した後に、必要により冷却器52で予冷し、つ
いで、膨張機10で膨張し、ガス温度を下げる。膨張比
と膨張機入口ガス温度を与えたときの膨張後のガス温度
は、図5のごとくである。この低温のガスを、図11の
ような、二酸化炭素吸着材84を収納したCO2吸着分
離器86に導く。FIG. 10 shows another embodiment of the present invention, in which CO2 is adsorbed on a CO2 adsorbent at low temperatures. C.O.
Activated carbon, zeolite, molecular sieve, etc. are known as substances that adsorb 2. Furthermore, it is generally well known that the properties of these adsorbents are that the higher the pressure and the lower the temperature, the easier they are to adsorb. Separating all the CO2 contained in exhaust gas by liquefaction or solidification has disadvantages such as a decrease in power generation efficiency, an increase in the size and cost of the equipment, and an increase in the required compression power. It's coming. The invention of this example is
These can be resolved. To explain with Figure 10,
In FIG. 10, as in the case of FIG. 6, the gas containing CO2 is cooled with cooling water as much as possible in the precooler 14, the compression power is reduced including the removal of water, and then the gas is compressed in the compressor 18. After the high-pressure gas is further cooled with cooling water or the like to remove moisture, it is precooled with a cooler 52 if necessary, and then expanded with an expander 10 to lower the gas temperature. The gas temperature after expansion when the expansion ratio and expander inlet gas temperature are given is as shown in FIG. This low-temperature gas is guided to a CO2 adsorption separator 86 containing a carbon dioxide adsorbent 84, as shown in FIG.
【0029】このCO2吸着分離器86は、一方の側部
に冷却排ガス入口88を、他方の側部に排ガス出口90
を有する本体92と、この本体92内に収納された二酸
化炭素吸着材84を表面又は内面に保持(図面では一例
として表面に保持)する伝熱管94群とからなっている
。96は盲板、97は加熱流体入口、99は加熱流体出
口である。伝熱管94の外面(必ずしも外面でなくても
よい。図10及び図11では一例として外面)に、活性
炭、ゼオライト、モレキュラーシーブなどの二酸化炭素
吸着材84が設けられており、この吸着材84が、低温
になったガスにより冷却されるので低温となり、CO2
を多量に吸着する。低温故にガス中のCO2を殆ど吸着
することができる。しかし、CO2を吸着するとき凝縮
熱を出すので、ガス温度も吸着材の温度も上昇する。先
の例と同じく、1kgの燃焼ガス中に0.25kgのC
O2ガスが含まれているケースで、0.25kgのCO
2が全て吸着されて凝縮すると、88.12kcal/
kg×0.25=20.03kcalの熱が発生する。
1kgのガスの顕熱でこの熱の分をバランスさせると、
20.03=0.24×Δt×1よりΔt=83.5℃
となる。つまり、0℃まで吸着材の温度が上昇しても、
吸着能力を有するだけの吸着材の重量があれば、ガス温
度を−83.5℃まで下げておけばよいことになる。か
りに、この吸着材としてモレキュラーシーブを使用する
場合は、平衡圧力は1mmHgを選ぶことができる。つ
まり、CO215%モル濃度では114mmHgである
から、ほぼ99%吸着除去できる(モレキュラーシーブ
の重量が少ないと平衡圧力が上昇する)。CO2を含む
ガスが連続的にCO2吸着分離器86に流入すると、最
終的には、飽和して吸収しなくなるので、このときには
切り替えて、別のCO2吸着分離器で分離する。一方、
飽和したCO2吸着分離器は仕切弁98、100で仕切
って遮断し、付属の真空ポンプで内部を真空にしながら
、伝熱管の内面に加熱流体を流すと、吸着されていたC
O2が気化する。このとき、加熱される伝熱管の温度と
真空ポンプの到達真空度で特性が決まるが、真空ポンプ
の到達真空度は、10−2mmHgとすることが十分に
可能であるから、殆ど全てのCO2を回収することがで
きる。この場合、真空ポンプで移送する先のCO2収納
容器102を予め真空にしておけば、ほぼ100%の純
度のCO2ガスが得られる。このガスを圧縮機で圧縮し
てボンベなどに充填することができる。This CO2 adsorption separator 86 has a cooled exhaust gas inlet 88 on one side and an exhaust gas outlet 90 on the other side.
The main body 92 has a main body 92, and a group of heat transfer tubes 94 that holds the carbon dioxide adsorbent 84 housed in the main body 92 on the surface or inside surface (in the drawing, it is held on the surface as an example). 96 is a blind plate, 97 is a heating fluid inlet, and 99 is a heating fluid outlet. A carbon dioxide adsorbent 84 such as activated carbon, zeolite, or molecular sieve is provided on the outer surface (not necessarily the outer surface; in FIGS. 10 and 11, the outer surface is an example) of the heat transfer tube 94. , as it is cooled by the low-temperature gas, the temperature becomes low and CO2
adsorbs large amounts of. Because of the low temperature, most of the CO2 in the gas can be adsorbed. However, since heat of condensation is released when CO2 is adsorbed, both the gas temperature and the temperature of the adsorbent rise. As in the previous example, 0.25 kg of C is contained in 1 kg of combustion gas.
