WO2018083747A1 - Natural gas liquefaction facility - Google Patents

Natural gas liquefaction facility Download PDF

Info

Publication number
WO2018083747A1
WO2018083747A1 PCT/JP2016/082540 JP2016082540W WO2018083747A1 WO 2018083747 A1 WO2018083747 A1 WO 2018083747A1 JP 2016082540 W JP2016082540 W JP 2016082540W WO 2018083747 A1 WO2018083747 A1 WO 2018083747A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
steam
natural gas
unit
liquefaction
Prior art date
Application number
PCT/JP2016/082540
Other languages
French (fr)
Japanese (ja)
Inventor
直之 竹澤
尚 内海
玄 齋藤
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to AU2016428816A priority Critical patent/AU2016428816B2/en
Priority to PCT/JP2016/082540 priority patent/WO2018083747A1/en
Publication of WO2018083747A1 publication Critical patent/WO2018083747A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle

Definitions

  • the present invention relates to a technology for supplying energy in a natural gas liquefaction facility.
  • Natural gas (NG: Natural Gas) produced in gas wells is liquefied in natural gas liquefaction equipment (NG liquefaction equipment) and then liquefied natural gas (LNG) via LNG tankers and pipelines. And shipped to the consumption area.
  • the NG liquefaction equipment includes various pretreatment devices that remove impurities such as moisture, liquefaction treatment devices that liquefy NG, storage tanks (LNG tanks) that store liquefied LNG, Equipment is provided.
  • NG is cooled using a refrigerant, and the refrigerant gas evaporated by heat exchange with NG undergoes a temperature drop due to compression or adiabatic expansion using a refrigerant compressor (refrigerant compression unit).
  • refrigerant compressor is an essential device for producing LNG, and is one of the devices that consume the most energy in the NG liquefaction facility, so that both stable operation and efficient energy supply are required.
  • a motor is a power source that has excellent operability and maintainability and can operate stably for a long period of time.
  • Non-Patent Document 1 describes the result of studying the feasibility of a large-scale LNG plant (NG liquefaction facility) with an annual output of 9 million tons using a motor-driven refrigerant compressor.
  • NG liquefaction facility a large-scale LNG plant
  • a power generation system is described in which steam is generated from combustion exhaust gas of a gas turbine generator using a heat recovery steam generator, and power is generated using the steam turbine generator using the steam (FIG. .3).
  • the power generation system described in Patent Document 1 employs a condensing steam turbine generator and discards exhaust heat to the condenser side, high thermal efficiency can be obtained by evaluating the steam turbine generator alone.
  • Non-Patent Document 2 describes an LNG plant that performs exhaust heat recovery with a gas turbine generator that supplies power to a motor-driven refrigerant compressor and uses the obtained hot oil as a heat source for the process. (Pp. 11-12). However, since heat recovery by hot oil is performed by sensible heat of oil, heat recovery equipment becomes large in a large LNG plant.
  • the present invention has been made under such a background, and an object of the present invention is to provide a natural gas liquefaction facility with high operability and energy efficiency.
  • the natural gas liquefaction facility of the present invention is a natural gas liquefaction facility for liquefying natural gas.
  • a liquefaction processing apparatus for performing processing for liquefying natural gas;
  • An internal combustion engine that burns fuel gas to drive the first generator;
  • a steam generating section for generating steam by heat exchange with combustion exhaust gas obtained by burning fuel gas in the internal combustion engine;
  • a steam turbine that drives the second generator using the steam generated in the steam generation unit;
  • a fluid heating unit that is provided in a natural gas processing apparatus that constitutes the natural gas liquefaction facility, and that heats a fluid to be heated that flows through the processing apparatus using steam extracted from the steam turbine;
  • a refrigerant compression unit that is driven by a motor that consumes the electric power generated by the first generator and the second generator, and that compresses the refrigerant gas that has cooled the natural gas by the liquefaction treatment device. It is characterized by that.
  • the natural gas liquefaction facility may have the following characteristics.
  • the processing apparatus is an acidic gas having a gas absorption unit that removes the acidic gas contained in the natural gas by bringing the natural gas before being supplied to the liquefaction processing apparatus into contact with the gas absorption liquid. Removal device, The fluid heating unit is provided in the acid gas removing device, and heats the gas absorbing solution sent from the gas absorbing unit to release the acid gas to regenerate the gas absorbing solution. Be part of a reboiler.
  • the treatment device is a gas-liquid separation device including a gas-liquid separation unit that separates natural gas before being supplied to the liquefaction treatment device and liquid containing antifreeze contained in the natural gas
  • the fluid heating unit is a reboiler of an antifreeze liquid regeneration unit that is provided in the gas-liquid separator and heats the antifreeze sent from the gas-liquid separator to release moisture to regenerate the antifreeze.
  • the processing apparatus is configured to concentrate liquid heavy components separated from natural gas cooled by the liquefaction processing apparatus into liquid condensate and ethane, propane, and butane, which are lighter components than condensate.
  • the fluid heating unit is a reboiler of the rectification unit.
  • a moisture removing unit that brings the natural gas before being supplied to the liquefaction processing apparatus into contact with an adsorbent, and adsorbs and removes moisture contained in the natural gas to the adsorbent, and removes moisture.
  • a regenerated gas heating unit for heating the dried natural gas extracted from the natural gas after being heated and supplying the moisture removing unit as a regenerated gas that regenerates the adsorbent after adsorbing the moisture.
  • the dry natural gas is provided using a moisture removing device provided, and the regeneration gas heating unit is generated by the steam generation unit and is used before being supplied to the steam turbine or combustion exhaust gas of the internal combustion engine. Heating.
  • the steam turbine is a multi-stage steam turbine in which a condenser is provided on the exhaust side of the low-pressure stage, and the fluid heating unit has steam extracted from a stage higher than the low-pressure stage. Be supplied.
  • the internal combustion engine is a gas turbine.
  • a refrigerant compressor is provided by an internal combustion engine that drives a first generator and a steam turbine that drives a second generator using steam generated by using combustion exhaust gas of the internal combustion engine. While supplying electric power to the motor to drive, the to-be-heated fluid which flows through the processing apparatus in a natural gas liquefaction installation is heated using the steam extracted from the said steam turbine. As a result, it is possible to stably operate the refrigerant compression unit with a motor having good operation operability and to realize a natural gas liquefaction facility with high energy efficiency.
  • the NG liquefaction equipment includes a gas-liquid separation device 11 that separates liquid from NG, a mercury removal device 12 that removes mercury in NG, and an acid gas removal that removes acidic gases such as carbon dioxide and hydrogen sulfide from NG.
  • the gas-liquid separator 11 separates liquid condensate at room temperature contained in NG transported by a pipeline or the like.
  • the gas-liquid separator 11 is a gas-liquid separator (indicated as gas-liquid separator 11 in FIG. 1) composed of slender pipes, drums, etc., which are inclined to separate liquid from NG using the specific gravity difference. ) Is included.
  • an antifreeze is added to the NG transported by the pipeline.
  • the antifreeze liquid for example, a water absorption liquid that absorbs water, such as MEG (Monoethylene Glycol) or TEG (Triethylene Glycol), is employed.
  • the gas-liquid separation device 11 may be further provided with the antifreeze liquid regenerating unit 111 that releases moisture contained in the antifreeze liquid.
  • the antifreeze containing moisture and the condensate are further phase-separated from the liquid after the gas-liquid separation, and the antifreeze is sent to the antifreeze regenerator 111.
  • the antifreeze liquid regeneration unit 111 is configured as a diffusion tower that heats the antifreeze liquid by the reboiler 112 to release moisture.
  • the mercury removing device 12 removes a trace amount of mercury contained in NG after the liquid is separated.
  • the mercury removing device 12 has a structure in which a mercury removing agent is packed in an adsorption tower, and adsorbs and removes mercury by passing NG through a packed bed of the mercury removing agent.
  • the mercury removing agent include an activated carbon-based mercury removing agent in which sulfur is supported on activated carbon, and a metal-based mercury removing agent in which copper or zinc sulfide is supported on a carrier.
  • the acid gas removal device 13 makes, for example, a countercurrent contact between a gas absorbing solution containing an amine compound and a natural gas after mercury removal, such as carbon dioxide or hydrogen sulfide, which may solidify in LNG during liquefaction.
  • An absorption tower gas absorption part that absorbs and removes acid gas into the gas absorption liquid is provided (indicated as acid gas removal device 13 in FIG. 1).
  • gas absorption liquids containing amine compounds exist, and examples thereof include MDEA (Methyldiethanolamine) and DIPA (Di-isopropanolamine).
  • Sulforane or the like may be used as a gas absorbing liquid other than the amine compound.
  • the acid gas removal device 13 is provided with a regeneration tower (gas absorption liquid regeneration unit) 131 that regenerates the gas absorption liquid by discharging the acid gas from the gas absorption liquid after absorbing the acidic gas.
  • the gas absorption liquid that has absorbed the acid gas in the absorption tower is transferred to the regeneration tower 131 and dispersedly supplied from the top of the regeneration tower 131, while the reboiler 132 provided on the bottom of the tower absorbs the gas absorption liquid in the tower. Is heated, and acid gas is released from the gas absorption liquid.
  • Gas containing acid gas (carbon dioxide, hydrogen sulfide, etc.) released from the gas absorbing liquid is burned, and then discharged to the atmosphere through the necessary exhaust gas treatment.
  • the gas absorption liquid regenerated in the regeneration tower 131 is returned to the absorption tower of the acidic gas removal device 13 and reused for removal of acidic gas in NG.
  • the moisture removing device 14 is configured as an adsorption tower filled with an adsorbent that adsorbs and removes moisture in NG, such as molecular sieve and silica gel.
  • the moisture removing apparatus 14 of this example includes a plurality of adsorption towers, and the NG after the acid gas is removed is switched and supplied to any of the adsorption towers.
  • the adsorption tower to which NG is supplied functions as a moisture removal unit that adsorbs and removes moisture contained in the NG by passing NG through the packed bed of adsorbent (in FIG. 1, the moisture removal device 14 Is displayed).
  • the adsorption tower to which NG is not supplied releases the moisture adsorbed by the adsorbent and waits until the supply destination of NG is switched after the regeneration process for regenerating the adsorbent is performed (in FIG. 1, Adsorbent regeneration tower 141).
  • the moisture removing device 14 of this example uses NG (dry NG) after moisture is removed.
  • the dried NG is heated to, for example, about 280 to 300 ° C. by the regeneration gas heating unit 142 and then supplied to the adsorbent regeneration tower 141 as a regeneration gas for the adsorbent.
  • the supply destination of the regeneration gas can also be switched between a plurality of adsorption towers.
  • a high-temperature regeneration gas When a high-temperature regeneration gas is supplied to the adsorbent regeneration tower 141, moisture adsorbed on the adsorbent is released to the regeneration gas side, and the adsorbent can be regenerated.
  • the regeneration gas (NG) containing moisture used for regeneration of the adsorbent is discharged from the adsorbent regeneration tower 141, cooled, gas-liquid separated, and then used as fuel gas consumed in the NG liquefaction facility Is done.
  • the liquefaction processing device 15 includes a precooling heat exchanger that precools NG with a precooling refrigerant mainly composed of propane, a scrub column that removes heavy components from the precooled NG, nitrogen, methane, ethane, propane, and the like.
  • a cryogenic heat exchanger (MCHE: Main Cryogenic Heat Exchanger) that cools and liquefies NG with a mixed refrigerant (Mixed Refrigerant) containing multiple types of refrigerant raw materials, precooling refrigerant and mixed refrigerant evaporated by heat exchange
  • the apparatus includes a refrigerant compressor (refrigerant compression unit) 21 that compresses gas and an aftercooler that cools the compressed refrigerant.
  • refrigerant compressors for precooling refrigerant and mixed refrigerant are combined into one.
  • the individual description of each device described above is omitted.
  • the liquefaction apparatus 15 includes a deethanizer for separating ethane from the liquid separated from the cooled NG (liquid heavy component), a depropanizer for separating propane from the liquid after ethane separation, and a liquid after the propane separation.
  • a rectifying unit 151 including a debutizer that separates butane and obtains liquid condensate at room temperature is provided.
  • Each of the deethanizer, the depropanizer, and the debutizer is configured as a rectifying column that heats a liquid by a reboiler 152 (a plurality of reboilers 152 are collectively shown in FIG. 1) and rectifies each component. .
  • the liquefied natural gas (LNG) that has been liquefied and supercooled by the liquefaction processing device 15 is sent to the storage tank 16 and stored therein.
  • the LNG stored in the storage tank 16 is fed by an LNG pump (not shown) and shipped to an LNG tanker or pipeline.
  • the refrigerant compressor 21 (low pressure MR compressor 21a, high pressure MR compressor 21b, C3 compressor 21c) is an indispensable device for the production of LNG, and in the NG liquefaction facility. It is one of the devices with the highest energy consumption.
  • the NG liquefaction facility of this example employs a motor 22 that is excellent in driving operability and maintainability and can operate stably for a long period of time as a power source for driving these refrigerant compressors 21.
