JPH048845B2 - - Google Patents
Info
- Publication number
- JPH048845B2 JPH048845B2 JP3762883A JP3762883A JPH048845B2 JP H048845 B2 JPH048845 B2 JP H048845B2 JP 3762883 A JP3762883 A JP 3762883A JP 3762883 A JP3762883 A JP 3762883A JP H048845 B2 JPH048845 B2 JP H048845B2
- Authority
- JP
- Japan
- Prior art keywords
- antiferromagnetic material
- magnetization
- groove
- sense current
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002885 antiferromagnetic material Substances 0.000 claims description 38
- 230000005415 magnetization Effects 0.000 claims description 35
- 230000005291 magnetic effect Effects 0.000 claims description 34
- 239000000758 substrate Substances 0.000 claims description 13
- 239000004020 conductor Substances 0.000 claims description 8
- 230000005294 ferromagnetic effect Effects 0.000 claims description 8
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 7
- 230000003993 interaction Effects 0.000 description 6
- 239000011295 pitch Substances 0.000 description 6
- 230000005330 Barkhausen effect Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001093 holography Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/398—Specially shaped layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/399—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures with intrinsic biasing, e.g. provided by equipotential strips
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】
本発明は磁気記憶媒体に書き込まれた磁気的情
報を、いわゆる磁気抵抗効果を利用して読み出し
を行う強磁性磁気抵抗効果素子(以下、MR素子
と称す)を備えた磁気抵抗効果ヘツド(以下、
MRヘツドと称す)に関する。
報を、いわゆる磁気抵抗効果を利用して読み出し
を行う強磁性磁気抵抗効果素子(以下、MR素子
と称す)を備えた磁気抵抗効果ヘツド(以下、
MRヘツドと称す)に関する。
MRヘツドは、磁気記録における記録密度の向
上に大きく貢献するものとして注目されている。
しかし、周知の如く、MR素子を磁気記録媒体に
書き込まれた磁気的情報に対して、線形応答を呈
する高効率の再生用ヘツドとして用いる場合に
は、第1図に示す様に、MR素子1に流すセンス
電流IとMR素子の磁化Mの成す角度をθとする
と、前記θを略45°に設定するバイアス手段を具
備しなければならない。
上に大きく貢献するものとして注目されている。
しかし、周知の如く、MR素子を磁気記録媒体に
書き込まれた磁気的情報に対して、線形応答を呈
する高効率の再生用ヘツドとして用いる場合に
は、第1図に示す様に、MR素子1に流すセンス
電流IとMR素子の磁化Mの成す角度をθとする
と、前記θを略45°に設定するバイアス手段を具
備しなければならない。
従来、前述のバイアス手段を呈する具体的方法
に、MR素子に近接対向(或いは接触)させて、