In cases containing O2 gas, 0.25 kg of CO
2 is all adsorbed and condensed, 88.12kcal/
kg x 0.25 = 20.03 kcal of heat is generated. If we balance this heat with the sensible heat of 1 kg of gas, we get
Δt=83.5℃ from 20.03=0.24×Δt×1
becomes. In other words, even if the temperature of the adsorbent rises to 0℃,
If the adsorbent has enough weight to have adsorption capacity, it is sufficient to lower the gas temperature to -83.5°C. On the other hand, if a molecular sieve is used as the adsorbent, the equilibrium pressure can be selected to be 1 mmHg. In other words, at a 15% molar concentration of CO2, it is 114 mmHg, so almost 99% can be removed by adsorption (if the weight of the molecular sieve is small, the equilibrium pressure increases). If gas containing CO2 continuously flows into the CO2 adsorption separator 86, it will eventually become saturated and no longer absorbed, so at this time the gas is switched and separated by another CO2 adsorption separator. on the other hand,
The saturated CO2 adsorption separator is shut off by gate valves 98 and 100, and while the inside is evacuated using the attached vacuum pump, the heated fluid is flowed onto the inner surface of the heat transfer tube, and the adsorbed carbon is removed.
O2 evaporates. At this time, the characteristics are determined by the temperature of the heated heat transfer tube and the ultimate vacuum of the vacuum pump, but since the ultimate vacuum of the vacuum pump can be set to 10-2 mmHg, almost all of the CO2 is It can be recovered. In this case, if the CO2 storage container 102 to which the gas is to be transferred using a vacuum pump is evacuated in advance, CO2 gas with approximately 100% purity can be obtained. This gas can be compressed using a compressor and filled into cylinders.
【0030】吸着していたCO2が蒸発するとき熱を奪
うので、吸着材の温度が下がる。したがって、水分のあ
るガスでは氷結の可能性がある。このため、CO2を除
去した冷却器52を出るガス(水分は除去されている)
を使用すると、水分の氷結の問題から開放されるし、こ
の乾燥した低温のガスは他の用途に活用できる。例えば
、他の冷却設備(冷熱利用設備)104の冷熱源とする
ことができる。なお、吸着が0℃で行なわれると、CO
2吸着分離器86を出るガスは0℃となり、これで膨張
機10入口のガスを予冷すると10℃位までしか下げら
れない。しかし、10℃であれば、−83.5℃まで膨
張機出口ガスの温度を容易に下げることができる。[0030] When the adsorbed CO2 evaporates, it takes away heat, so the temperature of the adsorbent decreases. Therefore, there is a possibility of freezing in gases containing moisture. For this reason, the gas exiting the cooler 52 from which CO2 has been removed (moisture has been removed)
This eliminates the problem of water freezing, and this dry, low-temperature gas can be used for other purposes. For example, it can be used as a cold source for another cooling facility (cold energy utilizing facility) 104. Note that when adsorption is performed at 0°C, CO
The gas exiting the second adsorption separator 86 has a temperature of 0°C, and if the gas at the inlet of the expander 10 is precooled with this, the temperature can be lowered only to about 10°C. However, at 10°C, the temperature of the expander outlet gas can be easily lowered to -83.5°C.
【0031】図12は本発明のさらに他の実施例で、図
10及び図11に示す実施例と、他の実施例とを組み合
わせた方式を示している。例えば、図6に示す圧縮後に
膨張させる方式で、CO2を含むガスを低温にして一部
のガスは図6に示す方法でCO2を分離し、他のガスは
冷却器52に入るガス(CO2セパレータからのガス)
と混合して、冷却器52の後流でCO2を図10及び図
11に示す方法で吸着分離することができる。また、図
12に示すように、排ガスを冷却器52で冷却した後、
膨張機10に導入し、低温状態でCO2を凝縮又は凝固
させて、CO2セパレータ16でCO2を一部除去した
ガスを、CO2吸着分離器86に導き、残りのCO2を
除去する。この場合、CO2の一部が除去された残ガス
で、膨張機10入口の排ガスを冷却器52で予冷した後
、この残ガスをCO2吸着分離器86に導くようにする
のが望ましい。106は、他の物質、例えば空調用の空
気などを冷却する冷却設備である。FIG. 12 shows still another embodiment of the present invention, showing a system in which the embodiment shown in FIGS. 10 and 11 and other embodiments are combined. For example, CO2-containing gas is brought to a low temperature using the compression-then-expansion method shown in FIG. 6, and CO2 is separated from some of the gases using the method shown in FIG. gas from)
CO2 can be adsorbed and separated in the downstream of the cooler 52 by the method shown in FIGS. 10 and 11. Further, as shown in FIG. 12, after the exhaust gas is cooled by the cooler 52,
The CO2 is introduced into the expander 10 and condensed or solidified at a low temperature, and the CO2 separator 16 removes a portion of the CO2. The gas is then led to the CO2 adsorption separator 86 to remove the remaining CO2. In this case, it is desirable to pre-cool the exhaust gas at the inlet of the expander 10 with the residual gas from which part of the CO2 has been removed in the cooler 52, and then introduce this residual gas to the CO2 adsorption separator 86. 106 is a cooling facility that cools other substances, such as air for air conditioning.