  • the NG liquefaction facility of this example includes a power generation system for supplying power to power consuming equipment such as the motor 22 of the refrigerant compressor 21.
  • the configuration of the power generation system will be described with reference to FIG. Will be described.
  • the power generation system of this example includes a plurality of, for example, five gas turbines 31 that are internal combustion engines for driving a generator (first generator) 32 to generate power. ing.
  • the gas turbine 31 drives the generator 32 with power obtained by burning fuel gas including boil off gas (BOG) generated in the storage tank 16. Since this power generation system includes a plurality of gas turbines 31, the output of the remaining gas turbines 31 can be output even when one of the gas turbines 31 stops due to regular maintenance or trouble. By increasing, the decrease in the output of the stopped gas turbine 31 can be compensated.
  • Each gas turbine 31 is provided with a steam generator 33 that generates steam by heat exchange with the combustion exhaust gas discharged from the gas turbine 31.
  • a steam generation section 33 for example, a relatively high temperature and high pressure steam having a temperature in the range of 385 to 523 ° C. and a pressure in the range of 40 to 96 Barg is obtained.
  • the steam generated in each steam generation unit 33 is collected in a common high-pressure steam header 47.
  • FIG. 1 for convenience of illustration, as shown in FIG. 2, a set of a plurality of gas turbines 31, generators 32, and steam generators 33 provided as a set is collectively displayed.
  • the power generation system of this example uses a plurality of units, for example, four steam turbines, for generating power by driving the generator (second generator) 42 using the steam generated by the steam generation unit 33.
  • 41 is configured as a combined cycle system.
  • Each steam turbine 41 is configured in multiple stages, and a surface condenser 43 is provided on the outlet side of the lowest-pressure side low-pressure stage (condensation type).
  • a plurality of steam turbines 41 are provided, and the decrease in the output of the stopped steam turbine 41 can be compensated for in periodic maintenance, troubles, etc., as in the case of the gas turbine 31.
  • the boiler water condensed by the surface condenser 43 is collected in the boiler water treatment unit 51, and after the addition of a canning agent or the like, the boiler water is supplied again to the steam generation unit 33.
  • the generators 32 and 42 driven by the gas turbines 31 and the steam turbine 41 generate electric power having a voltage of, for example, 33 kV, and the electric power is boosted to, for example, 110 kV at the substation 61.
  • the electric power boosted at the substation 61 is supplied to the motor 22 for driving the refrigerant compressor 21 via a variable drive unit (VSD: Variable Speed Drive) 62.
  • VSD Variable Speed Drive
  • the NG liquefaction facility provided with the refrigerant compressor 21 driven by the electric motor 22 is referred to as “e-LNG”. Electric power is also supplied to other power consuming devices in the NG liquefaction facility.
  • the multi-stage steam turbine 41 that obtains power by using the steam obtained from the steam generation unit 33 is intermediate in the high pressure side than the low pressure stage to which the surface condenser 43 is connected.
  • a cogeneration system is configured to extract steam from the stage and use the steam as a heat source of the fluid heating unit 101 of the processing apparatus 100 provided in the NG liquefaction facility.
  • each steam turbine 41 From each steam turbine 41, for example, a temperature within a range of 147 to 170 ° C. and a pressure within a range of 4.5 to 8 Barg, which is lower in temperature and pressure than the steam generated in the steam generation unit 33, is extracted.
  • the Steam extracted from each steam turbine 41 is collected into a common steam supply header 46.
  • the reboiler 112 of the antifreeze regenerator 111 As the fluid heating unit 101 of the processing apparatus 100 that supplies steam from the steam supply header 46, the reboiler 112 of the antifreeze regenerator 111, the reboiler 132 of the gas absorption liquid regenerator 131, and the rectifier (deethanizer, depropanizer, Each reboiler 152 of a debutizer 151) is mentioned.
  • each reboiler 112, 132, 152 heated fluid thermometers 113, 133 that measure the temperature of the heated fluid (antifreeze liquid, gas absorption liquid, liquid separated from NG). , 153 are provided. Then, the amount of steam supplied from the steam supply header 46 to each reboiler 112, 132, 152 is adjusted by the flow rate adjusting valves 134, 144, 154 so that the temperature of each heated fluid approaches a preset target value. Is done. Boiler water condensed in each reboiler 112, 132, 152 is collected in the boiler water treatment unit 51.
  • the regeneration gas heating unit 142 used for regeneration of the adsorbent in the adsorbent regeneration tower 141 needs to heat the regeneration gas to a high temperature of about 280 to 300 ° C. as described above.
  • the high-temperature steam extracted from the high-pressure steam header 47 is supplied to the regeneration gas heating unit 142 and used for heating the regeneration gas.
  • a gas thermometer 143 that measures the temperature of the dry gas is provided on the outlet side of the regeneration gas heating unit 142. Then, supply of steam to the regeneration gas heating unit 142 is performed by a flow rate control valve 144 provided in a line for extracting high-temperature steam from the high-pressure steam header 47 so that the temperature of the dry gas approaches a preset target value. The amount is adjusted.
  • the boiler water condensed in each regeneration gas heating unit 142 is collected in the boiler water treatment unit 51.
  • an exhaust heat recovery facility for recovering exhaust heat of the gas turbine 31 is provided, and drying is performed by heat exchange with the combustion exhaust gas discharged from the gas turbine 31.
  • the gas may be heated.
  • the fluid heating unit 101 (boiler 112) of the processing device 100 (the antifreeze regenerator 111 of the gas-liquid separator 11; , 132, 152), an amount of steam commensurate with the amount of heat required to heat the fluid to be heated (antifreeze liquid, gas absorption liquid, liquid separated from NG) is supplied to the steam supply header 46 via the steam turbine 41. Supplied.
  • the amount of heat required in the fluid heating unit 101 varies depending on the amount of NG processing, the nature of NG, and the like.
  • the power generation system secures the supply of steam commensurate with the heat consumption on the fluid heating unit 101 side by maintaining the pressure of the steam supply header 46 at the target pressure. Therefore, the steam supply header 46 is provided with a pressure gauge 45, and provided in the extraction line of each steam turbine 41 so that the pressure of the steam supply header 46 measured by the pressure gauge 45 becomes a preset target pressure. The opening degree of the extracted bleed valve 44 is adjusted.
  • the opening and closing are performed so that all the extraction valves 44 have the same opening. May be.
  • the priority order for adjusting the opening degree of the extraction valve 44 among the plurality of steam turbines 41 is determined and the consumption of steam on the processing apparatus 100 side increases, the extraction of the steam turbine 41 with higher priority is performed.
  • the opening degree of the steam turbine 41 of the next priority may be adjusted to be increased.
  • the priority order of the extraction valve 44 provided in the steam turbine 41 is such that the rate of decrease in thermal efficiency due to the increase in the amount of extraction is small, for example, the output is larger than that of the other steam turbines 41.
  • An example of setting to be high can be given.
  • the pressure adjustment of the steam supply header 46 based on a preset rule is performed by, for example, the control unit 7 including a computer system that performs overall control of the entire NG liquefaction facility. It is done using.
  • a steam boiler 52 that uses fuel gas.
  • the steam boiler 52 increases or decreases the supply amount of steam from each steam boiler 52 so that the pressure of the high-temperature high-pressure steam measured by a pressure gauge (not shown) provided in the high-pressure steam header 47 becomes a target pressure in advance.
  • the generators 32 and 42 are driven by the gas turbines 31 and the steam turbines 41, and a necessary amount of power is supplied to each power consuming device in the NG liquefaction facility including each refrigerant compressor 21. It shall be. Further, with respect to the fluid heating unit 101 of the processing apparatus 100, the balance is such that steam of the amount of heat necessary for heating the fluid to be heated is supplied to the steam supply header 46 by extraction from the steam turbine 41. To do. Furthermore, it is assumed that a certain amount of high-temperature steam is supplied to the regeneration gas heating unit 142, and fluctuations in the supply amount do not restrict steam consumption and supply balance of the entire power generation system.
  • the steam consumption in the fluid heating unit 101 increases and the pressure in the steam supply header 46 decreases due to an increase in the amount of NG treatment on the processing apparatus 100 side or a change in the properties of NG.
  • the opening degree of the extraction valve 44 provided in the extraction line of the predetermined steam turbine 41 is increased to increase the amount of steam extracted to the steam supply header 46 side, Adjustment is performed so that the pressure of the steam supply header 46 is maintained at the target pressure.
  • the supply amount of cooling water to the surface condenser 43 is increased, and the supply amount of steam from the high-pressure steam header 47 to the steam turbine 41 is increased.
  • the amount of power generated by the generator 42 can be restored.
  • the increase in the amount of steam consumed in the steam turbine 41 is balanced by increasing the amount of steam supplied from the steam boiler 52.
  • the steam consumption in the fluid heating unit 101 decreases, and the steam in the direction in which the pressure of the steam supply header 46 increases
  • the opening degree of the extraction valve 44 provided in the extraction line of the predetermined steam turbine 41 is reduced to reduce the amount of steam extracted to the steam supply header 46 side, Adjustment is performed so that the pressure of the steam supply header 46 is maintained at the target pressure.
  • the steam turbine 41 As a result, in the steam turbine 41, the amount of steam discharged toward the surface condenser 43 is increased, the power generation efficiency of each steam turbine 41 is improved, and the power generation amount of the generator 42 is increased. At this time, if there is no change in the power consumption amount in the NG liquefaction facility, it is necessary to reduce the increase in the power generation amount in the generator 42.
  • the increase in the amount of power generation in the generator 42 is balanced on the generator 32 side by decreasing the output of the gas turbine 31. Can be made.
  • the amount of steam generated in the steam generating section 33 decreases, the amount of steam supplied from the steam boiler 52 is increased to achieve a balance.
  • the supply amount of the cooling water to the surface condenser 43 is reduced and the high pressure steam header 47 to the steam turbine 41 is reduced.
  • the power generation amount of the generator 42 can be restored by reducing the steam supply amount and decreasing the output of the steam turbine 41.
  • the decrease in the steam consumption in the steam turbine 41 is balanced by reducing the amount of steam supplied from the steam boiler 52.
  • the NG liquefaction facility has the following effects.
  • a motor 22 that drives the refrigerant compressor 21 includes a gas turbine 31 that drives the generator 32 and a steam turbine 41 that drives the generator 42 using steam generated by using the combustion exhaust gas of the gas turbine 31.
  • the heated fluid flowing through the processing apparatus 100 in the NG gas liquefaction facility is heated using the steam extracted from the steam turbine 41.
  • the refrigerant compressor 21 can be stably operated by the motor 22 having good operability, and an NG liquefaction facility with high energy efficiency can be realized.
  • the gas turbine 31 is driven and consumed in response to steam generation in the steam generation unit 33 and steam boiler 52.
  • the total fuel gas consumption was 749 MW.
  • the total amount of power generated by the generators 32 and 42 and the amount of steam supplied to the fluid heating unit 101 and the regeneration gas heating unit 142 was 463 MW. Therefore, the overall thermal efficiency of the NG liquefaction facility is 62%. This can be said to be able to realize a very high thermal efficiency compared with the thermal efficiency (approximately 25-35%) of a general NG liquefaction facility in which the refrigerant compressor 21 is driven by a gas turbine.
  • the internal combustion engine for driving the generator 32 is not limited to the gas turbine 31.
  • the generator 32 may be driven using a gas engine, and the steam turbine 41 that drives the generator 42 may be driven using steam obtained by heat exchange with the combustion exhaust gas of the gas engine.
  • the refrigerant compressor 21 can supply necessary power even for a gas engine having a smaller output than the gas turbine 31.
  • the steam turbine 41 that drives the second generator 42 is not limited to the condensate type.
  • the amount of change in the power generation amount of the generator 42 accompanying the increase or decrease in the amount of steam supplied from the back pressure steam turbine 41 to the steam supply header 46 can be adjusted by the increase or decrease in the amount of steam discharged to the surface capacitor 43 side. Can not.
  • the change in the power generation amount is balanced by decreasing or increasing the output of the gas turbine 31.
  • a necessary amount of steam cannot be extracted from the steam turbine 41 due to equipment restrictions such as one steam turbine 41 being stopped, as shown in FIG.
  • a bleed line 48 provided with a desuperheater 482 may be provided.
  • the NG liquefaction equipment to which the power generation system of this example is applied may not include all the pretreatment devices shown in FIG.
  • the installation of the antifreeze liquid regeneration unit 111 may be omitted.
  • the acid gas may be removed by membrane separation instead of the acid gas removing device 13 using an amine compound or the like. In the case of membrane separation, the acid gas removing device 13 is not provided with the regeneration tower 131.
  • SYMBOLS 100 Processing apparatus 101 Fluid heating part 11 Gas-liquid separation apparatus (gas-liquid separation part) 12 Mercury removal device 13 Acid gas removal device (gas absorption part) 14 Moisture removal device (moisture removal unit) DESCRIPTION OF SYMBOLS 15 Liquefaction processing apparatus 16 Storage tank 21 Refrigerant compressor 22 Motor 31 Gas turbine 32 Generator 33 Steam generation part 41 Steam turbine 42 Generator 7 Control part