磁気的にハードな磁性体、又は電気的良導体を配
置し、これらの磁性体、又は電気的良導体に流す
電流から生ずる磁界をバイアス磁界としてMR素
子の磁化Mの角度θをセンス電流Iと略45°に設
定する方法が知られている。しかし、これ等のバ
イアス方法は比較的大きな磁界を必要とし、この
大きな磁界が磁気記憶媒体上の情報を変化させる
恐れがあつた。特に前者の磁気的にハードな磁性
体をMR素子に近接対向(或いは接触)させた場
合は、角度θを厳密に45度に設定するのが困難で
あり、又、後者の電気的良導体をMR素子に近接
対向(或いは接触)させた場合は電気的良導体に
比較的大電流を流す必要があり、従つて、MR素
子の電気抵抗が熱的ドリフトを起し、かつ熱雑音
の原因にもなつていた。
に、MR素子に近接対向(或いは接触)させて、
磁気的にハードな磁性体、又は電気的良導体を配
置し、これらの磁性体、又は電気的良導体に流す
電流から生ずる磁界をバイアス磁界としてMR素
子の磁化Mの角度θをセンス電流Iと略45°に設
定する方法が知られている。しかし、これ等のバ
イアス方法は比較的大きな磁界を必要とし、この
大きな磁界が磁気記憶媒体上の情報を変化させる
恐れがあつた。特に前者の磁気的にハードな磁性
体をMR素子に近接対向(或いは接触)させた場
合は、角度θを厳密に45度に設定するのが困難で
あり、又、後者の電気的良導体をMR素子に近接
対向(或いは接触)させた場合は電気的良導体に
比較的大電流を流す必要があり、従つて、MR素
子の電気抵抗が熱的ドリフトを起し、かつ熱雑音
の原因にもなつていた。
又、他の公知例として、前述した外部磁界によ
るバイアス法と対照的に、第2図に示す如く、
MR素子の長手方向に流すセンス電流Iに対し
て、始めからMR素子の磁化容易軸EAを略45度
に設定する手法がある。この方法は外部から、バ
イアス磁界を印加するためのMR素子に付属する
バイアス手段が不要になるため、MRヘツドを小
型化でき、更にミールド構成としたときに狭ギヤ
ツプ化ができる等の利点がある。この手法を具体
的に実現するには、磁場中蒸着時に生じる誘導磁
気異方性や斜め蒸着法によつて生ずる磁気異方性
を利用して、磁化容易軸E・AをMR素子の長手
方向、即ちセンス電流Iの流れる方向に対して略
45度に設定せしめる方法が取られている。
るバイアス法と対照的に、第2図に示す如く、
MR素子の長手方向に流すセンス電流Iに対し
て、始めからMR素子の磁化容易軸EAを略45度
に設定する手法がある。この方法は外部から、バ
イアス磁界を印加するためのMR素子に付属する
バイアス手段が不要になるため、MRヘツドを小
型化でき、更にミールド構成としたときに狭ギヤ
ツプ化ができる等の利点がある。この手法を具体
的に実現するには、磁場中蒸着時に生じる誘導磁
気異方性や斜め蒸着法によつて生ずる磁気異方性
を利用して、磁化容易軸E・AをMR素子の長手
方向、即ちセンス電流Iの流れる方向に対して略
45度に設定せしめる方法が取られている。
しかし通常のこの種のMR素子の表面の滑らか
な絶縁性基板上に、例えば、80%Ni−20%Fe(ウ
エイトパーセント)付近の組成のパーマロイを
200及至600〓程度の膜厚tMをもつて、長さが数10
及至100μm、幅Wが数μm10μm程度のパターン
に加工されるため、その形状による反磁界Hd≒
4πMstM/Wは数10エルステツド程度に達する。
但し、ここでHdは膜幅方向への反磁界であり、
Msは飽和磁化で80%Ni−20%Feでは約800e・
m・u程度の値をもつ。この場合、磁場中蒸着に
よつて得られる異方性磁界Hkは数エルステツド
のオーダであり、従つてHk<<Hdであるため
MR素子の磁化方向はその目的とするところは違
つて、センス電流Iと略平行となり、バイアス手
段としての効果は認められないものであつた。
な絶縁性基板上に、例えば、80%Ni−20%Fe(ウ
エイトパーセント)付近の組成のパーマロイを
200及至600〓程度の膜厚tMをもつて、長さが数10
及至100μm、幅Wが数μm10μm程度のパターン
に加工されるため、その形状による反磁界Hd≒
4πMstM/Wは数10エルステツド程度に達する。
但し、ここでHdは膜幅方向への反磁界であり、
Msは飽和磁化で80%Ni−20%Feでは約800e・
m・u程度の値をもつ。この場合、磁場中蒸着に
よつて得られる異方性磁界Hkは数エルステツド
のオーダであり、従つてHk<<Hdであるため
MR素子の磁化方向はその目的とするところは違
つて、センス電流Iと略平行となり、バイアス手
段としての効果は認められないものであつた。