【0032】[0032]
【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。
(1) 排ガスを冷却した状態でCO2を分離するの
で、排ガス中のCO2を効率よく分離することができ、
しかも、CO2は液体状又は固体状で分離できるので、
取り扱いが容易である(なお図10の場合も、最終的に
は、圧縮機によりCO2を液化して容器に収納する)。
(2) CO2分離の際に、低温排ガスが発生するの
で、この低温排ガスを発電装置等の冷熱源として有効に
利用することができる。[Effects of the Invention] Since the present invention is constructed as described above, it has the following effects. (1) Since CO2 is separated while the exhaust gas is cooled, CO2 in the exhaust gas can be efficiently separated.
Moreover, since CO2 can be separated in liquid or solid form,
It is easy to handle (also in the case of FIG. 10, CO2 is ultimately liquefied by a compressor and stored in a container). (2) Since low-temperature exhaust gas is generated during CO2 separation, this low-temperature exhaust gas can be effectively used as a cold heat source for power generators and the like.
【図1】本発明の排ガスから二酸化炭素を分離する方法
を実施する装置の一実施例を示すフローシートである。FIG. 1 is a flow sheet showing an embodiment of an apparatus for implementing the method of separating carbon dioxide from exhaust gas of the present invention.
【図2】図1におけるCO2セパレータ周りの詳細を示
す説明図である。FIG. 2 is an explanatory diagram showing details around the CO2 separator in FIG. 1;
【図3】本発明の装置の他の実施例を示すフローシート
である。FIG. 3 is a flow sheet showing another embodiment of the apparatus of the present invention.
【図4】本発明の装置の他の実施例を示すフローシート
である。FIG. 4 is a flow sheet showing another embodiment of the apparatus of the present invention.
【図5】膨張比を変えた場合の膨張機入口ガス温度と膨
張機出口ガス温度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between expander inlet gas temperature and expander outlet gas temperature when the expansion ratio is changed.
【図6】本発明の装置の他の実施例を示すフローシート
である。FIG. 6 is a flow sheet showing another embodiment of the apparatus of the present invention.
【図7】本発明の装置において用いられるCO2セパレ
ータの一例を示す断面図である。FIG. 7 is a sectional view showing an example of a CO2 separator used in the device of the present invention.
【図8】本発明において分離したCO2の処置方法の一
例を示す断面図である。FIG. 8 is a sectional view showing an example of a method for treating separated CO2 in the present invention.
【図9】本発明の装置の他の実施例を示すフローシート
である。FIG. 9 is a flow sheet showing another embodiment of the apparatus of the present invention.
【図10】本発明の装置の他の実施例を示すフローシー
トである。FIG. 10 is a flow sheet showing another embodiment of the apparatus of the present invention.
【図11】図10におけるCO2吸着分離器の一例を示
す拡大断面図である。11 is an enlarged sectional view showing an example of the CO2 adsorption separator in FIG. 10. FIG.
【図12】本発明の装置のさらに他の実施例を示すフロ
ーシートである。FIG. 12 is a flow sheet showing still another embodiment of the apparatus of the present invention.
10 膨張機 12 排ガス発生源 14 予冷却器 16 CO2セパレータ 18 圧縮機 26 仕切弁 28 仕切弁 30 CO2分離槽 32 真空ポンプ 34 CO2収納容器 36 CO2レベル検出装置 38 シーケンス制御指示装置 46 原動機 48 排気導管 50 冷却器 52 冷却器 54 冷却排ガス入口 56 排ガス出口 57 サイクロン本体 60 ピストン 61 CO2排出口 62 密閉可能な容器 68 コンクリート被覆層 70 内燃機関 72 排熱回収ボイラ 74 冷却器 76 冷却器 78 蒸気タービン 80 復水器 84 二酸化炭素吸着材 86 CO2吸着分離器 88 冷却排ガス入口 90 排ガス出口 92 本体 94 伝熱管 97 加熱流体入口 98 仕切弁 99 加熱流体出口 100 仕切弁 102 CO2収納容器 104 冷却設備 10 Expander 12 Exhaust gas generation source 14 Pre-cooler 16 CO2 separator 18 Compressor 26 Gate valve 28 Gate valve 30 CO2 separation tank 32 Vacuum pump 34 CO2 storage container 36 CO2 level detection device 38 Sequence control instruction device 46 Prime mover 48 Exhaust pipe 50 Cooler 52 Cooler 54 Cooling exhaust gas inlet 56 Exhaust gas outlet 57 Cyclone body 60 Piston 61 CO2 exhaust port 62 Sealable container 68 Concrete covering layer 70 Internal combustion engine 72 Exhaust heat recovery boiler 74 Cooler 76 Cooler 78 Steam turbine 80 Condenser 84 Carbon dioxide adsorbent 86 CO2 adsorption separator 88 Cooling exhaust gas inlet 90 Exhaust gas outlet 92 Main body 94 Heat exchanger tube 97 Heating fluid inlet 98 Gate valve 99 Heating fluid outlet 100 Gate valve 102 CO2 storage container 104 Cooling equipment
Claims (29)
に導入し膨張させて二酸化炭素の凝固温度以下にし、つ
いで、凝縮又は凝固した二酸化炭素を分離することを特
徴とする排ガスから二酸化炭素を分離する方法。[Claim 1] After cooling the exhaust gas, an expander (10)
A method for separating carbon dioxide from exhaust gas, characterized by introducing the carbon dioxide into a gas, expanding it to a temperature below the solidification temperature of carbon dioxide, and then separating the condensed or solidified carbon dioxide.