Abstract

[Problem] To provide a natural gas liquefaction facility having high operability and high energy efficiency. [Solution] This natural gas liquefaction facility comprises a liquefaction processing device 15 which performs processing for liquefying natural gas. An internal combustion engine 31 burns fuel gas and drives a first generator 32, a steam generation unit 33 generates steam using the combustion exhaust gas of the internal combustion engine 31, and a steam turbine 41 drives a second generator 42 using the steam generated by the steam generation unit 33. A fluid heating unit 101 heats a fluid to be heated using the steam extracted from the steam turbine 41, and a refrigerant compression unit 21 is driven by a motor 22, which consumes power generated by the first and second generators 32, 42, and compresses the refrigerant gas obtained by cooling natural gas using the liquefaction processing device.

Description

天然ガス液化設備Natural gas liquefaction equipment
 本発明は天然ガス液化設備内におけるエネルギーの供給技術に関する。 The present invention relates to a technology for supplying energy in a natural gas liquefaction facility.
 ガス井などで産出した天然ガス(NG:Natural Gas)は、天然ガス液化設備(NG液化設備)にて液化された後、液化天然ガス(LNG:Liquefied Natural Gas)としてLNGタンカーやパイプラインを介して消費地へと出荷される。 
 NG液化設備には、水分などの不純物の除去を行う各種の前処理装置や、NGを液化する処理を行う液化処理装置、液化されたLNGの貯蔵を行う貯蔵タンク(LNGタンク)などの装置や機器が設けられている。
Natural gas (NG: Natural Gas) produced in gas wells is liquefied in natural gas liquefaction equipment (NG liquefaction equipment) and then liquefied natural gas (LNG) via LNG tankers and pipelines. And shipped to the consumption area.
The NG liquefaction equipment includes various pretreatment devices that remove impurities such as moisture, liquefaction treatment devices that liquefy NG, storage tanks (LNG tanks) that store liquefied LNG, Equipment is provided.
 液化処理装置においては、冷媒を用いてNGの冷却が行われ、NGとの熱交換により気化した冷媒ガスは、冷媒圧縮機(冷媒圧縮部)を用いた圧縮や断熱膨張に伴う温度降下を経て、NGの冷却に再利用される。 
 冷媒圧縮機は、LNGを生産に必須の機器であると共に、NG液化設備内で最もエネルギーの消費量が多い機器の一つであるため、安定稼働と効率的なエネルギー供給の両立が求められる。ガスタービンを用いて冷媒圧縮機の動力源とする場合に比べて、運転操作性やメンテナンス性に優れ、長期間、安定に稼働することが可能な動力源にモーターがある。
In the liquefaction processing apparatus, NG is cooled using a refrigerant, and the refrigerant gas evaporated by heat exchange with NG undergoes a temperature drop due to compression or adiabatic expansion using a refrigerant compressor (refrigerant compression unit). , Reused for cooling NG.
The refrigerant compressor is an essential device for producing LNG, and is one of the devices that consume the most energy in the NG liquefaction facility, so that both stable operation and efficient energy supply are required. Compared to a case where a gas turbine is used as a power source for a refrigerant compressor, a motor is a power source that has excellent operability and maintainability and can operate stably for a long period of time.
 例えば非特許文献1には、モーター駆動の冷媒圧縮機を用いた年産900万トンの大規模なLNGプラント(NG液化設備)の実現可能性をシミュレーションにより検討した結果が記載されている。この検討においては、ガスタービン発電機の燃焼排ガスから、熱回収蒸気発生器を利用して蒸気を発生させ、この蒸気により蒸気タービン発電機を用いて発電を行う発電システムが記載されている(Fig.3)。 
 しかしながら被特許文献1に記載の発電システムは、復水式の蒸気タービン発電機を採用し、排熱を復水器側へ捨てているため、蒸気タービン発電機単体で評価すれば高い熱効率が得られる一方で、LNGプラント全体の熱効率には改善の余地がある。
For example, Non-Patent Document 1 describes the result of studying the feasibility of a large-scale LNG plant (NG liquefaction facility) with an annual output of 9 million tons using a motor-driven refrigerant compressor. In this study, a power generation system is described in which steam is generated from combustion exhaust gas of a gas turbine generator using a heat recovery steam generator, and power is generated using the steam turbine generator using the steam (FIG. .3).
However, since the power generation system described in Patent Document 1 employs a condensing steam turbine generator and discards exhaust heat to the condenser side, high thermal efficiency can be obtained by evaluating the steam turbine generator alone. On the other hand, there is room for improvement in the thermal efficiency of the entire LNG plant.
 また非特許文献2には、モーター駆動の冷媒圧縮機に電力を供給するガスタービン発電機にて排熱回収を行い、得られたホットオイルをプロセスの熱源として利用するLNGプラントが記載されている(pp.11-12)。しかしながら、ホットオイルによる熱回収は、オイルの顕熱で熱回収を行うため、大型のLNGプラントでは熱回収設備が大規模になってしまう。 Non-Patent Document 2 describes an LNG plant that performs exhaust heat recovery with a gas turbine generator that supplies power to a motor-driven refrigerant compressor and uses the obtained hot oil as a heat source for the process. (Pp. 11-12). However, since heat recovery by hot oil is performed by sensible heat of oil, heat recovery equipment becomes large in a large LNG plant.
 本発明は、このような背景の下になされたものであり、その目的は、運転操作性やエネルギー効率のよい天然ガス液化設備を提供することにある。 The present invention has been made under such a background, and an object of the present invention is to provide a natural gas liquefaction facility with high operability and energy efficiency.
 本発明の天然ガス液化設備は、天然ガスの液化を行う天然ガス液化設備において、
 天然ガスを液化する処理を行う液化処理装置と、
 燃料ガスを燃焼して第1の発電機を駆動する内燃機関と、
 前記内燃機関にて燃料ガスを燃焼して得られた燃焼排ガスとの熱交換により、蒸気を発生させる蒸気発生部と、
 前記蒸気発生部にて発生させた蒸気を用いて第2の発電機を駆動する蒸気タービンと、
 前記天然ガス液化設備を構成する天然ガスの処理装置に設けられ、前記蒸気タービンから抜き出された蒸気を用いて当該処理装置を流れる被加熱流体を加熱する流体加熱部と、
 前記第1の発電機及び第2の発電機にて発電された電力を消費するモーターにより駆動し、前記液化処理装置にて天然ガスを冷却した冷媒のガスを圧縮する冷媒圧縮部と、を備えたことを特徴とする。
The natural gas liquefaction facility of the present invention is a natural gas liquefaction facility for liquefying natural gas.
A liquefaction processing apparatus for performing processing for liquefying natural gas;
An internal combustion engine that burns fuel gas to drive the first generator;
A steam generating section for generating steam by heat exchange with combustion exhaust gas obtained by burning fuel gas in the internal combustion engine;
A steam turbine that drives the second generator using the steam generated in the steam generation unit;
A fluid heating unit that is provided in a natural gas processing apparatus that constitutes the natural gas liquefaction facility, and that heats a fluid to be heated that flows through the processing apparatus using steam extracted from the steam turbine;
A refrigerant compression unit that is driven by a motor that consumes the electric power generated by the first generator and the second generator, and that compresses the refrigerant gas that has cooled the natural gas by the liquefaction treatment device. It is characterized by that.
 前記天然ガス液化設備は以下の特徴を備えていてもよい。
(a)前記処理装置は、前記液化処理装置に供給される前の天然ガスと、ガス吸収液とを接触させて、前記天然ガスに含まれる酸性ガスを除去するガス吸収部を備えた酸性ガス除去装置であり、
 前記流体加熱部は、前記酸性ガス除去装置に設けられ、前記ガス吸収部から送液されたガス吸収液を加熱して酸性ガスを放出させ、前記ガス吸収液を再生するためのガス吸収液再生部のリボイラーであること。 
(b)前記処理装置は、前記液化処理装置に供給される前の天然ガスと、当該天然ガスに含まれる不凍液を含む液体とを分離する気液分離部を備えた気液分離装置であり、前記流体加熱部は、前記気液分離装置に設けられ、前記気液分離部から送られた不凍液を加熱して水分を放出させ、当該不凍液を再生するための不凍液再生部のリボイラーであること。
(c)前記処理装置は、前記液化処理装置にて冷却された天然ガスから分離された液体重質分を、常温で液体のコンデンセートと、コンデンセートより軽質成分であるエタン、プロパン、ブタンとに精留する精留部であり、前記流体加熱部は、前記精留部のリボイラーであること。
(d)前記液化処理装置に供給される前の天然ガスと、吸着剤とを接触させて、前記天然ガスに含まれる水分を前記吸着剤に吸着させて除去する水分除去部と、水分が除去された後の前記天然ガスから抜き出された乾燥天然ガスを加熱し、前記水分を吸着した後の吸着剤を再生する再生ガスとして前記水分除去部に供給するための再生ガス加熱部と、が設けられた水分除去装置を備え、前記再生ガス加熱部は、前記蒸気発生部にて発生させ、前記蒸気タービンに供給される前の蒸気、または前記内燃機関の燃焼排ガスを用いて前記乾燥天然ガスを加熱すること。
(e)前記蒸気タービンは、低圧段の排気側に復水器が設けられた多段式の蒸気タービンであり、前記流体加熱部には、前記低圧段よりも高圧側の段から抽気された蒸気が供給されること。 
(f)前記内燃機関は、ガスタービンであること。
The natural gas liquefaction facility may have the following characteristics.
(A) The processing apparatus is an acidic gas having a gas absorption unit that removes the acidic gas contained in the natural gas by bringing the natural gas before being supplied to the liquefaction processing apparatus into contact with the gas absorption liquid. Removal device,
The fluid heating unit is provided in the acid gas removing device, and heats the gas absorbing solution sent from the gas absorbing unit to release the acid gas to regenerate the gas absorbing solution. Be part of a reboiler.
(B) The treatment device is a gas-liquid separation device including a gas-liquid separation unit that separates natural gas before being supplied to the liquefaction treatment device and liquid containing antifreeze contained in the natural gas, The fluid heating unit is a reboiler of an antifreeze liquid regeneration unit that is provided in the gas-liquid separator and heats the antifreeze sent from the gas-liquid separator to release moisture to regenerate the antifreeze.
(C) The processing apparatus is configured to concentrate liquid heavy components separated from natural gas cooled by the liquefaction processing apparatus into liquid condensate and ethane, propane, and butane, which are lighter components than condensate. And the fluid heating unit is a reboiler of the rectification unit.
(D) A moisture removing unit that brings the natural gas before being supplied to the liquefaction processing apparatus into contact with an adsorbent, and adsorbs and removes moisture contained in the natural gas to the adsorbent, and removes moisture. A regenerated gas heating unit for heating the dried natural gas extracted from the natural gas after being heated and supplying the moisture removing unit as a regenerated gas that regenerates the adsorbent after adsorbing the moisture. The dry natural gas is provided using a moisture removing device provided, and the regeneration gas heating unit is generated by the steam generation unit and is used before being supplied to the steam turbine or combustion exhaust gas of the internal combustion engine. Heating.
(E) The steam turbine is a multi-stage steam turbine in which a condenser is provided on the exhaust side of the low-pressure stage, and the fluid heating unit has steam extracted from a stage higher than the low-pressure stage. Be supplied.
(F) The internal combustion engine is a gas turbine.