又、斜め蒸着法による異方性磁界は数10エルス
テツドの値が得られ、MR素子の磁化容易軸をセ
ンス電流Iの方向と略45度に設定せしめ得る場合
もあるが、異方性磁界及び磁化容易方向の制御が
困難で再現性良くバイアスできず、又、同時に作
製したMR素子間の特性にバラツキが生じ易く、
生産性の点で不都合であつた。
テツドの値が得られ、MR素子の磁化容易軸をセ
ンス電流Iの方向と略45度に設定せしめ得る場合
もあるが、異方性磁界及び磁化容易方向の制御が
困難で再現性良くバイアスできず、又、同時に作
製したMR素子間の特性にバラツキが生じ易く、
生産性の点で不都合であつた。
一方、前述した諸欠点を解決した、MR素子の
長手方向に流すセンス電流Iに対して、始めから
MR素子の磁化容易軸E・Aを略45度に設定せし
める他の手法として本出願人による「ジヨツグ
MR素子」が特願昭57−050586に開示されてい
る。ジヨツグMR素子は1個又は複数個の相互に
平行で直線状の凸部又は凹部が設けられた基板上
にMR素子を設け、前記凸部又は凹部によつて生
ずる形状反磁界を利用し、MR素子の磁化Mとセ
ンス電流Iとのなす角θを制御するものである。
かかる構成のMR素子は隣り合う凸部又は凹部の
ピツチが極めて小さい場合、例えば、ピツチが
1μm以下の溝を形成した場合には、磁化Mとセ
ンス電流Iの成す角を略45度に設定できる。しか
し、前述の極めて小さなピツチを有する凸部又は
凹部の加工にはレーザホログラフイ又は電子線露
光等の特殊な技術及び装置が必要となり多大な工
数が要求されるので、歩留りの劣化、製作時間が
長くなる等の欠点を有し、その結果、MRヘツド
は高価にならざるを得なかつた。
長手方向に流すセンス電流Iに対して、始めから
MR素子の磁化容易軸E・Aを略45度に設定せし
める他の手法として本出願人による「ジヨツグ
MR素子」が特願昭57−050586に開示されてい
る。ジヨツグMR素子は1個又は複数個の相互に
平行で直線状の凸部又は凹部が設けられた基板上
にMR素子を設け、前記凸部又は凹部によつて生
ずる形状反磁界を利用し、MR素子の磁化Mとセ
ンス電流Iとのなす角θを制御するものである。
かかる構成のMR素子は隣り合う凸部又は凹部の
ピツチが極めて小さい場合、例えば、ピツチが
1μm以下の溝を形成した場合には、磁化Mとセ
ンス電流Iの成す角を略45度に設定できる。しか
し、前述の極めて小さなピツチを有する凸部又は
凹部の加工にはレーザホログラフイ又は電子線露
光等の特殊な技術及び装置が必要となり多大な工
数が要求されるので、歩留りの劣化、製作時間が
長くなる等の欠点を有し、その結果、MRヘツド
は高価にならざるを得なかつた。
又、上記ピツチを通常のフオトリソグラフイ技
術で達成可能な数μmのオーダにすると、磁化M
とセンス電流Iの成す角はある程度制御できるも
のの十分ではなく、外部からの信号磁界に対し
て、線形応答する領域が狭くなり、またバルクハ
ウゼンノイズ等が発生するので、MRヘツドの磁
電変換特性にはなはだ不都合な結果をもたらす傾
向があつた。
術で達成可能な数μmのオーダにすると、磁化M
とセンス電流Iの成す角はある程度制御できるも
のの十分ではなく、外部からの信号磁界に対し
て、線形応答する領域が狭くなり、またバルクハ
ウゼンノイズ等が発生するので、MRヘツドの磁
電変換特性にはなはだ不都合な結果をもたらす傾
向があつた。
本発明の目的は、前記従来の欠点を解決した磁
気抵抗効果ヘツドを提供することである。
気抵抗効果ヘツドを提供することである。
本発明によれば、強磁性磁気抵抗効果素子が、
これと磁気的変換結合を行い得る反強磁性体とで
積層された磁気抵抗効果ヘツドにおいて、前記強
磁性磁気抵抗効果素子を形成する基板の表面、も
しくは前記反強磁性体の前記強磁性磁気抵抗効果
素子と接触する表面が1個または複数個の相互に
平行で直線状の凸部又は凹部を有することを特徴
とする磁気抵抗効果ヘツドが提供できる。
これと磁気的変換結合を行い得る反強磁性体とで
積層された磁気抵抗効果ヘツドにおいて、前記強
磁性磁気抵抗効果素子を形成する基板の表面、も
しくは前記反強磁性体の前記強磁性磁気抵抗効果
素子と接触する表面が1個または複数個の相互に
平行で直線状の凸部又は凹部を有することを特徴
とする磁気抵抗効果ヘツドが提供できる。
即ち、本発明は、基板上に設けられた凸部又は
凹部によつて生ずるMR素子の形状反磁界を利用
し、MR素子の磁化Mとセンス電流Iの成す角を
所定の値θに設定せしめ、かつ、前記θの外部信
号磁界に伴う変化を反強磁性体とMR素子とに生
ずる磁気的交換相互作用を利用してスムーズに行