昇圧して大気に放出することを特徴とする請求項1記載
の排ガスから二酸化炭素を分離する方法。[Claim 2] The residual gas after separating carbon dioxide is compressed and
The method for separating carbon dioxide from exhaust gas according to claim 1, characterized in that the pressure is increased and the carbon dioxide is discharged into the atmosphere.
に導入して圧縮し、ついで、圧縮された排ガスを膨張機
(10)に導入し膨張させて二酸化炭素の液化温度以下
又は凝固温度以下にし、凝縮又は凝固した二酸化炭素を
分離することを特徴とする排ガスから二酸化炭素を分離
する方法。[Claim 3] After cooling the exhaust gas, the compressor (18)
The compressed exhaust gas is then introduced into an expander (10) and expanded to a temperature below the liquefaction temperature or below the solidification temperature of carbon dioxide, and the condensed or solidified carbon dioxide is separated. A method of separating carbon dioxide from exhaust gas.
なうことを特徴とする請求項3記載の排ガスから二酸化
炭素を分離する方法。4. The method for separating carbon dioxide from exhaust gas according to claim 3, wherein the compression step is performed in multiple stages and intermediate cooling is performed.
を減ずることなく排熱回収ボイラ(72)へ導き給水及
び蒸気を加熱した後、冷却し、ついで膨張機(10)に
導入し膨張させて二酸化炭素の凝固温度以下にし、凝縮
又は凝固した二酸化炭素を分離することを特徴とする排
ガスから二酸化炭素を分離する方法。5. Exhaust gas from the internal combustion engine (70) is guided to the exhaust heat recovery boiler (72) without reducing pressure to heat feed water and steam, cooled, and then introduced to the expander (10) for expansion. A method for separating carbon dioxide from exhaust gas, which comprises: reducing the temperature to below the solidification temperature of carbon dioxide and separating condensed or solidified carbon dioxide.
気を蒸気タービン(78)に導入して発電することを特
徴とする請求項5記載の排ガスから二酸化炭素を分離す
る方法。6. The method for separating carbon dioxide from exhaust gas according to claim 5, characterized in that steam generated in the exhaust heat recovery boiler (72) is introduced into a steam turbine (78) to generate electricity.
)に捨てる熱を第2の発電装置の高温熱源とし、膨張機
出口の低温ガスを第2の発電装置の低温熱源とすること
を特徴とする請求項6記載の排ガスから二酸化炭素を分
離する方法。[Claim 7] A condenser (80) of a steam turbine (78).
) The method for separating carbon dioxide from exhaust gas according to claim 6, characterized in that the heat disposed of in the second power generation device is used as a high temperature heat source of the second power generation device, and the low temperature gas at the outlet of the expander is used as a low temperature heat source of the second power generation device. .
に導入して圧縮し、ついで、圧縮された排ガスをさらに
冷却した後、温度の低下した排ガスを膨張機(10)に
導入し膨張させてさらに温度を下げ、この低温ガスを二
酸化炭素吸着材(84)と接触させることを特徴とする
排ガスから二酸化炭素を分離する方法。[Claim 8] After cooling the exhaust gas, the compressor (18)
Then, after further cooling the compressed exhaust gas, the exhaust gas whose temperature has decreased is introduced into an expander (10) and expanded to further lower the temperature, and this low-temperature gas is passed through a carbon dioxide adsorbent ( 84) A method for separating carbon dioxide from exhaust gas.
で加熱して吸着されていた二酸化炭素を分離し、分離し
た二酸化炭素を二酸化炭素収納容器(102)に移送す
ることを特徴とする請求項8記載の排ガスから二酸化炭
素を分離する方法。9. A claim characterized in that the carbon dioxide adsorbent (84) is heated with a heating fluid to separate the adsorbed carbon dioxide, and the separated carbon dioxide is transferred to the carbon dioxide storage container (102). Item 8. The method for separating carbon dioxide from exhaust gas.