 本発明は、第1の発電機を駆動する内燃機関と、この内燃機関の燃焼排ガスを利用して発生させた蒸気を用いて第2の発電機を駆動する蒸気タービンとにより、冷媒圧縮部を駆動するモーターに電力を供給すると共に、前記蒸気タービンから抜き出された蒸気を用いて天然ガス液化設備内の処理装置を流れる被加熱流体を加熱する。この結果、運転操作性のよいモーターにより安定して冷媒圧縮部の運転を行うことができると共に、エネルギー効率の高い天然ガス液化設備を実現できる。 According to the present invention, a refrigerant compressor is provided by an internal combustion engine that drives a first generator and a steam turbine that drives a second generator using steam generated by using combustion exhaust gas of the internal combustion engine. While supplying electric power to the motor to drive, the to-be-heated fluid which flows through the processing apparatus in a natural gas liquefaction installation is heated using the steam extracted from the said steam turbine. As a result, it is possible to stably operate the refrigerant compression unit with a motor having good operation operability and to realize a natural gas liquefaction facility with high energy efficiency.
本発明の実施の形態に係る天然ガス液化設備の全体構成の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the whole structure of the natural gas liquefying installation which concerns on embodiment of this invention. 前記天然ガス液化設備の発電システムの構成を示す説明図である。It is explanatory drawing which shows the structure of the electric power generation system of the said natural gas liquefying installation.
 はじめに、図1に基づき本発明の実施の形態に係る天然ガス(NG)液化設備の構成例について説明する。 
 NG液化設備は、NGから液体を分離する気液分離装置11と、NG中の水銀の除去を行う水銀除去装置12と、NGから二酸化炭素や硫化水素などの酸性ガスの除去を行う酸性ガス除去装置13と、NGに含まれる微量の水分を除去する水分除去装置14と、これらの不純物が除去されたNGを液化する処理を行う液化処理装置15と、液化されたLNGを貯蔵する貯蔵タンク16とを備える。
First, a configuration example of a natural gas (NG) liquefaction facility according to an embodiment of the present invention will be described with reference to FIG.
The NG liquefaction equipment includes a gas-liquid separation device 11 that separates liquid from NG, a mercury removal device 12 that removes mercury in NG, and an acid gas removal that removes acidic gases such as carbon dioxide and hydrogen sulfide from NG. A device 13; a moisture removing device 14 for removing a trace amount of moisture contained in NG; a liquefaction processing device 15 for performing a process for liquefying NG from which these impurities have been removed; and a storage tank 16 for storing liquefied LNG. With.
 気液分離装置11は、パイプラインなどにより輸送されてきたNGに含まれる常温で液体のコンデンセートを分離する。気液分離装置11は、比重差を利用してNGから液体を分離するための傾斜配置された細長いパイプやドラムなどからなる気液分離部(図1中には、気液分離装置11と表示)を含んでいる。また、所定の温度、圧力条件下でNGと遊離水とが固体状のガスハイドレートとなり、パイプラインの閉塞を引き起こすことを防止するため、パイプライン輸送されるNGには不凍液が添加されている場合がある。不凍液には、例えばMEG(Monoethylene Glycol)やTEG(Triethylene Glycol)などの水分を吸収する水分吸収液が採用される。 The gas-liquid separator 11 separates liquid condensate at room temperature contained in NG transported by a pipeline or the like. The gas-liquid separator 11 is a gas-liquid separator (indicated as gas-liquid separator 11 in FIG. 1) composed of slender pipes, drums, etc., which are inclined to separate liquid from NG using the specific gravity difference. ) Is included. In addition, in order to prevent NG and free water from becoming a solid gas hydrate under a predetermined temperature and pressure condition and causing the pipeline to be blocked, an antifreeze is added to the NG transported by the pipeline. There is a case. As the antifreeze liquid, for example, a water absorption liquid that absorbs water, such as MEG (Monoethylene Glycol) or TEG (Triethylene Glycol), is employed.
 このように、パイプラインから受け入れたNGが不凍液を含んでいる場合は、気液分離装置11にはさらに不凍液に含まれる水分を放出させる不凍液再生部111が併設される場合がある。 
 気液分離部においては、気液分離された後の液体から、水分を含む不凍液とコンデンセートとがさらに相分離され、当該不凍液が不凍液再生部111へと送液される。不凍液再生部111は、リボイラー112により不凍液を加熱して、水分を放出させる放散塔として構成されている。
As described above, when the NG received from the pipeline contains the antifreeze liquid, the gas-liquid separation device 11 may be further provided with the antifreeze liquid regenerating unit 111 that releases moisture contained in the antifreeze liquid.
In the gas-liquid separation unit, the antifreeze containing moisture and the condensate are further phase-separated from the liquid after the gas-liquid separation, and the antifreeze is sent to the antifreeze regenerator 111. The antifreeze liquid regeneration unit 111 is configured as a diffusion tower that heats the antifreeze liquid by the reboiler 112 to release moisture.
 水銀除去装置12は、液体が分離された後のNGに含まれる微量の水銀を除去する。例えば水銀除去装置12は、吸着塔内に水銀除去剤を充填した構成となっていて、水銀除去剤の充填層にNGを通流させることにより水銀を吸着除去する。水銀除去剤としては、活性炭に硫黄を担持した活性炭系の水銀除去剤や、担体に銅や亜鉛の硫化物を担持した金属系の水銀除去剤を用いる例を挙げることができる。 The mercury removing device 12 removes a trace amount of mercury contained in NG after the liquid is separated. For example, the mercury removing device 12 has a structure in which a mercury removing agent is packed in an adsorption tower, and adsorbs and removes mercury by passing NG through a packed bed of the mercury removing agent. Examples of the mercury removing agent include an activated carbon-based mercury removing agent in which sulfur is supported on activated carbon, and a metal-based mercury removing agent in which copper or zinc sulfide is supported on a carrier.
 酸性ガス除去装置13は、例えばアミン化合物を含むガス吸収液と、水銀除去後の天然ガスとを向流接触させ、液化の際にLNG中で固化するおそれのある二酸化炭素や、硫化水素などの酸性ガスを、ガス吸収液へと吸収、除去する吸収塔(ガス吸収部)を備えている(図1中には、酸性ガス除去装置13と表示)。アミン化合物を含むガス吸収液は、種々、存在するが、例えばMDEA(Methyldiethanolamine)やDIPA(Di-isopropanolamine)などを挙げることができる。この他、アミン化合物以外のガス吸収液としてSulforaneなどを用いてもよい。 The acid gas removal device 13 makes, for example, a countercurrent contact between a gas absorbing solution containing an amine compound and a natural gas after mercury removal, such as carbon dioxide or hydrogen sulfide, which may solidify in LNG during liquefaction. An absorption tower (gas absorption part) that absorbs and removes acid gas into the gas absorption liquid is provided (indicated as acid gas removal device 13 in FIG. 1). Various gas absorption liquids containing amine compounds exist, and examples thereof include MDEA (Methyldiethanolamine) and DIPA (Di-isopropanolamine). In addition, Sulforane or the like may be used as a gas absorbing liquid other than the amine compound.
 さらに酸性ガス除去装置13には、酸性ガスを吸収した後のガス吸収液から、酸性ガスを放出させてガス吸収液の再生を行う再生塔(ガス吸収液再生部)131が併設されている。吸収塔にて酸性ガスを吸収したガス吸収液は再生塔131へ移送され、再生塔131の塔頂側から分散供給される一方、塔底側に設けられたリボイラー132により塔内のガス吸収液が加熱され、ガス吸収液から酸性ガスが放散される。 Further, the acid gas removal device 13 is provided with a regeneration tower (gas absorption liquid regeneration unit) 131 that regenerates the gas absorption liquid by discharging the acid gas from the gas absorption liquid after absorbing the acidic gas. The gas absorption liquid that has absorbed the acid gas in the absorption tower is transferred to the regeneration tower 131 and dispersedly supplied from the top of the regeneration tower 131, while the reboiler 132 provided on the bottom of the tower absorbs the gas absorption liquid in the tower. Is heated, and acid gas is released from the gas absorption liquid.
 ガス吸収液から放散された酸性ガス(二酸化炭素や硫化水素など)を含むガスは、燃焼された後、必要な排ガス処理を経て大気へと排出される。一方、再生塔131にて再生されたガス吸収液は、酸性ガス除去装置13の吸収塔へと戻されてNG中の酸性ガスの除去に再利用される。 Gas containing acid gas (carbon dioxide, hydrogen sulfide, etc.) released from the gas absorbing liquid is burned, and then discharged to the atmosphere through the necessary exhaust gas treatment. On the other hand, the gas absorption liquid regenerated in the regeneration tower 131 is returned to the absorption tower of the acidic gas removal device 13 and reused for removal of acidic gas in NG.
 水分除去装置14は、モレキュラーシーブやシリカゲルなど、NG中の水分を吸着除去する吸着剤が充填された吸着塔として構成されている。本例の水分除去装置14は、複数の吸着塔を備え、酸性ガスが除去された後のNGは、いずれかの吸着塔に対して切り替えて供給される。NGが供給される吸着塔は、吸着剤の充填層にNGを通流させることにより、当該NGに含まれる水分を吸着除去する水分除去部として機能する(図1中には、水分除去装置14と表示)。 The moisture removing device 14 is configured as an adsorption tower filled with an adsorbent that adsorbs and removes moisture in NG, such as molecular sieve and silica gel. The moisture removing apparatus 14 of this example includes a plurality of adsorption towers, and the NG after the acid gas is removed is switched and supplied to any of the adsorption towers. The adsorption tower to which NG is supplied functions as a moisture removal unit that adsorbs and removes moisture contained in the NG by passing NG through the packed bed of adsorbent (in FIG. 1, the moisture removal device 14 Is displayed).
 NGが供給されていない吸着塔は、吸着剤に吸着した水分を放出させ、吸着剤を再生する再生処理が行われた後、NGの供給先が切り替えられるまで待機する(図1中には、吸着剤再生塔141と表示)。 
 吸着剤の再生にあたって、本例の水分除去装置14は、水分が除去された後のNG(乾燥NG)を用いる。乾燥NGは、再生ガス加熱部142にて例えば280~300℃程度に加熱された後、吸着剤の再生ガスとして吸着剤再生塔141に供給される。再生ガスの供給先についても、複数の吸着塔間で切り替えることができる。
The adsorption tower to which NG is not supplied releases the moisture adsorbed by the adsorbent and waits until the supply destination of NG is switched after the regeneration process for regenerating the adsorbent is performed (in FIG. 1, Adsorbent regeneration tower 141).
In regeneration of the adsorbent, the moisture removing device 14 of this example uses NG (dry NG) after moisture is removed. The dried NG is heated to, for example, about 280 to 300 ° C. by the regeneration gas heating unit 142 and then supplied to the adsorbent regeneration tower 141 as a regeneration gas for the adsorbent. The supply destination of the regeneration gas can also be switched between a plurality of adsorption towers.
 吸着剤再生塔141に高温の再生ガスを供給すると、吸着剤に吸着している水分が再生ガス側へ放出され、吸着剤を再生することができる。吸着剤の再生に用いられ、水分を含んだ再生ガス(NG)は、吸着剤再生塔141から排出され、冷却、気液分離された後、NG液化設備内にて消費される燃料ガスとして利用される。 When a high-temperature regeneration gas is supplied to the adsorbent regeneration tower 141, moisture adsorbed on the adsorbent is released to the regeneration gas side, and the adsorbent can be regenerated. The regeneration gas (NG) containing moisture used for regeneration of the adsorbent is discharged from the adsorbent regeneration tower 141, cooled, gas-liquid separated, and then used as fuel gas consumed in the NG liquefaction facility Is done.
 以上に説明した各種の前処理装置にて不純物が除去された後のNGは、液化処理装置15に供給されて液化される。液化処理装置15は、プロパンを主成分とする予冷用冷媒によってNGの予冷を行う予冷熱交換器、予冷後のNGから、重質分を除去するスクラブカラム、窒素、メタン、エタン、プロパンなどの複数種類の冷媒原料を含む混合冷媒(Mixed Refrigerant)によりNGを冷却して液化、過冷却する極低温熱交換器(MCHE:Main Cryogenic Heat Exchanger)、熱交換により気化した予冷用冷媒や混合冷媒のガスを圧縮する冷媒圧縮機(冷媒圧縮部)21、圧縮された冷媒を冷却するアフタークーラーなどの機器を備える。なお図1においては、予冷用冷媒や混合冷媒の個別の冷媒圧縮機(混合冷媒用の低圧MR圧縮機21a、高圧MR圧縮機21b、予冷用冷媒用のC3圧縮機21c)を1つにまとめて記載した他は、上述の各機器の個別の記載は省略してある。 NG after impurities are removed by the various pretreatment apparatuses described above is supplied to the liquefaction treatment apparatus 15 and liquefied. The liquefaction processing device 15 includes a precooling heat exchanger that precools NG with a precooling refrigerant mainly composed of propane, a scrub column that removes heavy components from the precooled NG, nitrogen, methane, ethane, propane, and the like. A cryogenic heat exchanger (MCHE: Main Cryogenic Heat Exchanger) that cools and liquefies NG with a mixed refrigerant (Mixed Refrigerant) containing multiple types of refrigerant raw materials, precooling refrigerant and mixed refrigerant evaporated by heat exchange The apparatus includes a refrigerant compressor (refrigerant compression unit) 21 that compresses gas and an aftercooler that cools the compressed refrigerant. In FIG. 1, individual refrigerant compressors for precooling refrigerant and mixed refrigerant (low pressure MR compressor 21a for mixed refrigerant, high pressure MR compressor 21b, C3 compressor 21c for precooling refrigerant) are combined into one. In addition to those described above, the individual description of each device described above is omitted.