うものである。
凹部によつて生ずるMR素子の形状反磁界を利用
し、MR素子の磁化Mとセンス電流Iの成す角を
所定の値θに設定せしめ、かつ、前記θの外部信
号磁界に伴う変化を反強磁性体とMR素子とに生
ずる磁気的交換相互作用を利用してスムーズに行
うものである。
以下、本発明の実施例を図面を用いて、詳細に
説明する。第3図は本発明のMRヘツドの主要構
成要素であるMR素子部分を示す実施例である。
他の構成部分、例えば磁気シールド等は説明を簡
単にするため省略した。
説明する。第3図は本発明のMRヘツドの主要構
成要素であるMR素子部分を示す実施例である。
他の構成部分、例えば磁気シールド等は説明を簡
単にするため省略した。
ガラス、フエライト、セラミツクス等から成る
絶縁性基板材2の表面がフオトレジスト及びエツ
チング液又はイオンミリング等の方法により幅l
を有しピツチl+l′の値で多数の直線的な溝3が
それぞれ略平行となるように形成されている。つ
いで、この溝3を覆うように、強磁性体からなる
MR素子(例えばFe−Ni合金、Ni−Co合金等)
1′がスパツタ、蒸着等の手法により形成されて
いる。更に前記MR素子1′の上にはMR素子と
直接交換相互作用を行う反強磁性体4がスパツ
タ、蒸着等の手法により積層されている。ここで
言う直接交換相互作用とは周知の如く、反強磁性
体4とMR素子との界面で反強磁性体4の原子層
の磁化の向きとMR素子1′の磁化の向きが、同
一方向に揃う効果である。従つて、MR素子1′
の磁化容易軸E・Aを同図に示す如く、溝3の直
線方向に設定すれば、その後に形成された反強磁
性体4のMR素子と界面をなす原子層の磁化の向
きは溝3の直線方向に設定される。前記MR素子
1′及び反強磁性体4は、フオトレジスト及びエ
ツチング液又はイオンミリング等によりMR素子
1′及び反強磁性体4は長さL、幅Wの大きさに
加工される。この時、MR素子1′及び反強磁性
体4の長さ方向と溝3の直線方向のなす角は所定
の値θに設定されている。又、MR素子1′及び
反強磁性体4の長さ方向の両端はMR素子1′に
センス電流Iを導入するための2つの電気端子5
が接続されている。従つて、電気端子5から導入
されるセンス電流Iは溝3の直接方向とθの角度
を成すことになる。
絶縁性基板材2の表面がフオトレジスト及びエツ
チング液又はイオンミリング等の方法により幅l
を有しピツチl+l′の値で多数の直線的な溝3が
それぞれ略平行となるように形成されている。つ
いで、この溝3を覆うように、強磁性体からなる
MR素子(例えばFe−Ni合金、Ni−Co合金等)
1′がスパツタ、蒸着等の手法により形成されて
いる。更に前記MR素子1′の上にはMR素子と
直接交換相互作用を行う反強磁性体4がスパツ
タ、蒸着等の手法により積層されている。ここで
言う直接交換相互作用とは周知の如く、反強磁性
体4とMR素子との界面で反強磁性体4の原子層
の磁化の向きとMR素子1′の磁化の向きが、同
一方向に揃う効果である。従つて、MR素子1′
の磁化容易軸E・Aを同図に示す如く、溝3の直
線方向に設定すれば、その後に形成された反強磁
性体4のMR素子と界面をなす原子層の磁化の向
きは溝3の直線方向に設定される。前記MR素子
1′及び反強磁性体4は、フオトレジスト及びエ
ツチング液又はイオンミリング等によりMR素子
1′及び反強磁性体4は長さL、幅Wの大きさに
加工される。この時、MR素子1′及び反強磁性
体4の長さ方向と溝3の直線方向のなす角は所定
の値θに設定されている。又、MR素子1′及び
反強磁性体4の長さ方向の両端はMR素子1′に
センス電流Iを導入するための2つの電気端子5
が接続されている。従つて、電気端子5から導入
されるセンス電流Iは溝3の直接方向とθの角度
を成すことになる。
上述の多数の溝3の存在によりMR素子1′は
多数の幅l及びl′を有する短冊状MR素子6及び
7に磁気的に分割されることになる。この結果、
短冊状MR素子6及び7の長手方向の長さは
W/sinθの値を有することになる。この時前記特願 昭57−050586に開示された如く、反強磁性体4が
無い、即ちMR素子1′単独で存在する場合には
短冊状MR素子6及び7の長さW/sinθが幅l及び l′より充分大きければ、反強磁性体4が積層され
なくとも自らの形状異方性によつて短冊状MR素
子6及び7の長手方向に、磁化Mは向き易く、か
つ安定となり、更に、溝3の存在はMR素子1′
の電気的分割に何等寄与せず、従つて、センス電
流Iの方向は短冊状MR素子6及び7においても
連続である。つまり短冊状MR素子6及び7の磁