膨張機(10)入口の排ガスを予冷することを特徴とす
る請求項8又は9記載の排ガスから二酸化炭素を分離す
る方法。[Claim 10] Residual gas from which carbon dioxide has been separated,
The method for separating carbon dioxide from exhaust gas according to claim 8 or 9, characterized in that the exhaust gas at the inlet of the expander (10) is precooled.
、予冷した後の残ガスを用いることを特徴とする請求項
10記載の排ガスから二酸化炭素を分離する方法。11. The method for separating carbon dioxide from exhaust gas according to claim 10, characterized in that residual gas after pre-cooling is used to heat the carbon dioxide adsorbent (84).
て自らは低温になった残ガスを、他の冷却設備(104
)の冷熱源とすることを特徴とする請求項11記載の排
ガスから二酸化炭素を分離する方法。12. The remaining gas, which has become low temperature after heating the carbon dioxide adsorbent (84), is transferred to another cooling equipment (104).
12. The method for separating carbon dioxide from exhaust gas according to claim 11, characterized in that the method is characterized in that the method uses a cold source as a cold heat source.
)に導入し膨張させて二酸化炭素の凝固温度以下にし、
ついで、凝縮又は凝固した二酸化炭素の一部を分離した
後、残ガスを二酸化炭素吸着材(84)に接触させて、
残ガス中の残りの二酸化炭素を吸着・除去することを特
徴とする排ガスから二酸化炭素を分離する方法。Claim 13: After cooling the exhaust gas, an expander (10
) and expand it to below the freezing temperature of carbon dioxide,
Then, after separating a part of the condensed or solidified carbon dioxide, the remaining gas is brought into contact with a carbon dioxide adsorbent (84),
A method for separating carbon dioxide from exhaust gas, which is characterized by adsorbing and removing the remaining carbon dioxide in the residual gas.
で、膨張機(10)入口の排ガスを予冷した後、この残
ガスを二酸化炭素吸着材(84)に接触させることを特
徴とする請求項13記載の排ガスから二酸化炭素を分離
する方法。14. A claim characterized in that after precooling the exhaust gas at the inlet of the expander (10) with the residual gas from which a portion of the carbon dioxide has been separated, this residual gas is brought into contact with the carbon dioxide adsorbent (84). Item 14. The method for separating carbon dioxide from exhaust gas.
と、冷却された排ガスを膨張させる膨張機(10)と、
膨張後の温度の下がった排ガスから、凝縮又は凝固した
二酸化炭素を分離するCO2セパレータ(16)と、を
包含することを特徴とする排ガスから二酸化炭素を分離
する装置。[Claim 15] Precooler (14) for cooling exhaust gas
and an expander (10) that expands the cooled exhaust gas.
An apparatus for separating carbon dioxide from exhaust gas, comprising a CO2 separator (16) for separating condensed or solidified carbon dioxide from exhaust gas whose temperature has decreased after expansion.
する圧縮機(18)を設けたことを特徴とする請求項1
5記載の排ガスから二酸化炭素を分離する装置。16. Claim 1, further comprising a compressor (18) for compressing residual gas from which carbon dioxide has been separated.
5. A device for separating carbon dioxide from exhaust gas according to 5.
に仕切弁(26)、(28)を備えたCO2分離槽(3
0)を接続し、このCO2分離槽(30)に、CO2セ
パレータ内の二酸化炭素を導入できるように真空ポンプ
(32)を接続したことを特徴とする請求項15又は1
6記載の排ガスから二酸化炭素を分離する装置。17. A CO2 separation tank (3) equipped with a CO2 separator (16) and gate valves (26) and (28) at the front and rear.
0), and a vacuum pump (32) is connected to the CO2 separation tank (30) so as to introduce carbon dioxide in the CO2 separator.
6. A device for separating carbon dioxide from exhaust gas according to 6.
レベル検出装置(36)を介してシーケンス制御指示装
置(38)を接続し、このシーケンス制御指示装置の信
号により、真空ポンプ(32)の作動と仕切弁(26)
、(28)の開閉をコントロールするようにしたことを
特徴とする請求項17記載の排ガスから二酸化炭素を分
離する装置。[Claim 18] CO2 in the CO2 separator (16)
A sequence control instruction device (38) is connected via the level detection device (36), and a signal from this sequence control instruction device causes the vacuum pump (32) to operate and the gate valve (26) to operate.
, (28) are controlled to open and close.
構造とするか、又はCO2分離槽にCO2収納容器(3
4)を接続し、CO2を充填した後のCO2分離槽又は
CO2収納容器の外面に、海水に対する保護被覆層を設
けることを特徴とする請求項17又は18記載の排ガス
から二酸化炭素を分離する装置。19. The CO2 separation tank (30) has a structure that can be sealed, or the CO2 storage container (30) is installed in the CO2 separation tank (30).
19. The device for separating carbon dioxide from exhaust gas according to claim 17 or 18, wherein a protective coating layer against seawater is provided on the outer surface of the CO2 separation tank or CO2 storage container after connecting 4) and filling with CO2. .