 さらに液化処理装置15には、冷却されたNGから分離された液体(液体重質分)から、エタンを分離するデエタナイザと、エタン分離後の液体からプロパンを分離するデプロパナイザと、プロパン分離後の液体からブタンを分離し、常温で液体のコンデンセートを得るデブタナイザとを含む精留部151が併設されている。デエタナイザ、デプロパナイザ、デブタナイザは、それぞれリボイラー152(図1には複数のリボイラー152を1基にまとめて示してある)により液体を加熱して各成分の精留を行う精留塔として構成されている。 Further, the liquefaction apparatus 15 includes a deethanizer for separating ethane from the liquid separated from the cooled NG (liquid heavy component), a depropanizer for separating propane from the liquid after ethane separation, and a liquid after the propane separation. A rectifying unit 151 including a debutizer that separates butane and obtains liquid condensate at room temperature is provided. Each of the deethanizer, the depropanizer, and the debutizer is configured as a rectifying column that heats a liquid by a reboiler 152 (a plurality of reboilers 152 are collectively shown in FIG. 1) and rectifies each component. .
 貯蔵タンク16には、液化処理装置15にて液化、過冷却された後の液化天然ガス(LNG)が送液され、貯蔵される。貯蔵タンク16に貯蔵されたLNGは、不図示のLNGポンプによって送液され、LNGタンカーやパイプラインへと出荷される。 The liquefied natural gas (LNG) that has been liquefied and supercooled by the liquefaction processing device 15 is sent to the storage tank 16 and stored therein. The LNG stored in the storage tank 16 is fed by an LNG pump (not shown) and shipped to an LNG tanker or pipeline.
 上述の構成を備えたNG液化設備において、冷媒圧縮機21(低圧MR圧縮機21a、高圧MR圧縮機21b、C3圧縮機21c)はLNGの生産に必須の機器であると共に、NG液化設備内で最もエネルギーの消費量が多い機器の一つである。本例のNG液化設備は、これら冷媒圧縮機21を駆動する動力源として、運転操作性やメンテナンス性に優れ、長期間、安定に稼働することが可能なモーター22を採用している。 
 さらに本例のNG液化設備は、これら冷媒圧縮機21のモーター22などの電力消費機器に電力を供給するための発電システムを備えている、以下、図2も参照しながら、前記発電システムの構成について説明する。
In the NG liquefaction facility having the above-described configuration, the refrigerant compressor 21 (low pressure MR compressor 21a, high pressure MR compressor 21b, C3 compressor 21c) is an indispensable device for the production of LNG, and in the NG liquefaction facility. It is one of the devices with the highest energy consumption. The NG liquefaction facility of this example employs a motor 22 that is excellent in driving operability and maintainability and can operate stably for a long period of time as a power source for driving these refrigerant compressors 21.
Further, the NG liquefaction facility of this example includes a power generation system for supplying power to power consuming equipment such as the motor 22 of the refrigerant compressor 21. Hereinafter, the configuration of the power generation system will be described with reference to FIG. Will be described.
 図2に示すように本例の発電システムは、各々、発電機(第1の発電機)32を駆動して発電を行うための内燃機関である複数台、例えば5台のガスタービン31を備えている。ガスタービン31は、貯蔵タンク16内で発生するボイルオフガス(BOG:Boil Off Gas)を含む燃料ガスを燃焼させて得られた動力により発電機32を駆動する。 
 本発電システムは、複数台のガスタービン31を備えていることにより、定期的なメンテナンスやトラブルのためにいずれかのガスタービン31が停止した場合であっても、残りのガスタービン31の出力を上げることによって、停止したガスタービン31の出力の減少分を補うことができる。
As shown in FIG. 2, the power generation system of this example includes a plurality of, for example, five gas turbines 31 that are internal combustion engines for driving a generator (first generator) 32 to generate power. ing. The gas turbine 31 drives the generator 32 with power obtained by burning fuel gas including boil off gas (BOG) generated in the storage tank 16.
Since this power generation system includes a plurality of gas turbines 31, the output of the remaining gas turbines 31 can be output even when one of the gas turbines 31 stops due to regular maintenance or trouble. By increasing, the decrease in the output of the stopped gas turbine 31 can be compensated.
 各ガスタービン31には、当該ガスタービン31から排出される燃焼排ガスとの熱交換により蒸気を発生させる蒸気発生部33が併設されている。蒸気発生部33においては、例えば385~523℃の範囲内の温度、40~96Bargの範囲内の圧力の比較的、高温高圧の蒸気が得られる。各蒸気発生部33にて発生させた蒸気は、共通の高圧蒸気ヘッダー47へと集められる。 
 なお図1においては、図示の便宜上、図2に示すように複数組ずつ設けられたガスタービン31、発電機32、蒸気発生部33の組を1つにまとめて表示してある。
Each gas turbine 31 is provided with a steam generator 33 that generates steam by heat exchange with the combustion exhaust gas discharged from the gas turbine 31. In the steam generation section 33, for example, a relatively high temperature and high pressure steam having a temperature in the range of 385 to 523 ° C. and a pressure in the range of 40 to 96 Barg is obtained. The steam generated in each steam generation unit 33 is collected in a common high-pressure steam header 47.
In FIG. 1, for convenience of illustration, as shown in FIG. 2, a set of a plurality of gas turbines 31, generators 32, and steam generators 33 provided as a set is collectively displayed.
 さらに本例の発電システムは、蒸気発生部33にて発生させた蒸気を用いて発電機(第2の発電機)42を駆動して発電を行うための、複数台、例えば4台の蒸気タービン41を備えたコンバインドサイクルシステムとして構成されている。各蒸気タービン41は、多段に構成され、最も低圧側の低圧段の出口側にはサーフェースコンデンサ43が設けられている(復水式)。ここでも複数台の蒸気タービン41が設けられ、定期的なメンテナンスやトラブルなどにおいて、停止した蒸気タービン41の出力の減少分を補うことができる点は、ガスタービン31の場合と同様である。 
 また、サーフェースコンデンサ43にて凝縮したボイラー水は、ボイラー水処理部51に集められ、清缶剤などが添加された後、蒸気発生部33へ再供給される。
Furthermore, the power generation system of this example uses a plurality of units, for example, four steam turbines, for generating power by driving the generator (second generator) 42 using the steam generated by the steam generation unit 33. 41 is configured as a combined cycle system. Each steam turbine 41 is configured in multiple stages, and a surface condenser 43 is provided on the outlet side of the lowest-pressure side low-pressure stage (condensation type). Here, a plurality of steam turbines 41 are provided, and the decrease in the output of the stopped steam turbine 41 can be compensated for in periodic maintenance, troubles, etc., as in the case of the gas turbine 31.
Further, the boiler water condensed by the surface condenser 43 is collected in the boiler water treatment unit 51, and after the addition of a canning agent or the like, the boiler water is supplied again to the steam generation unit 33.
 各ガスタービン31、蒸気タービン41により駆動される発電機32、42は、例えば電圧が33kVの電力を発電し、この電力が変電所61にて例えば110kVまで昇圧される。変電所61にて昇圧された電力は、可変駆動部(VSD:Variable Speed Drive)62を介して冷媒圧縮機21駆動用のモーター22に供給される。電動のモーター22により駆動される冷媒圧縮機21を備えたNG液化設備を「e-LNG」と称す。 
 また電力は、NG液化設備内の他の電力消費機器にも供給される。
The generators 32 and 42 driven by the gas turbines 31 and the steam turbine 41 generate electric power having a voltage of, for example, 33 kV, and the electric power is boosted to, for example, 110 kV at the substation 61. The electric power boosted at the substation 61 is supplied to the motor 22 for driving the refrigerant compressor 21 via a variable drive unit (VSD: Variable Speed Drive) 62. The NG liquefaction facility provided with the refrigerant compressor 21 driven by the electric motor 22 is referred to as “e-LNG”.
Electric power is also supplied to other power consuming devices in the NG liquefaction facility.
 上述の構成を備えた発電システムにおいて、蒸気発生部33から得られた蒸気を利用して動力を得る多段式の蒸気タービン41は、サーフェースコンデンサ43が接続された低圧段よりも高圧側の中間段から蒸気を抽気し、NG液化設備内に設けられた処理装置100の流体加熱部101の熱源として当該蒸気を活用するためのコジェネレーションシステムを構成している。 In the power generation system having the above-described configuration, the multi-stage steam turbine 41 that obtains power by using the steam obtained from the steam generation unit 33 is intermediate in the high pressure side than the low pressure stage to which the surface condenser 43 is connected. A cogeneration system is configured to extract steam from the stage and use the steam as a heat source of the fluid heating unit 101 of the processing apparatus 100 provided in the NG liquefaction facility.
 各蒸気タービン41からは、例えば147~170℃の範囲内の温度、4.5~8Bargの範囲内の圧力であって、蒸気発生部33にて発生する蒸気よりも低温低圧の蒸気が抽気される。各蒸気タービン41から抽気された蒸気は、共通の蒸気供給ヘッダー46へと集められる。 From each steam turbine 41, for example, a temperature within a range of 147 to 170 ° C. and a pressure within a range of 4.5 to 8 Barg, which is lower in temperature and pressure than the steam generated in the steam generation unit 33, is extracted. The Steam extracted from each steam turbine 41 is collected into a common steam supply header 46.
 蒸気供給ヘッダー46から蒸気を供給する処理装置100の流体加熱部101としては、既述の不凍液再生部111のリボイラー112、ガス吸収液の再生塔131のリボイラー132、精留部(デエタナイザ、デプロパナイザ、デブタナイザ)151の各リボイラー152が挙げられる。 As the fluid heating unit 101 of the processing apparatus 100 that supplies steam from the steam supply header 46, the reboiler 112 of the antifreeze regenerator 111, the reboiler 132 of the gas absorption liquid regenerator 131, and the rectifier (deethanizer, depropanizer, Each reboiler 152 of a debutizer 151) is mentioned.
 図1に示すように、各リボイラー112、132、152の出口側には、被加熱流体(不凍液、ガス吸収液、NGから分離された液体)の温度を測定する被加熱流体温度計113、133、153が設けられている。そして、各被加熱流体の温度が予め設定された目標値に近づくように、流量調節弁134、144、154によって、蒸気供給ヘッダー46から各リボイラー112、132、152への蒸気の供給量が調節される。 
 各リボイラー112、132、152にて凝縮したボイラー水は、ボイラー水処理部51に集められる。
As shown in FIG. 1, at the outlet side of each reboiler 112, 132, 152, heated fluid thermometers 113, 133 that measure the temperature of the heated fluid (antifreeze liquid, gas absorption liquid, liquid separated from NG). , 153 are provided. Then, the amount of steam supplied from the steam supply header 46 to each reboiler 112, 132, 152 is adjusted by the flow rate adjusting valves 134, 144, 154 so that the temperature of each heated fluid approaches a preset target value. Is done.
Boiler water condensed in each reboiler 112, 132, 152 is collected in the boiler water treatment unit 51.