化MとMR素子1′のセンス電流Iは溝3によつ
て決定されるある値θ(望ましくは45度)をなす
ことになる。しかし、実際に、W/sinθ>>l(又は l′)を条件を満たすためには、例えばW=10μm、
θ=45°に設定(即ち、W/sinθ≒14μm)した場合 にはl(又はl′)は1μm以下が適切である。この
様な微小な幅を有する溝3を基板2上に形成する
には、前述した如く、レーザホログラフイや電子
線露光等の特殊な技術及び装置が必要となる。
又、W/sinθとl(又はl′)が同等の大きさの場合に は、例えば、上記の数値例でl(又はl′)が数μ
mの大きさでは、溝3は通常のフオトリソグラフ
イ技術を用いて加工できるものの、短冊状MR素
子6又は7の長さ方向の反磁界の影響が大きくな
り、磁化Mとセンス電流Iとのなす角はθに設定
できず、又、磁化Mは外部信号磁界に対して不安
定な挙動を示す。この結果バルクハウゼンノイズ
が生ずるという欠点をもたらす。
多数の幅l及びl′を有する短冊状MR素子6及び
7に磁気的に分割されることになる。この結果、
短冊状MR素子6及び7の長手方向の長さは
W/sinθの値を有することになる。この時前記特願 昭57−050586に開示された如く、反強磁性体4が
無い、即ちMR素子1′単独で存在する場合には
短冊状MR素子6及び7の長さW/sinθが幅l及び l′より充分大きければ、反強磁性体4が積層され
なくとも自らの形状異方性によつて短冊状MR素
子6及び7の長手方向に、磁化Mは向き易く、か
つ安定となり、更に、溝3の存在はMR素子1′
の電気的分割に何等寄与せず、従つて、センス電
流Iの方向は短冊状MR素子6及び7においても
連続である。つまり短冊状MR素子6及び7の磁
化MとMR素子1′のセンス電流Iは溝3によつ
て決定されるある値θ(望ましくは45度)をなす
ことになる。しかし、実際に、W/sinθ>>l(又は l′)を条件を満たすためには、例えばW=10μm、
θ=45°に設定(即ち、W/sinθ≒14μm)した場合 にはl(又はl′)は1μm以下が適切である。この
様な微小な幅を有する溝3を基板2上に形成する
には、前述した如く、レーザホログラフイや電子
線露光等の特殊な技術及び装置が必要となる。
又、W/sinθとl(又はl′)が同等の大きさの場合に は、例えば、上記の数値例でl(又はl′)が数μ
mの大きさでは、溝3は通常のフオトリソグラフ
イ技術を用いて加工できるものの、短冊状MR素
子6又は7の長さ方向の反磁界の影響が大きくな
り、磁化Mとセンス電流Iとのなす角はθに設定
できず、又、磁化Mは外部信号磁界に対して不安
定な挙動を示す。この結果バルクハウゼンノイズ
が生ずるという欠点をもたらす。
しかし、第3図に示す如く、MR素子1′と直
接交換相互作用を行う反強磁性体4が積層されて
いる場合は、W/sinθとl(又はl′)が同等の大きさ であつても、短冊状MR素子6及び7を含めた
MR素子1′の磁化Mは反強磁性体4のMR素子
1′と接する原子層の持つ磁化の方向に一致する
ため、反強磁性体4の磁化を溝3の直線方向と略
平行となる様に設定すれば短冊状MR素子6及び
7の磁化Mを溝3の直線方向と略平行に設定でき
る。
接交換相互作用を行う反強磁性体4が積層されて
いる場合は、W/sinθとl(又はl′)が同等の大きさ であつても、短冊状MR素子6及び7を含めた
MR素子1′の磁化Mは反強磁性体4のMR素子
1′と接する原子層の持つ磁化の方向に一致する
ため、反強磁性体4の磁化を溝3の直線方向と略
平行となる様に設定すれば短冊状MR素子6及び
7の磁化Mを溝3の直線方向と略平行に設定でき
る。
従つて、本発明のMR素子1′に外部信号磁界
が印加されると、反強磁性体4の磁化は常に溝3
の直線方向に規定されているため短冊状MR素子
6及び7の磁化Mはθと起点として外部信号磁界
の強さに応じて滑らかな回転をし、突飛な磁化反
転及び磁壁の移動等の不安定な磁化Mの挙動(す
なわちバルクハウゼンノイズ)が抑制される。こ
のように従来技術の難点であるところの微小な溝
加工を必要とせず、しかも、磁化回転を伴う領
域、即ち外部信号磁界に対して線形な抵抗変化を
示す領域が広くなり、バルクハウゼンノイズも消
滅する。更に、本発明では、MR素子1′が多数
の短冊状MR素子6及び7に磁気的に分割されて
いるため、MR素子1′の幅方向の両端における
反磁界は溝3が存在しない場合に比して、極めて
小さくなるので、反強磁性体4の均一なバイアス
磁界によつてMR素子1′の幅方向の全領域にわ
たつて磁化Mとセンス電流Iを所定の角度に設定
できる。従つて、溝3が存在しない場合に比し