を同軸にして、原動機(46)で駆動するようにし、原
動機(46)の排気導管(48)を膨張機(10)入口
の排ガス導管に接続したことを特徴とする請求項15、
16、17、18又は19記載の排ガスから二酸化炭素
を分離する装置。20. The expander (10) and compressor (18) are coaxial and driven by a prime mover (46), and the exhaust conduit (48) of the prime mover (46) is connected to the inlet of the expander (10). Claim 15, characterized in that it is connected to an exhaust gas conduit.
20. A device for separating carbon dioxide from exhaust gas according to 16, 17, 18 or 19.
と、予冷却された排ガスを加圧する圧縮機(18)と、
圧縮された排ガスを冷却する少なくとも1個の冷却器(
50)、(52)と、冷却された排ガスを膨張させる膨
張機(10)と、膨張後の温度の下がった排ガスから、
凝縮又は凝固した二酸化炭素を分離するCO2セパレー
タ(16)と、を包含することを特徴とする排ガスから
二酸化炭素を分離する装置。[Claim 21] Precooler (14) for cooling exhaust gas
and a compressor (18) that pressurizes the pre-cooled exhaust gas.
at least one cooler for cooling the compressed exhaust gas (
50), (52), an expander (10) that expands the cooled exhaust gas, and from the exhaust gas whose temperature has decreased after expansion,
A device for separating carbon dioxide from exhaust gas, characterized in that it includes a CO2 separator (16) for separating condensed or solidified carbon dioxide.
に接線方向の冷却排ガス入口(54)を有し、上部に排
ガス出口(56)を有するサイクロン本体(57)と、
このサイクロン本体(57)の下部に水平方向に設けら
れた凝縮・凝固CO2排出用のピストン(60)と、こ
のピストン(60)の進行方向に設けられたCO2排出
口(61)と、このCO2排出口(61)に接続された
密閉可能な容器(62)とからなることを特徴とする請
求項21記載の排ガスから二酸化炭素を分離する装置。22. A cyclone body (57) in which the CO2 separator (16) has a tangential cooling exhaust gas inlet (54) on the side and an exhaust gas outlet (56) on the top;
A piston (60) for discharging condensed/solidified CO2 provided horizontally at the bottom of the cyclone body (57), a CO2 discharging port (61) provided in the direction of movement of this piston (60), and a CO2 discharging port (61) provided in the direction of movement of this piston (60). 22. Device for separating carbon dioxide from exhaust gas according to claim 21, characterized in that it comprises a sealable container (62) connected to the outlet (61).
能な容器(62)を密閉し、この容器(62)の周囲に
コンクリート被覆層(68)を設けたことを特徴とする
請求項22記載の排ガスから二酸化炭素を分離する装置
。23. The method according to claim 22, characterized in that a sealable container (62) filled with condensed and solidified CO2 is sealed, and a concrete covering layer (68) is provided around the container (62). A device that separates carbon dioxide from exhaust gas.
源とする排熱回収ボイラ(72)と、排熱回収ボイラ(
72)からの排ガスを冷却する少なくとも1個の冷却器
(74)、(76)と、冷却された排ガスを膨張させる
膨張機(10)と、膨張後の温度の下がった排ガスから
、凝縮又は凝固した二酸化炭素を分離するCO2セパレ
ータ(16)と、を包含することを特徴とする排ガスか
ら二酸化炭素を分離する装置。24. An exhaust heat recovery boiler (72) using exhaust gas from the internal combustion engine (70) as a heat source, and an exhaust heat recovery boiler (
at least one cooler (74), (76) for cooling the exhaust gas from 72), an expander (10) for expanding the cooled exhaust gas, and condensation or solidification from the exhaust gas whose temperature has decreased after expansion. 1. A device for separating carbon dioxide from exhaust gas, comprising: a CO2 separator (16) for separating carbon dioxide.
、圧縮された排ガスを冷却する予冷却器(52)と、予
冷却された排ガスを膨張させる膨張機(10)と、膨張
後の温度の下がった排ガスを導入して、二酸化炭素を吸
着分離するCO2吸着分離器(86)と、を包含するこ
とを特徴とする排ガスから二酸化炭素を分離する装置。25. A compressor (18) that compresses exhaust gas, a precooler (52) that cools the compressed exhaust gas, an expander (10) that expands the precooled exhaust gas, and a temperature control device after expansion. 1. A device for separating carbon dioxide from exhaust gas, comprising: a CO2 adsorption separator (86) which introduces exhaust gas with reduced carbon dioxide and adsorbs and separates carbon dioxide.
に冷却排ガス入口(88)を有し、他方に排ガス出口(
90)を有する本体(92)と、この本体(92)内に
収納された二酸化炭素吸着材(84)を保持する伝熱管
(94)群とからなり、二酸化炭素吸着材と冷却排ガス
とが接触するように構成されたことを特徴とする請求項
25記載の排ガスから二酸化炭素を分離する装置。26. The CO2 adsorption separator (86) has a cooled exhaust gas inlet (88) on one side and an exhaust gas outlet (88) on the other side.
90), and a group of heat transfer tubes (94) holding a carbon dioxide adsorbent (84) housed in the main body (92), so that the carbon dioxide adsorbent and the cooled exhaust gas come into contact with each other. 26. An apparatus for separating carbon dioxide from exhaust gas according to claim 25.
並列に設け、CO2吸着分離器(86)の前後に仕切弁
(98)、(100)を設けて、二酸化炭素の吸着が飽
和して吸着能力の低下したとき、仕切弁で遮断し、排ガ
スを他のCO2吸着分離器へ導くようにしたことを特徴
とする請求項25又は26記載の排ガスから二酸化炭素
を分離する装置。27. A plurality of CO2 adsorption separators (86) are provided in parallel, and gate valves (98) and (100) are provided before and after the CO2 adsorption separators (86), so that carbon dioxide adsorption is saturated. 27. The apparatus for separating carbon dioxide from exhaust gas according to claim 25 or 26, characterized in that when the adsorption capacity decreases, the exhaust gas is shut off with a gate valve and the exhaust gas is guided to another CO2 adsorption separator.
されたCO2吸着分離器(86)の伝熱管(94)群の
吸着材保持面と異なる面側に、加熱流体を流通できるよ
うに、本体(92)の一方に加熱流体入口(97)を設
け、本体(92)の他方に加熱流体出口(99)を設け
、排ガス出口(90)にCO2収納容器(102)を接
続するとともに、本体(92)に真空ポンプ又は圧縮機
を接続して、真空ポンプ又は圧縮機で脱着した二酸化炭
素をCO2収納容器(102)に移すようにしたことを
特徴とする請求項27記載の排ガスから二酸化炭素を分
離する装置。28. The heated fluid can be passed through the side of the heat transfer tube (94) group of the CO2 adsorption separator (86) that is shut off by the gate valves (98) and (100), which is different from the adsorbent holding surface. , a heated fluid inlet (97) is provided on one side of the main body (92), a heated fluid outlet (99) is provided on the other side of the main body (92), and a CO2 storage container (102) is connected to the exhaust gas outlet (90), 28. Dioxide from exhaust gas according to claim 27, characterized in that a vacuum pump or a compressor is connected to the main body (92), and carbon dioxide desorbed by the vacuum pump or compressor is transferred to the CO2 storage container (102). A device that separates carbon.
冷却器(50)、(52)と、冷却された排ガスを膨張
させる膨張機(10)と、膨張後の温度の下がった排ガ
スから、凝縮又は凝固した二酸化炭素を分離するCO2
セパレータ(16)と、CO2セパレータからの排ガス
を導入して排ガス中に残存する二酸化炭素を吸着分離す
るCO2吸着分離器(86)と、を包含することを特徴
とする排ガスから二酸化炭素を分離する装置。29. At least one cooler (50), (52) that cools the exhaust gas, an expander (10) that expands the cooled exhaust gas, and condensation or CO2 separating solidified carbon dioxide
Separating carbon dioxide from exhaust gas, characterized by including a separator (16) and a CO2 adsorption separator (86) that introduces exhaust gas from the CO2 separator and adsorbs and separates carbon dioxide remaining in the exhaust gas. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3145434A JPH04347307A (en) | 1991-05-21 | 1991-05-21 | Method for separating carbon dioxide from exhaust gas and device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3145434A JPH04347307A (en) | 1991-05-21 | 1991-05-21 | Method for separating carbon dioxide from exhaust gas and device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04347307A true JPH04347307A (en) | 1992-12-02 |
Family
ID=15385159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3145434A Pending JPH04347307A (en) | 1991-05-21 | 1991-05-21 | Method for separating carbon dioxide from exhaust gas and device thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04347307A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102230420A (en) * | 2010-09-13 | 2011-11-02 | 靳北彪 | Low-temperature gas exhausting engine |
JP2012031862A (en) * | 2010-07-30 | 2012-02-16 | General Electric Co <Ge> | System and method for co2 capture |
JP2012032145A (en) * | 2010-07-30 | 2012-02-16 | General Electric Co <Ge> | System and method for co2 capture |
JP2013076400A (en) * | 2011-09-29 | 2013-04-25 | General Electric Co <Ge> | System and method for providing utilities and carbon dioxide |
JP2014504695A (en) * | 2011-01-20 | 2014-02-24 | サウジ アラビアン オイル カンパニー | In-vehicle recovery and storage of CO2 derived from automobile exhaust gas |
JP2014509360A (en) * | 2011-01-20 | 2014-04-17 | サウジ アラビアン オイル カンパニー | Reversible solid adsorption method and system using waste heat for in-vehicle capture and storage of CO2 |
DE102013110163A1 (en) * | 2013-09-16 | 2015-03-19 | Universität Rostock | Carbon dioxide separator for an internal combustion engine |
JP5988285B1 (en) * | 2015-10-21 | 2016-09-07 | 株式会社島川製作所 | Apparatus and method for treating exhaust gas containing ammonia |
WO2017017711A1 (en) * | 2015-07-30 | 2017-02-02 | Chiyoda Corporation | Method and system for carbon dioxide gas dehydration |