 一方で、吸着剤再生塔141の吸着剤の再生に用いられる再生ガス加熱部142は、既述のように再生ガスを例えば280~300℃程度の高温にまで加熱する必要がある。この点、既述のように147~170℃程度の温度である蒸気供給ヘッダー46から供給される蒸気は、再生ガスを吸着剤の再生に必要な温度にまで加熱することは困難である。 On the other hand, the regeneration gas heating unit 142 used for regeneration of the adsorbent in the adsorbent regeneration tower 141 needs to heat the regeneration gas to a high temperature of about 280 to 300 ° C. as described above. In this regard, as described above, it is difficult for the steam supplied from the steam supply header 46 having a temperature of about 147 to 170 ° C. to heat the regeneration gas to a temperature necessary for regeneration of the adsorbent.
 そこで再生ガス加熱部142に対しては、高圧蒸気ヘッダー47から抜き出された高温の蒸気が供給され、再生ガスの加熱に利用される。 
 図1に示すように、再生ガス加熱部142の出口側には、乾燥ガスの温度を測定するガス温度計143が設けられている。そして、当該乾燥ガスの温度が予め設定された目標値に近づくように、高圧蒸気ヘッダー47から高温の蒸気を抜き出すラインに設けられた流量調節弁144によって、再生ガス加熱部142への蒸気の供給量が調節される。各再生ガス加熱部142にて凝縮したボイラー水は、ボイラー水処理部51に集められる。 
 なお、なお再生ガス加熱部142にて乾燥ガスを加熱する熱源としては、ガスタービン31の排熱を回収する排熱回収設備を設け、ガスタービン31から排出される燃焼排ガスとの熱交換により乾燥ガスを加熱しててもよい。
Therefore, the high-temperature steam extracted from the high-pressure steam header 47 is supplied to the regeneration gas heating unit 142 and used for heating the regeneration gas.
As shown in FIG. 1, a gas thermometer 143 that measures the temperature of the dry gas is provided on the outlet side of the regeneration gas heating unit 142. Then, supply of steam to the regeneration gas heating unit 142 is performed by a flow rate control valve 144 provided in a line for extracting high-temperature steam from the high-pressure steam header 47 so that the temperature of the dry gas approaches a preset target value. The amount is adjusted. The boiler water condensed in each regeneration gas heating unit 142 is collected in the boiler water treatment unit 51.
In addition, as a heat source for heating the dry gas in the regeneration gas heating unit 142, an exhaust heat recovery facility for recovering exhaust heat of the gas turbine 31 is provided, and drying is performed by heat exchange with the combustion exhaust gas discharged from the gas turbine 31. The gas may be heated.
 上述の発電システムにおいては、処理装置100(気液分離装置11の不凍液再生部111、酸性ガス除去装置13の再生塔131、液化処理装置15の精留塔151)の流体加熱部101(ボイラー112、132、152)にて被加熱流体(不凍液、ガス吸収液、NGから分離された液体)の加熱を行うのに必要な熱量に見合う量の蒸気が蒸気タービン41を介して蒸気供給ヘッダー46へ供給される。しかしながら流体加熱部101において必要な熱量は、NGの処理量やNGの性状などによって変化する。 In the above-described power generation system, the fluid heating unit 101 (boiler 112) of the processing device 100 (the antifreeze regenerator 111 of the gas-liquid separator 11; , 132, 152), an amount of steam commensurate with the amount of heat required to heat the fluid to be heated (antifreeze liquid, gas absorption liquid, liquid separated from NG) is supplied to the steam supply header 46 via the steam turbine 41. Supplied. However, the amount of heat required in the fluid heating unit 101 varies depending on the amount of NG processing, the nature of NG, and the like.
 そこで当該発電システムは、蒸気供給ヘッダー46の圧力を目標圧力に維持することにより、流体加熱部101側の熱量消費に見合った蒸気の供給を担保する。そこで蒸気供給ヘッダー46には圧力計45が設けられ、この圧力計45にて測定される蒸気供給ヘッダー46の圧力が予め設定された目標圧力となるように、各蒸気タービン41の抽気ラインに設けられた抽気弁44の開度が調節される。 Therefore, the power generation system secures the supply of steam commensurate with the heat consumption on the fluid heating unit 101 side by maintaining the pressure of the steam supply header 46 at the target pressure. Therefore, the steam supply header 46 is provided with a pressure gauge 45, and provided in the extraction line of each steam turbine 41 so that the pressure of the steam supply header 46 measured by the pressure gauge 45 becomes a preset target pressure. The opening degree of the extracted bleed valve 44 is adjusted.
 複数台の蒸気タービン41に設けられた抽気弁44の開度を調節して、共通の蒸気供給ヘッダー46の圧力を制御するとき、例えばすべての抽気弁44の開度が揃うように開閉を行ってもよい。 
 また、複数の蒸気タービン41間で抽気弁44の開度調節を実行する優先順位を定めておき、処理装置100側における蒸気の消費量が増大した場合は、優先順位の高い蒸気タービン41の抽気弁44を開き、当該抽気弁44の開度が上限に達したら、次の優先順位の蒸気タービン41の開度を大きくする調節を行ってもよい。優先順位の設定基準としては、他の蒸気タービン41と比較して出力が大きいなど、抽気量の増加に伴う熱効率の低下の割合が小さい蒸気タービン41に設けられている抽気弁44の優先順位が高くなるように設定する例を挙げることができる。
When the pressure of the common steam supply header 46 is controlled by adjusting the opening of the extraction valves 44 provided in the plurality of steam turbines 41, for example, the opening and closing are performed so that all the extraction valves 44 have the same opening. May be.
In addition, when the priority order for adjusting the opening degree of the extraction valve 44 among the plurality of steam turbines 41 is determined and the consumption of steam on the processing apparatus 100 side increases, the extraction of the steam turbine 41 with higher priority is performed. When the valve 44 is opened and the opening degree of the extraction valve 44 reaches the upper limit, the opening degree of the steam turbine 41 of the next priority may be adjusted to be increased. As a priority setting criterion, the priority order of the extraction valve 44 provided in the steam turbine 41 is such that the rate of decrease in thermal efficiency due to the increase in the amount of extraction is small, for example, the output is larger than that of the other steam turbines 41. An example of setting to be high can be given.
 これら複数の蒸気タービン41に設けられている抽気弁44を用い、予め設定した規則に基づく蒸気供給ヘッダー46の圧力調節は、例えばNG液化設備全体の統括制御を行うコンピューターシステムを含む制御部7を利用して行われる。 Using the extraction valves 44 provided in the plurality of steam turbines 41, the pressure adjustment of the steam supply header 46 based on a preset rule is performed by, for example, the control unit 7 including a computer system that performs overall control of the entire NG liquefaction facility. It is done using.
 さらに本例の発電システムには、蒸気発生部33から供給される蒸気の供給量と、蒸気タービン41側における蒸気の消費量との差分のバランスをとるために、例えば燃料ガス焚きの蒸気ボイラー52が設けられている。蒸気ボイラー52は、高圧蒸気ヘッダー47に設けられた不図示の圧力計によって測定された高温高圧蒸気の圧力が、予め目標圧力となるように、各蒸気ボイラー52からの蒸気の供給量を増減させる。 Furthermore, in the power generation system of this example, in order to balance the difference between the supply amount of steam supplied from the steam generation unit 33 and the consumption amount of steam on the steam turbine 41 side, for example, a steam boiler 52 that uses fuel gas. Is provided. The steam boiler 52 increases or decreases the supply amount of steam from each steam boiler 52 so that the pressure of the high-temperature high-pressure steam measured by a pressure gauge (not shown) provided in the high-pressure steam header 47 becomes a target pressure in advance. .
 以上に説明した構成を備えたNG液化設備の発電システムの作用について説明する。 
 はじめに発電システムにおいては、各ガスタービン31、蒸気タービン41により発電機32、42を駆動し、各冷媒圧縮機21を始めとするNG液化設備内の各電力消費機器に必要量の電力が供給されているものとする。また、処理装置100の流体加熱部101に対しては、蒸気タービン41からの抽気により被加熱流体の加熱に必要な熱量の蒸気が蒸気供給ヘッダー46へと供給されているバランスになっているとする。さらに、再生ガス加熱部142に対しては、一定量の高温蒸気が供給され、その供給量の変動は発電システム全体の蒸気の消費、供給バランスの制約とはなっていないものとする。
The operation of the power generation system of the NG liquefaction facility having the configuration described above will be described.
First, in the power generation system, the generators 32 and 42 are driven by the gas turbines 31 and the steam turbines 41, and a necessary amount of power is supplied to each power consuming device in the NG liquefaction facility including each refrigerant compressor 21. It shall be. Further, with respect to the fluid heating unit 101 of the processing apparatus 100, the balance is such that steam of the amount of heat necessary for heating the fluid to be heated is supplied to the steam supply header 46 by extraction from the steam turbine 41. To do. Furthermore, it is assumed that a certain amount of high-temperature steam is supplied to the regeneration gas heating unit 142, and fluctuations in the supply amount do not restrict steam consumption and supply balance of the entire power generation system.
 このとき、処理装置100側におけるNGの処理量の増加やNGの性状の変化などの理由によって、流体加熱部101における蒸気の消費量が増加し、蒸気供給ヘッダー46の圧力が低下する方向に蒸気の供給/消費バランスが変化する場合を考える。 
 この場合には、予め設定された規則に基づき、所定の蒸気タービン41の抽気ラインに設けられた抽気弁44の開度を大きくして、蒸気供給ヘッダー46側への蒸気の抽気量を増やし、蒸気供給ヘッダー46の圧力が目標圧力に維持されるように調整を行う。
At this time, the steam consumption in the fluid heating unit 101 increases and the pressure in the steam supply header 46 decreases due to an increase in the amount of NG treatment on the processing apparatus 100 side or a change in the properties of NG. Let us consider the case where the supply / consumption balance changes.
In this case, based on a preset rule, the opening degree of the extraction valve 44 provided in the extraction line of the predetermined steam turbine 41 is increased to increase the amount of steam extracted to the steam supply header 46 side, Adjustment is performed so that the pressure of the steam supply header 46 is maintained at the target pressure.
 蒸気タービン41において、サーフェースコンデンサ43が接続された低圧段よりも高圧側の中間段から抽気を行うと、サーフェースコンデンサ43側へ排出される蒸気の量が減少する。この結果、各蒸気タービン41の単体の発電効率が落ちて、発電機42の発電量が低下してしまう。 In the steam turbine 41, when extraction is performed from an intermediate stage on the higher pressure side than the low pressure stage to which the surface condenser 43 is connected, the amount of steam discharged to the surface condenser 43 side is reduced. As a result, the power generation efficiency of each steam turbine 41 decreases, and the power generation amount of the generator 42 decreases.
 このときNG液化設備内の電力消費量に変化がない場合は、発電機42における発電量の低下を補う必要がある。 
 そこで例えば、ガスタービン31の出力に余裕がある場合には、発電機42における発電量の低下分は、ガスタービン31の出力を増大させることによって発電機32側で補うことができる。この調整法では、蒸気発生部33における蒸気の発生量が増加するので、蒸気ボイラー52からの蒸気の供給量を減少させてバランスを取る。
At this time, if there is no change in the power consumption in the NG liquefaction facility, it is necessary to compensate for the decrease in the power generation amount in the generator 42.
Therefore, for example, when there is a margin in the output of the gas turbine 31, the decrease in the amount of power generated in the generator 42 can be compensated on the generator 32 side by increasing the output of the gas turbine 31. In this adjustment method, since the amount of steam generated in the steam generating section 33 increases, the amount of steam supplied from the steam boiler 52 is decreased to achieve a balance.