て、MR素子1′の幅方向の両端付近での検出感
度が大きく向上する。
が印加されると、反強磁性体4の磁化は常に溝3
の直線方向に規定されているため短冊状MR素子
6及び7の磁化Mはθと起点として外部信号磁界
の強さに応じて滑らかな回転をし、突飛な磁化反
転及び磁壁の移動等の不安定な磁化Mの挙動(す
なわちバルクハウゼンノイズ)が抑制される。こ
のように従来技術の難点であるところの微小な溝
加工を必要とせず、しかも、磁化回転を伴う領
域、即ち外部信号磁界に対して線形な抵抗変化を
示す領域が広くなり、バルクハウゼンノイズも消
滅する。更に、本発明では、MR素子1′が多数
の短冊状MR素子6及び7に磁気的に分割されて
いるため、MR素子1′の幅方向の両端における
反磁界は溝3が存在しない場合に比して、極めて
小さくなるので、反強磁性体4の均一なバイアス
磁界によつてMR素子1′の幅方向の全領域にわ
たつて磁化Mとセンス電流Iを所定の角度に設定
できる。従つて、溝3が存在しない場合に比し
て、MR素子1′の幅方向の両端付近での検出感
度が大きく向上する。
以上、述べた様に、本発明のMR素子は、基板
材に形成された多数の直線状の溝によつて、その
上に形成されたMR素子は多数の短冊状に分割さ
れ、MR素子の幅方向の反磁界を実質的に軽減さ
せ、MR素子の磁化Mは直線状の溝方向に向き易
くなつている。従つてMR素子の上に形成された
反強磁性体による直接交換相互作用を介してのバ
イアス磁界によつて、MR素子の幅方向に対し
て、ほぼ全領域で磁化Mはセンス電流Iと任意の
角度(望ましくは45度)に設定できる。しかも、
多数の直線状の溝のピツチは通常のフオトリソグ
ラフイで加工できる数μmオーダでよいので従来
の溝加工に伴う技術的困難さや、大がかりな装置
の必要性を解消することができる。
材に形成された多数の直線状の溝によつて、その
上に形成されたMR素子は多数の短冊状に分割さ
れ、MR素子の幅方向の反磁界を実質的に軽減さ
せ、MR素子の磁化Mは直線状の溝方向に向き易
くなつている。従つてMR素子の上に形成された
反強磁性体による直接交換相互作用を介してのバ
イアス磁界によつて、MR素子の幅方向に対し
て、ほぼ全領域で磁化Mはセンス電流Iと任意の
角度(望ましくは45度)に設定できる。しかも、
多数の直線状の溝のピツチは通常のフオトリソグ
ラフイで加工できる数μmオーダでよいので従来
の溝加工に伴う技術的困難さや、大がかりな装置
の必要性を解消することができる。
更に本発明は、反強磁性体として電気的導電体
を用いると好適である。導電性の反強磁性体は、
例えばMh−Fe合金が好適である。Mh−Fe合金
とMR素子、特にNi−Fe合金のMR素子の直接交
換相互作用に関しては既に、IEEE
Transactions on Magnetics1978年、第14巻、
521〜523ページに記載のR.D.Hempstead氏等に
よる論文“Unidirectional Anisotropy in
Nickel−Iron Films by Exchange Coupling
with Antiferromagnetic Films”に報告すれて
いる。この論文では、反強磁性体としてMn50%
−Fe50%合金(いずれも重量パーセント)を用
いて略30エルステツドのバイアス磁界を得てい
る。
を用いると好適である。導電性の反強磁性体は、
例えばMh−Fe合金が好適である。Mh−Fe合金
とMR素子、特にNi−Fe合金のMR素子の直接交
換相互作用に関しては既に、IEEE
Transactions on Magnetics1978年、第14巻、
521〜523ページに記載のR.D.Hempstead氏等に
よる論文“Unidirectional Anisotropy in
Nickel−Iron Films by Exchange Coupling
with Antiferromagnetic Films”に報告すれて
いる。この論文では、反強磁性体としてMn50%
−Fe50%合金(いずれも重量パーセント)を用
いて略30エルステツドのバイアス磁界を得てい
る。
この様な導電性反強磁性体をMR素子と積層す
ることにより、MR素子に供給されるセンス電流
は反強磁性体にも分流し、反強磁性体に分流した
電流による磁界を利用して、MR素子の磁化Mと
センス電流Iのなす角を微調できる。しかも、こ
の場合は、前述した従来技術の如く、大きな電流
は必要とせず、従つて、磁気記憶媒体上の情報を
破壊する恐れはなく、MR素子の電気抵抗の熱的
ドリフト、及び熱雑音の発生の恐れもない。尚反
強磁性体に分流する電流の大きさは、センス電流