JP2021060028A (en) * | 2019-10-09 | 2021-04-15 | トヨタ自動車株式会社 | Vehicle and co2 recovery method |
WO2024201444A1 (en) * | 2023-03-29 | 2024-10-03 | 有限会社入交昭一郎 | Carbon dioxide separation device, fuel synthesis device, carbon dioxide separation method, and fuel production method |
WO2024210147A1 (en) * | 2023-04-07 | 2024-10-10 | ナノミストテクノロジーズ株式会社 | Exhaust gas treatment device |
-
1991
- 1991-05-21 JP JP3145434A patent/JPH04347307A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012031862A (en) * | 2010-07-30 | 2012-02-16 | General Electric Co <Ge> | System and method for co2 capture |
JP2012032145A (en) * | 2010-07-30 | 2012-02-16 | General Electric Co <Ge> | System and method for co2 capture |
CN102230420A (en) * | 2010-09-13 | 2011-11-02 | 靳北彪 | Low-temperature gas exhausting engine |
JP2014504695A (en) * | 2011-01-20 | 2014-02-24 | サウジ アラビアン オイル カンパニー | In-vehicle recovery and storage of CO2 derived from automobile exhaust gas |
JP2014509360A (en) * | 2011-01-20 | 2014-04-17 | サウジ アラビアン オイル カンパニー | Reversible solid adsorption method and system using waste heat for in-vehicle capture and storage of CO2 |
JP2013076400A (en) * | 2011-09-29 | 2013-04-25 | General Electric Co <Ge> | System and method for providing utilities and carbon dioxide |
DE102013110163A1 (en) * | 2013-09-16 | 2015-03-19 | Universität Rostock | Carbon dioxide separator for an internal combustion engine |
WO2017017711A1 (en) * | 2015-07-30 | 2017-02-02 | Chiyoda Corporation | Method and system for carbon dioxide gas dehydration |
JP5988285B1 (en) * | 2015-10-21 | 2016-09-07 | 株式会社島川製作所 | Apparatus and method for treating exhaust gas containing ammonia |
JP2021060028A (en) * | 2019-10-09 | 2021-04-15 | トヨタ自動車株式会社 | Vehicle and co2 recovery method |
US11654392B2 (en) | 2019-10-09 | 2023-05-23 | Toyota Jidosha Kabushiki Kaisha | Vehicle and CO2 recovery method |
WO2024201444A1 (en) * | 2023-03-29 | 2024-10-03 | 有限会社入交昭一郎 | Carbon dioxide separation device, fuel synthesis device, carbon dioxide separation method, and fuel production method |
WO2024210147A1 (en) * | 2023-04-07 | 2024-10-10 | ナノミストテクノロジーズ株式会社 | Exhaust gas treatment device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7145530B2 (en) | VOCs recovery system by cryogenic condensation using air as a refrigerant | |
EP2590898B1 (en) | Carbon dioxide capture and liquefaction | |
US10393432B2 (en) | Configurations and methods of CO2 capture from flue gas by cryogenic desublimation | |
US10584633B2 (en) | Semi-closed cycle turbine power system to produce saleable CO2 product | |
AU2012264072C1 (en) | CO2 recovery method and apparatus | |
US20060248921A1 (en) | Landfill gas purification and liquefaction process | |
US20220065160A1 (en) | Liquid natural gas processing with hydrogen production | |
KR20180018811A (en) | Integrated process for use in CO2 capture and thermal power production cycles from internal combustion engine of mobile sources | |
CN101809396A (en) | separation of carbon dioxide and hydrogen | |
TW201248099A (en) | Cryogenic CO2 separation using a refrigeration system | |
CA2667522A1 (en) | Method of and apparatus for co2 capture in oxy-combustion | |
JP7203401B2 (en) | Carbon dioxide capture device | |
JPH04347307A (en) | Method for separating carbon dioxide from exhaust gas and device thereof | |
JP6728875B2 (en) | Carbon dioxide recovery device and natural gas combustion system | |
JP2021159816A (en) | Carbon dioxide separation/collection system | |
JPH0448185A (en) | Recovering method of carbon dioxide discharged out of lng burning thermal power station | |
CN111228978B (en) | Boiler low-temperature cooling carbon capture system and setting method thereof | |
CN115075988B (en) | Large-scale low-power-consumption LNG power ship tail gas carbon capture system and operation method | |
WO2019224951A1 (en) | Natural gas pre-processing facility | |
JPH07124440A (en) | Carbon dioxide separating device | |
CN215161044U (en) | High-purity carbon dioxide gas purification device | |
WO2018083747A1 (en) | Natural gas liquefaction facility | |
JPH04334704A (en) | Method and device for separating carbon dioxide or the like in combustion gas | |
CN115388616B (en) | Mars surface carbon dioxide continuous capturing system adopting pressurizing liquefaction and method thereof | |
De et al. | Modelling carbon capture from power plants with low energy and water consumption using a novel cryogenic technology |