 また、サーフェースコンデンサ43側の冷却能力に余力がある場合には、サーフェースコンデンサ43への冷却水の供給量を増やすと共に、高圧蒸気ヘッダー47から蒸気タービン41への蒸気の供給量を増やし、蒸気タービン41の出力を増大させることによって発電機42の発電量を元に戻すこともできる。この調整法では、蒸気タービン41における蒸気の消費量の増加分は、蒸気ボイラー52からの蒸気の供給量を増やしてバランスを取る。 When there is a surplus in the cooling capacity on the surface condenser 43 side, the supply amount of cooling water to the surface condenser 43 is increased, and the supply amount of steam from the high-pressure steam header 47 to the steam turbine 41 is increased. By increasing the output of the steam turbine 41, the amount of power generated by the generator 42 can be restored. In this adjustment method, the increase in the amount of steam consumed in the steam turbine 41 is balanced by increasing the amount of steam supplied from the steam boiler 52.
 上述の2つの調整法においては、ガスタービン31の出力を増やすと、これらガスタービン31における燃料消費量が増大し、蒸気タービン41の出力を増やすと蒸気ボイラー52における燃料消費量が増大する。設備側の制約に抵触しない限り、単位発電量当たりの燃料消費量の少ない調整法を採用するとよい。 In the above-described two adjustment methods, when the output of the gas turbine 31 is increased, the fuel consumption in these gas turbines 31 is increased, and when the output of the steam turbine 41 is increased, the fuel consumption in the steam boiler 52 is increased. As long as it does not violate the restrictions on the facility side, it is recommended to adopt an adjustment method with less fuel consumption per unit power generation.
 次に、処理装置100側におけるNGの処理量の減少やNGの性状の変化などの理由によって、流体加熱部101における蒸気の消費量が減少し、蒸気供給ヘッダー46の圧力が上昇する方向に蒸気の供給/消費バランスが変化する場合を考える。 
 この場合には、予め設定された規則に基づき、所定の蒸気タービン41の抽気ラインに設けられた抽気弁44の開度を小さくして、蒸気供給ヘッダー46側への蒸気の抽気量を減らし、蒸気供給ヘッダー46の圧力が目標圧力に維持されるように調整を行う。
Next, due to reasons such as a decrease in the amount of NG processing on the processing apparatus 100 side and a change in the properties of NG, the steam consumption in the fluid heating unit 101 decreases, and the steam in the direction in which the pressure of the steam supply header 46 increases Let us consider the case where the supply / consumption balance changes.
In this case, based on a preset rule, the opening degree of the extraction valve 44 provided in the extraction line of the predetermined steam turbine 41 is reduced to reduce the amount of steam extracted to the steam supply header 46 side, Adjustment is performed so that the pressure of the steam supply header 46 is maintained at the target pressure.
 この結果、蒸気タービン41においては、サーフェースコンデンサ43側へ排出される蒸気の量が増加し、各蒸気タービン41の単体の発電効率が向上して、発電機42の発電量が増加する。 
 このときNG液化設備内の電力消費量に変化がない場合は、発電機42における発電量の増加分を減らす必要がある。
As a result, in the steam turbine 41, the amount of steam discharged toward the surface condenser 43 is increased, the power generation efficiency of each steam turbine 41 is improved, and the power generation amount of the generator 42 is increased.
At this time, if there is no change in the power consumption amount in the NG liquefaction facility, it is necessary to reduce the increase in the power generation amount in the generator 42.
 例えば、ガスタービン31の出力下限値に対して実際の出力に余裕がある場合には、発電機42における発電量の増加分は、ガスタービン31の出力を減少させることによって発電機32側でバランスさせることができる。この調整法では、蒸気発生部33における蒸気の発生量が減少するので、蒸気ボイラー52からの蒸気の供給量を増加させてバランスを取る。 For example, when the actual output has a margin with respect to the output lower limit value of the gas turbine 31, the increase in the amount of power generation in the generator 42 is balanced on the generator 32 side by decreasing the output of the gas turbine 31. Can be made. In this adjustment method, since the amount of steam generated in the steam generating section 33 decreases, the amount of steam supplied from the steam boiler 52 is increased to achieve a balance.
 また、サーフェースコンデンサ43側への蒸気排出量の下限値に対して余裕がある場合には、サーフェースコンデンサ43への冷却水の供給量を減らして、高圧蒸気ヘッダー47から蒸気タービン41への蒸気の供給量を減らし、蒸気タービン41の出力を減少させることによって発電機42の発電量を元に戻すこともできる。この調整法では、蒸気タービン41における蒸気の消費量の減少分は、蒸気ボイラー52からの蒸気の供給量を減らしてバランスを取る。 Further, when there is a margin with respect to the lower limit value of the steam discharge amount to the surface condenser 43 side, the supply amount of the cooling water to the surface condenser 43 is reduced and the high pressure steam header 47 to the steam turbine 41 is reduced. The power generation amount of the generator 42 can be restored by reducing the steam supply amount and decreasing the output of the steam turbine 41. In this adjustment method, the decrease in the steam consumption in the steam turbine 41 is balanced by reducing the amount of steam supplied from the steam boiler 52.
 上述の2つの調整法においては、ガスタービン31の出力を減少させると、これらガスタービン31における燃料消費量が減少し、蒸気タービン41の出力を落とすと蒸気ボイラー52における燃料消費量が減少する。設備側の制約に抵触しない限り、単位発電量当たりの燃料消費量の削減幅が大きい調整法を採用するとよい。 In the above-described two adjustment methods, when the output of the gas turbine 31 is reduced, the fuel consumption in the gas turbine 31 is reduced, and when the output of the steam turbine 41 is reduced, the fuel consumption in the steam boiler 52 is reduced. As long as it does not violate the restrictions on the facility side, it is advisable to adopt an adjustment method with a large reduction in fuel consumption per unit power generation.
 本実施の形態に係るNG液化設備によれば以下の効果がある。発電機32を駆動するガスタービン31と、このガスタービン31の燃焼排ガスを利用して発生させた蒸気を用いて発電機42を駆動する蒸気タービン41とにより、冷媒圧縮機21を駆動するモーター22に電力を供給すると共に、前記蒸気タービン41から抜き出された蒸気を用いてNGガス液化設備内の処理装置100を流れる被加熱流体を加熱する。この結果、運転操作性のよいモーター22により安定して冷媒圧縮機21の運転を行うことができると共に、エネルギー効率の高いNG液化設備を実現できる。 The NG liquefaction facility according to the present embodiment has the following effects. A motor 22 that drives the refrigerant compressor 21 includes a gas turbine 31 that drives the generator 32 and a steam turbine 41 that drives the generator 42 using steam generated by using the combustion exhaust gas of the gas turbine 31. The heated fluid flowing through the processing apparatus 100 in the NG gas liquefaction facility is heated using the steam extracted from the steam turbine 41. As a result, the refrigerant compressor 21 can be stably operated by the motor 22 having good operability, and an NG liquefaction facility with high energy efficiency can be realized.
 例えば図1、2に示す構成を備えるNG液化設備(年産450万トン)について、シミュレーションを行ったところ、ガスタービン31の駆動、蒸気発生部33、蒸気ボイラー52における蒸気の発生に対応して消費される燃料ガスの総消費量は749MWであった。一方、発電機32、42の発電量、流体加熱部101や再生ガス加熱部142への蒸気の供給量の合計は463MWであった。従って、NG液化設備の全体の熱効率は62%である。これは、冷媒圧縮機21をガスタービンによって駆動する一般的なNG液化設備の熱効率(およそ25-35%)と比較して非常に高い熱効率を実現できていると言える。 For example, when NG liquefaction equipment (4.5 million tons per year) having the configuration shown in FIGS. 1 and 2 is simulated, the gas turbine 31 is driven and consumed in response to steam generation in the steam generation unit 33 and steam boiler 52. The total fuel gas consumption was 749 MW. On the other hand, the total amount of power generated by the generators 32 and 42 and the amount of steam supplied to the fluid heating unit 101 and the regeneration gas heating unit 142 was 463 MW. Therefore, the overall thermal efficiency of the NG liquefaction facility is 62%. This can be said to be able to realize a very high thermal efficiency compared with the thermal efficiency (approximately 25-35%) of a general NG liquefaction facility in which the refrigerant compressor 21 is driven by a gas turbine.
 ここで、発電機32を駆動するための内燃機関は、ガスタービン31である場合に限定されない。例えばガスエンジンを用いて発電機32を駆動し、またガスエンジンの燃焼排ガスとの熱交換により得られた蒸気を用いて発電機42を駆動する蒸気タービン41を駆動する構成を採用してもよい。比較的小型のNG液化設備においては、ガスタービン31と比較して出力が小さいガスエンジンであっても、冷媒圧縮機21にて必要な電力を供給することができる。 Here, the internal combustion engine for driving the generator 32 is not limited to the gas turbine 31. For example, the generator 32 may be driven using a gas engine, and the steam turbine 41 that drives the generator 42 may be driven using steam obtained by heat exchange with the combustion exhaust gas of the gas engine. . In a relatively small NG liquefaction facility, the refrigerant compressor 21 can supply necessary power even for a gas engine having a smaller output than the gas turbine 31.
 また、第2の発電機42を駆動する蒸気タービン41は、復水式に限定されない。例えば図1、2に示す発電システムに設けられる蒸気タービン41の一部または全てを背圧式としてもよい。背圧式の蒸気タービン41から蒸気供給ヘッダー46への蒸気供給量の増減に伴う発電機42の発電量の変化分は、サーフェースコンデンサ43側への蒸気の排出量の増減にて調整することができない。このため、当該発電量の変化分は、ガスタービン31の出力を減少、増加させることによってバランスを取る。 
 この他、一台の蒸気タービン41が停止しているなどの設備制約上の理由により、蒸気タービン41から必要量の蒸気を抽気できない場合のために、図1に併記したように、高圧蒸気ヘッダー47と蒸気供給ヘッダー46との間に、通常時は閉状態(図1中「S」と記載)であり、抽気実施時に蒸気を降圧するための減圧弁481と、抽気された蒸気を降温するためのデスーパーヒータ482とを備えた抽気ライン48を設けてもよい。
Further, the steam turbine 41 that drives the second generator 42 is not limited to the condensate type. For example, a part or all of the steam turbine 41 provided in the power generation system shown in FIGS. The amount of change in the power generation amount of the generator 42 accompanying the increase or decrease in the amount of steam supplied from the back pressure steam turbine 41 to the steam supply header 46 can be adjusted by the increase or decrease in the amount of steam discharged to the surface capacitor 43 side. Can not. For this reason, the change in the power generation amount is balanced by decreasing or increasing the output of the gas turbine 31.
In addition to this, in the case where a necessary amount of steam cannot be extracted from the steam turbine 41 due to equipment restrictions such as one steam turbine 41 being stopped, as shown in FIG. 47 and the steam supply header 46 are normally closed (denoted as “S” in FIG. 1), and a pressure reducing valve 481 for reducing the pressure of the steam when the bleed is performed, and the temperature of the extracted steam is lowered. A bleed line 48 provided with a desuperheater 482 may be provided.
 さらに、本例の発電システムが適用されるNG液化設備は、図1に示した全ての前処理装置を含んでいなくてもよい。例えば、パイプラインから受け入れるNGに不凍液が添加されていない場合は、不凍液再生部111の設置を省略してもよい。また、NGに含まれる酸性ガスの量が多い場合には、アミン化合物などを利用した酸性ガス除去装置13に替えて、膜分離による酸性ガスの除去を行う場合もある。膜分離の場合は、酸性ガス除去装置13には再生塔131は併設されない。 Furthermore, the NG liquefaction equipment to which the power generation system of this example is applied may not include all the pretreatment devices shown in FIG. For example, when the antifreeze liquid is not added to the NG received from the pipeline, the installation of the antifreeze liquid regeneration unit 111 may be omitted. Further, when the amount of acid gas contained in NG is large, the acid gas may be removed by membrane separation instead of the acid gas removing device 13 using an amine compound or the like. In the case of membrane separation, the acid gas removing device 13 is not provided with the regeneration tower 131.
100   処理装置
101   流体加熱部
11    気液分離装置(気液分離部)
12    水銀除去装置
13    酸性ガス除去装置(ガス吸収部)
14    水分除去装置(水分除去部)
15    液化処理装置
16    貯蔵タンク
21    冷媒圧縮機
22    モーター
31    ガスタービン
32    発電機
33    蒸気発生部
41    蒸気タービン
42    発電機
7     制御部