の大きさを変えるか、反強磁性体の膜厚を変えれ
ば良い。
ることにより、MR素子に供給されるセンス電流
は反強磁性体にも分流し、反強磁性体に分流した
電流による磁界を利用して、MR素子の磁化Mと
センス電流Iのなす角を微調できる。しかも、こ
の場合は、前述した従来技術の如く、大きな電流
は必要とせず、従つて、磁気記憶媒体上の情報を
破壊する恐れはなく、MR素子の電気抵抗の熱的
ドリフト、及び熱雑音の発生の恐れもない。尚反
強磁性体に分流する電流の大きさは、センス電流
の大きさを変えるか、反強磁性体の膜厚を変えれ
ば良い。
更に、反強磁性体に電気的導電体を用いる他の
利点は、溝上に形成されたMR素子は、溝の深さ
が大きくなれば、電気的に切断され易く、導通が
不安定な状態になるが、導電性反強磁性体が存在
することにより、導電性領域(即ちMR素子の厚
みと、反強磁性体の厚みの総和)が増加し、その
分だけ、MR素子は全体として電気的に安定とな
ることである。即ち、溝の深さより、MR素子及
び反強磁性体の厚みの総和が大きければ、MR素
子はセンス電流によつて切断されることはない。
利点は、溝上に形成されたMR素子は、溝の深さ
が大きくなれば、電気的に切断され易く、導通が
不安定な状態になるが、導電性反強磁性体が存在
することにより、導電性領域(即ちMR素子の厚
みと、反強磁性体の厚みの総和)が増加し、その
分だけ、MR素子は全体として電気的に安定とな
ることである。即ち、溝の深さより、MR素子及
び反強磁性体の厚みの総和が大きければ、MR素
子はセンス電流によつて切断されることはない。
以上、本発明を絶縁性基板材に直接溝を形成
し、その上にMR素子と反強磁性体が形成された
実施例について述べたが、他の実施例を第4図に
示す。
し、その上にMR素子と反強磁性体が形成された
実施例について述べたが、他の実施例を第4図に
示す。
第4図は、表面の滑らかな基板材2に直接反強
磁性体4を形成し、前記反強磁体4はフオトレジ
スト及びエツチング液又はイオンミリング等の方
法により幅l、ピツチl+l′の値を有する多数の
直線的な溝3がそれぞれ略平行となるように形成
され、ついで、この溝3を覆うようにMR素子
1′がスパツタ、蒸着等の手法により形成された
構成を有する。かかる構成を取ることにより、反
強磁性体4が電気的絶縁体であれば、基板材4は
絶縁性である必要はなく、導電性の例えば、Siウ
エフアー等も使用でき基板材4の選択の幅が広が
る特徴がある。
磁性体4を形成し、前記反強磁体4はフオトレジ
スト及びエツチング液又はイオンミリング等の方
法により幅l、ピツチl+l′の値を有する多数の
直線的な溝3がそれぞれ略平行となるように形成
され、ついで、この溝3を覆うようにMR素子
1′がスパツタ、蒸着等の手法により形成された
構成を有する。かかる構成を取ることにより、反
強磁性体4が電気的絶縁体であれば、基板材4は
絶縁性である必要はなく、導電性の例えば、Siウ
エフアー等も使用でき基板材4の選択の幅が広が
る特徴がある。
以上述べた様に、本発明によれば、良好なバイ
アス状態を実現したMRヘツドを提供できる。
アス状態を実現したMRヘツドを提供できる。
第1図及び第2図は従来のMR素子の構成を示
す概略図、第3図は本発明の実施例を示す概略斜
視図、第4図は本発明の他の実施例を示す概略斜
視図である。 図において、1及び1′はMR素子、2は基板
材、3は溝、4は反強磁性体を示す。
す概略図、第3図は本発明の実施例を示す概略斜
視図、第4図は本発明の他の実施例を示す概略斜
視図である。 図において、1及び1′はMR素子、2は基板
材、3は溝、4は反強磁性体を示す。
Claims (1)
- 【特許請求の範囲】 1 強磁性磁気抵抗効果素子が、これと磁気的交
換結合を行い得る反強磁性体とで積層された磁気
抵抗効果ヘツドにおいて、前記強磁性磁気抵抗効
果素子を形成する基板の表面、もしくは前記反強
磁性体の前記強磁性磁気抵抗効果素子と接触する
表面が1個又は複数個の相互に平行で直線状の凸
部又は凹部を有することを特徴とする磁気抵抗効
果ヘツド。 2 反強磁性体が電気的良導体である特許請求の
範囲第1項記載の磁気抵抗効果ヘツド。 3 反強磁性体がMn−Fe合金であることを特徴
とする特許請求の範囲第1項又は第2項記載の磁
気抵抗効果ヘツド。 4 強磁性磁気抵抗効果素子の磁化容易軸が前記
直線状の溝と略平行であることを特徴とする特許
の範囲第1項記載の磁気抵抗効果ヘツド。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3762883A JPS59162615A (ja) | 1983-03-08 | 1983-03-08 | 磁気抵抗効果ヘッド |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3762883A JPS59162615A (ja) | 1983-03-08 | 1983-03-08 | 磁気抵抗効果ヘッド |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59162615A JPS59162615A (ja) | 1984-09-13 |
JPH048845B2 true JPH048845B2 (ja) | 1992-02-18 |
Family
ID=12502898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3762883A Granted JPS59162615A (ja) | 1983-03-08 | 1983-03-08 | 磁気抵抗効果ヘッド |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59162615A (ja) |
-
1983
- 1983-03-08 JP JP3762883A patent/JPS59162615A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59162615A (ja) | 1984-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4896235A (en) | Magnetic transducer head utilizing magnetoresistance effect | |
US5379172A (en) | Laminated leg for thin film magnetic transducer | |
US5705926A (en) | Magnetic sensor and magnetic field sensing method of using same based on impedance changes of a high frequency supplied conductor | |
JPH11354860A (ja) | スピンバルブ磁気変換素子及び磁気ヘッド | |
JPH0950613A (ja) | 磁気抵抗効果素子及び磁界検出装置 | |
JP2001155313A (ja) | 薄膜磁気ヘッド及びその製造方法 | |
JPH10283616A (ja) | 磁気抵抗効果型複合ヘッド及びその製造方法並びに磁気記憶装置 | |
EP1193692B1 (en) | Spin-valve magnetoresistance effect head, composite magnetic head comprising the same, and magnetoresistance recorded medium drive | |
JP2005109243A (ja) | 磁気抵抗効果素子及び磁気ヘッド | |
JPH07192227A (ja) | 磁気抵抗効果型磁気ヘッド | |
JP2000113421A (ja) | 磁気トンネル接合磁気抵抗ヘッド | |
US5959809A (en) | Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus | |
JP2005109242A (ja) | 磁気抵抗効果素子及び磁気ヘッド | |
JP2001202605A (ja) | 磁気抵抗効果素子の製造方法 | |
JPH048845B2 (ja) | ||
EP0482642B1 (en) | Composite magnetoresistive thin-film magnetic head | |
JPH0473210B2 (ja) | ||
JPH10269532A (ja) | スピンバルブ型磁気抵抗効果ヘッド | |
JPH0440776B2 (ja) | ||
JP2508475B2 (ja) | 磁気抵抗効果型磁気ヘツド | |
JPH026490Y2 (ja) | ||
JP2596010B2 (ja) | 磁気抵抗効果型磁気ヘッド | |
JP3210139B2 (ja) | 磁気抵抗効果型磁気ヘッド | |
JPH09115112A (ja) | 磁気抵抗効果素子およびその製造方法ならびに磁気ヘッド | |
JPH0444323B2 (ja) |