 
DESCRIPTION OF SYMBOLS 100 Processing apparatus 101 Fluid heating part 11 Gas-liquid separation apparatus (gas-liquid separation part)
12 Mercury removal device 13 Acid gas removal device (gas absorption part)
14 Moisture removal device (moisture removal unit)
DESCRIPTION OF SYMBOLS 15 Liquefaction processing apparatus 16 Storage tank 21 Refrigerant compressor 22 Motor 31 Gas turbine 32 Generator 33 Steam generation part 41 Steam turbine 42 Generator 7 Control part

Claims (7)

  1.  天然ガスの液化を行う天然ガス液化設備において、
     天然ガスを液化する処理を行う液化処理装置と、
     燃料ガスを燃焼して第1の発電機を駆動する内燃機関と、
     前記内燃機関にて燃料ガスを燃焼して得られた燃焼排ガスとの熱交換により、蒸気を発生させる蒸気発生部と、
     前記蒸気発生部にて発生させた蒸気を用いて第2の発電機を駆動する蒸気タービンと、
     前記天然ガス液化設備を構成する天然ガスの処理装置に設けられ、前記蒸気タービンから抜き出された蒸気を用いて当該処理装置を流れる被加熱流体を加熱する流体加熱部と、
     前記第1の発電機及び第2の発電機にて発電された電力を消費するモーターにより駆動し、前記液化処理装置にて天然ガスを冷却した冷媒のガスを圧縮する冷媒圧縮部と、を備えたことを特徴とする天然ガス液化設備。
    In natural gas liquefaction facilities that liquefy natural gas,
    A liquefaction processing apparatus for performing processing for liquefying natural gas;
    An internal combustion engine that burns fuel gas to drive the first generator;
    A steam generating section for generating steam by heat exchange with combustion exhaust gas obtained by burning fuel gas in the internal combustion engine;
    A steam turbine that drives the second generator using the steam generated in the steam generation unit;
    A fluid heating unit that is provided in a natural gas processing apparatus that constitutes the natural gas liquefaction facility, and that heats a fluid to be heated that flows through the processing apparatus using steam extracted from the steam turbine;
    A refrigerant compression unit that is driven by a motor that consumes the electric power generated by the first generator and the second generator, and that compresses the refrigerant gas that has cooled the natural gas by the liquefaction treatment device. Natural gas liquefaction equipment characterized by that.
  2.  前記処理装置は、前記液化処理装置に供給される前の天然ガスと、ガス吸収液とを接触させて、前記天然ガスに含まれる酸性ガスを除去するガス吸収部を備えた酸性ガス除去装置であり、
     前記流体加熱部は、前記酸性ガス除去装置に設けられ、前記ガス吸収部から送液されたガス吸収液を加熱して酸性ガスを放出させ、前記ガス吸収液を再生するためのガス吸収液再生部のリボイラーであることを特徴とする請求項1に記載の天然ガス液化装置。
    The treatment device is an acid gas removal device including a gas absorption unit that removes the acid gas contained in the natural gas by bringing the natural gas before being supplied to the liquefaction treatment device into contact with the gas absorption liquid. Yes,
    The fluid heating unit is provided in the acid gas removing device, and heats the gas absorbing solution sent from the gas absorbing unit to release the acid gas to regenerate the gas absorbing solution. The natural gas liquefying apparatus according to claim 1, wherein the natural gas liquefying apparatus is a reboiler.
  3.  前記処理装置は、前記液化処理装置に供給される前の天然ガスと、当該天然ガスに含まれる不凍液を含む液体とを分離する気液分離部を備えた気液分離装置であり、
     前記流体加熱部は、前記気液分離装置に設けられ、前記気液分離部から送られた不凍液を加熱して水分を放出させ、当該不凍液を再生するための不凍液再生部のリボイラーであることを特徴とする請求項1に記載の天然ガス液化装置。
    The processing device is a gas-liquid separation device including a gas-liquid separation unit that separates natural gas before being supplied to the liquefaction processing device and liquid containing antifreeze contained in the natural gas,
    The fluid heating unit is provided in the gas-liquid separator, and is a reboiler of an antifreeze liquid regeneration unit for regenerating the antifreeze liquid by heating the antifreeze liquid sent from the gas-liquid separation unit to release moisture. The natural gas liquefying apparatus according to claim 1, wherein
  4.  前記処理装置は、前記液化処理装置にて冷却された天然ガスから分離された液体重質分を、常温で液体のコンデンセートと、コンデンセートより軽質成分であるエタン、プロパン、ブタンとに精留する精留部であり、
     前記流体加熱部は、前記精留部のリボイラーであることを特徴とする請求項1に記載の天然ガス液化装置。
    The treatment device is a rectifier that rectifies the liquid heavy fraction separated from the natural gas cooled by the liquefaction treatment device into liquid condensate and ethane, propane, and butane that are lighter components than the condensate. Torube,
    The natural gas liquefying apparatus according to claim 1, wherein the fluid heating unit is a reboiler of the rectification unit.
  5.  前記液化処理装置に供給される前の天然ガスと、吸着剤とを接触させて、前記天然ガスに含まれる水分を前記吸着剤に吸着させて除去する水分除去部と、水分が除去された後の前記天然ガスから抜き出された乾燥天然ガスを加熱し、前記水分を吸着した後の吸着剤を再生する再生ガスとして前記水分除去部に供給するための再生ガス加熱部と、が設けられた水分除去装置を備え、
     前記再生ガス加熱部は、前記蒸気発生部にて発生させ、前記蒸気タービンに供給される前の蒸気、または前記内燃機関の燃焼排ガスを用いて前記乾燥天然ガスを加熱することを特徴とする請求項1に記載の天然ガス液化装置。
    A natural gas before being supplied to the liquefaction processing apparatus and an adsorbent are brought into contact with each other, and a moisture removing unit that adsorbs and removes moisture contained in the natural gas by the adsorbent, and after moisture is removed. A regeneration gas heating unit for heating the dried natural gas extracted from the natural gas and supplying the moisture removal unit as a regeneration gas for regenerating the adsorbent after adsorbing the moisture. Equipped with a water removal device,
    The regeneration gas heating unit heats the dry natural gas using steam generated by the steam generation unit and supplied to the steam turbine or combustion exhaust gas of the internal combustion engine. Item 4. A natural gas liquefying apparatus according to Item 1.
  6.  前記蒸気タービンは、低圧段の排気側に復水器が設けられた多段式の蒸気タービンであり、前記流体加熱部には、前記低圧段よりも高圧側の段から抽気された蒸気が供給されることを特徴とする請求項1に記載の天然ガス液化装置。 The steam turbine is a multi-stage steam turbine in which a condenser is provided on the exhaust side of the low-pressure stage, and steam extracted from a stage higher in pressure than the low-pressure stage is supplied to the fluid heating unit. The natural gas liquefying apparatus according to claim 1.
  7.  前記内燃機関は、ガスタービンであることを特徴とする請求項1に記載の天然ガス液化設備。

     
    The natural gas liquefaction facility according to claim 1, wherein the internal combustion engine is a gas turbine.

PCT/JP2016/082540 2016-11-02 2016-11-02 Natural gas liquefaction facility WO2018083747A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2016428816A AU2016428816B2 (en) 2016-11-02 2016-11-02 Natural gas liquefaction facility
PCT/JP2016/082540 WO2018083747A1 (en) 2016-11-02 2016-11-02 Natural gas liquefaction facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082540 WO2018083747A1 (en) 2016-11-02 2016-11-02 Natural gas liquefaction facility

Publications (1)

Publication Number Publication Date
WO2018083747A1 true WO2018083747A1 (en) 2018-05-11

Family

ID=62075877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082540 WO2018083747A1 (en) 2016-11-02 2016-11-02 Natural gas liquefaction facility

Country Status (2)

Country Link
AU (1) AU2016428816B2 (en)
WO (1) WO2018083747A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058602A1 (en) * 2018-09-20 2020-03-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation and method for purifying and liquefying natural gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171616A (en) * 1987-01-12 1988-07-15 Mitsubishi Heavy Ind Ltd Method for controlling valve of changeover adsorption tower
JP2004209353A (en) * 2002-12-27 2004-07-29 Shikoku Electric Power Co Inc Antifreeze concentration device
JP2006501432A (en) * 2002-09-30 2006-01-12 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Fully electrified LNG system and method
JP2008503609A (en) * 2004-06-18 2008-02-07 エクソンモービル アップストリーム リサーチ カンパニー A liquefied natural gas plant with appreciable capacity
WO2008139527A1 (en) * 2007-04-27 2008-11-20 Hitachi, Ltd. Power supply facility for natural gas liquefaction plant, system and method for control of the power supply facility, and natural gas liquefaction plant
JP2010532856A (en) * 2007-07-09 2010-10-14 エルエヌジー テクノロジー ピーティーワイ リミテッド Boil-off gas treatment process and system
JP2012083051A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Liquefaction method, liquefaction apparatus and floating liquefied gas production equipment including the same
WO2015155818A1 (en) * 2014-04-07 2015-10-15 三菱重工コンプレッサ株式会社 Floating liquefied-gas production facility

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171616A (en) * 1987-01-12 1988-07-15 Mitsubishi Heavy Ind Ltd Method for controlling valve of changeover adsorption tower
JP2006501432A (en) * 2002-09-30 2006-01-12 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Fully electrified LNG system and method
JP2004209353A (en) * 2002-12-27 2004-07-29 Shikoku Electric Power Co Inc Antifreeze concentration device
JP2008503609A (en) * 2004-06-18 2008-02-07 エクソンモービル アップストリーム リサーチ カンパニー A liquefied natural gas plant with appreciable capacity
WO2008139527A1 (en) * 2007-04-27 2008-11-20 Hitachi, Ltd. Power supply facility for natural gas liquefaction plant, system and method for control of the power supply facility, and natural gas liquefaction plant
JP2010532856A (en) * 2007-07-09 2010-10-14 エルエヌジー テクノロジー ピーティーワイ リミテッド Boil-off gas treatment process and system
JP2012083051A (en) * 2010-10-13 2012-04-26 Mitsubishi Heavy Ind Ltd Liquefaction method, liquefaction apparatus and floating liquefied gas production equipment including the same
WO2015155818A1 (en) * 2014-04-07 2015-10-15 三菱重工コンプレッサ株式会社 Floating liquefied-gas production facility

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058602A1 (en) * 2018-09-20 2020-03-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Installation and method for purifying and liquefying natural gas
FR3086373A1 (en) * 2018-09-20 2020-03-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude NATURAL GAS PURIFICATION AND LIQUEFACTION INSTALLATION AND METHOD

Also Published As

Publication number Publication date
AU2016428816A1 (en) 2019-04-04
AU2016428816B2 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP5812694B2 (en) Carbon dioxide recovery method and apparatus
JP5006515B2 (en) Improved drive and compressor system for natural gas liquefaction
EP2590898B1 (en) Carbon dioxide capture and liquefaction
CA2840723C (en) Natural gas liquefaction process
CA2582596C (en) Method for producing liquefied natural gas
CN108759301B (en) Hydrogen liquefaction process
RU2272228C1 (en) Universal gas separation and liquefaction method (variants) and device
US20220065160A1 (en) Liquid natural gas processing with hydrogen production
JP2006504928A (en) Motor driven compressor system for natural gas liquefaction
WO2014204817A2 (en) Systems and methods for separating alkane gases with applications to raw natural gas processing and flare gas capture
KR101906917B1 (en) Membrane-based Process for Capturing and Sequestering Carbon Dioxide from Gas Mixture
AU2008203713B2 (en) Method and apparatus for liquefying a hydrocarbon stream
NO341515B1 (en) Fremgangsmåte og anlegg for CO2 fangst
WO2022138615A1 (en) Complex natural gas processing system
WO2018083747A1 (en) Natural gas liquefaction facility
JPH04347307A (en) Method for separating carbon dioxide from exhaust gas and device thereof
US10393015B2 (en) Methods and systems for treating fuel gas
WO2019224951A1 (en) Natural gas pre-processing facility
JP6012649B2 (en) Working gas circulation engine system and operation method thereof
CN112739970B (en) Plant and method for purifying and liquefying natural gas
RU2576428C1 (en) Method for complex processing of natural hydrocarbon gas with high nitrogen content
JP5051991B2 (en) Gas hydrate generation method
Hasler et al. A CO2 Compression and Dehydration System Utilizing Absorption Chillers and Heat Recovery Concepts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016428816

Country of ref document: AU

Date of ref document: 20161102

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP