JPH0486505A - Strain resistance device - Google Patents

Strain resistance device

Info

Publication number
JPH0486505A
JPH0486505A JP20267890A JP20267890A JPH0486505A JP H0486505 A JPH0486505 A JP H0486505A JP 20267890 A JP20267890 A JP 20267890A JP 20267890 A JP20267890 A JP 20267890A JP H0486505 A JPH0486505 A JP H0486505A
Authority
JP
Japan
Prior art keywords
strain
thin film
strain gauge
doping
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20267890A
Other languages
Japanese (ja)
Inventor
Katsuji Sakai
酒井 勝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP20267890A priority Critical patent/JPH0486505A/en
Publication of JPH0486505A publication Critical patent/JPH0486505A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the balance of a resistance bridge proper by changing the amount of doping of an impurity in a part of a strain gage and by balancing a bridge circuit thereby electrically. CONSTITUTION:An insulating layer of a silane oxide is formed on the surface of the base 1 of a cantilever formed of a copper alloy or the like, and an amorphous silicon thin film doped with boron B as a prescribed impurity is formed on the surface of the insulating layer, using silane and diborane as reaction gases. Next, hydrogen in the amorphous silicon thin film is released by heat treatment, an excimer laser is applied to a place wherein strain gages 21 to 24 are to be formed, so as to denature a part of the amorphous silicon thin film into polysilicon, and thereby the strain gages 21 to 24 are formed. Moreover, vacuum evaporation of aluminum is executed and thereby electrodes 3 are formed so that the strain gages 21 to 24 may form a full bridge. With a doping gas supplied, then, a part (a) of the strain gage 24 is irradiated with a laser and the boron B is doped in the part (a), so that a bridge circuit be balanced electrically.

Description

【発明の詳細な説明】 れている歪抵抗装置に関し、特に歪ゲージで形成される
抵抗ブリッジのバランスを適正なものとするための調整
手段に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a strain resistance device, and particularly to an adjusting means for properly balancing a resistance bridge formed by a strain gauge.

〔従来の技術〕[Conventional technology]

歪抵抗装置は、機械歪による電気抵抗の変化所謂ピエゾ
抵抗効果を利用したもので、ピエゾ抵抗効果を奏する歪
ゲージを、機械的応力を受は歪を生ずる起歪体に付設し
、起歪体の変動を電気抵抗の変化として検知し、この抵
抗値変化に基づいて起歪体に加わった応力を計測し、被
測定対象である圧力や加速度を検出するものである。具
体的には起歪体を片持支持としたカンチレバータイプや
、枠体に膜を張設したダイヤフラムタイプのものが存在
し、歪ゲージによる分類としては歪ゲージにその表面に
歪ゲージを拡散により形成する拡散型、更には起歪体の
表面に直接半導体薄膜による歪ゲージを形成する半導体
薄膜型等が知られている。
A strain resistance device utilizes the so-called piezoresistance effect, which is a change in electrical resistance due to mechanical strain. This method detects fluctuations in electrical resistance as changes in electrical resistance, measures the stress applied to the strain body based on this change in resistance value, and detects the pressure and acceleration of the object to be measured. Specifically, there are cantilever types in which the strain-generating body is cantilever-supported, and diaphragm types in which a membrane is stretched over the frame.Classification by strain gauges includes strain gauges with strain gauges attached to the surface by diffusion. A diffusion type in which a strain gauge is formed, and a semiconductor thin film type in which a strain gauge is formed by a semiconductor thin film directly on the surface of a strain generating body are known.

前記の各タイプの内生導体薄膜型が検出感度及び耐久性
のバランスの良さから最も使い易いものと注目されてい
る。
The endogenous conductor thin film type described above is attracting attention as being the easiest to use because of its well-balanced detection sensitivity and durability.

ところで半導体薄膜型の歪抵抗装置は、起歪体(カンチ
レバー本体又はダイヤプラム膜体)の表面に周知の半導
体薄膜製造技術で半導体薄膜型の歪ゲージを形成するも
のであるが、歪ゲージは所定の個所に4個形成し、これ
をブリッジ回路に接続し、抵抗値の変化を電圧値の変化
として検出している。具体的には第5図の回路図に示す
通り、右回りに歪ゲージたる抵抗R1,R1,Rs、R
aをループ状に接続しくブリッジ回路接続)、RIR。
By the way, in a semiconductor thin film type strain resistance device, a semiconductor thin film type strain gauge is formed on the surface of a strain generating body (cantilever main body or diaphragm membrane body) using a well-known semiconductor thin film manufacturing technology. Four resistors are formed at the locations shown in FIG. 1, and connected to a bridge circuit to detect a change in resistance value as a change in voltage value. Specifically, as shown in the circuit diagram of Fig. 5, resistors R1, R1, Rs, R as strain gauges are connected clockwise.
a into a loop (bridge circuit connection), RIR.

接続点とR,R,接続点との間に所定の電圧■。を印加
し、Rr Rz接続点とRs Ra接続点とから検出出
力Voutを取り出すが、予め各抵抗の抵抗値において
R5・Rs = Rz・R4が成立しているとVOLI
會=0であり、抵抗R,及びR1の抵抗値が歪によって
変化することでV our≠0となり歪の程度が検出さ
れるものである。従って起歪体上に半導体薄膜型の歪ゲ
ージを形成する際には前記の条件を満足させる必要があ
る。しかし、各歪ゲージを設計通り誤差がない状態に形
成することは現実上困難である。このため起歪体上に歪
ゲージを形成した後、前記のブリッジ回路のバランス調
節を行っていたものである。
A predetermined voltage ■ between the connection point and R, R, and the connection point. is applied and the detection output Vout is extracted from the Rr Rz connection point and Rs Ra connection point, but if R5・Rs = Rz・R4 is established in advance at the resistance value of each resistor, VOLI
V = 0, and the resistance values of the resistors R and R1 change due to strain, so that V our≠0 and the degree of strain is detected. Therefore, when forming a semiconductor thin film type strain gauge on a strain-generating body, it is necessary to satisfy the above-mentioned conditions. However, it is actually difficult to form each strain gauge without error as designed. For this reason, the balance of the bridge circuit was adjusted after forming a strain gauge on the strain body.

従来のバランス調整手段は、第6図に示すように可変抵
抗Rxを外部回路として付加し、可変抵抗Rxの調整で
ブリッジ回路の平衡を実現したものである。
In the conventional balance adjustment means, a variable resistor Rx is added as an external circuit as shown in FIG. 6, and the balance of the bridge circuit is realized by adjusting the variable resistor Rx.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したように半導体薄膜型の歪抵抗装置には、歪ゲー
ジブリッジ回路の平衡を実現するための調整が必要であ
り、而も従前の調整手段としては外部調整抵抗の接続が
採用されている。しかし、外部調整抵抗を用いることは
、装置の小型化達成の大きな障害であり、また被測定個
所の雰囲気条件の変化によってブリッジ回路の平衡調整
程度も相違し、更には外部調整抵抗と被測定個所即ち歪
ゲージの雰囲気条件に変化が生じても対応できない等の
技術的課題を有している。
As mentioned above, the semiconductor thin film type strain resistance device requires adjustment to achieve balance of the strain gauge bridge circuit, and the conventional adjustment means employs connection of an external adjustment resistor. However, using an external adjustment resistor is a major obstacle to achieving miniaturization of the device, and the degree of balance adjustment of the bridge circuit also differs depending on changes in the atmospheric conditions at the location to be measured. That is, there are technical problems such as the inability to cope with changes in the atmospheric conditions of the strain gauge.

そこで本発明は、歪ゲージそのものの抵抗値調整によっ
てブリッジ回路の平衡を達成する手段を提案したもので
ある。
Therefore, the present invention proposes a means for achieving balance in the bridge circuit by adjusting the resistance value of the strain gauge itself.

〔課題を解決するための手段] 本発明に係る歪抵抗装置は、起歪体上にプリンジ接続し
たポリシリコン薄膜による歪ゲージを形成してなる歪抵
抗装置に於いて、歪ゲージの一部の不純物ドープ量を変
化させ前記ブリッジ回路を電気的に平衡せしめたことを
特徴とするものである。また、特に前記の歪ゲージの一
部に不純物を選択的にドープピングする手段として、レ
ーザードーピングを採用したことに特徴を有するもので
ある。
[Means for Solving the Problems] A strain resistance device according to the present invention is a strain resistance device in which a strain gauge is formed by a polysilicon thin film that is principally connected on a strain body. The present invention is characterized in that the bridge circuit is electrically balanced by varying the amount of impurity doping. Further, the present invention is particularly characterized in that laser doping is employed as a means for selectively doping a portion of the strain gauge with impurities.

〔作用〕[Effect]

ポリシリコン抵抗の抵抗率は不純物のドープ量によって
左右する。従って同一のドープ条件で一旦歪ゲージを形
成した後、歪ゲージのブリッジ回路が平衡でない場合に
、歪ゲージの一部のドープ量を変化せしめ歪ゲージの抵
抗値を調整すると、歪ゲージのブリッジ回路の平衡が実
現する。更に、前記のドープ量変化手段としてレーザー
ドーピングを採用するとドープ量を変化せしめる範囲を
容易に選択できる。
The resistivity of a polysilicon resistor depends on the amount of impurity doped. Therefore, after forming a strain gauge under the same doping conditions, if the bridge circuit of the strain gauge is not balanced, if the doping amount of a part of the strain gauge is changed and the resistance value of the strain gauge is adjusted, the bridge circuit of the strain gauge equilibrium is achieved. Furthermore, if laser doping is employed as the doping amount changing means, the range in which the doping amount is changed can be easily selected.

〔実施例〕〔Example〕

次に本発明の実施例をカンチレバータイプの歪抵抗装置
の場合を例にして説明する。
Next, an embodiment of the present invention will be described using a cantilever type strain resistance device as an example.

カンチレバータイプの抵抗装置は、片持支持される基板
1表面にポリシリコン薄膜からなる歪ゲージを形成して
なるもので、前記形成手段は常法の薄膜製造技術で実施
できるが、次に本発明に最適と認められる製造工程に基
づいて説明する。
A cantilever type resistance device is formed by forming a strain gauge made of a polysilicon thin film on the surface of a substrate 1 supported in a cantilever manner. The explanation will be based on the manufacturing process that is recognized as the most suitable.

銅合金、ニッケル基合金、ステンレス鋼等で形成された
カンチレバーの基板1の表面にP−CVD法によって酸
化シラン(Stow)の絶縁層を形成し、次に反応ガス
をシラン(Sins)及びジボラン(82H&)として
同様にP−CVD法で絶縁層の表面に所定の不純物とし
てボロン(B)がドーピングされたアモルファスシリコ
ン薄膜を形成する0次に適宜な熱処理を施して、アモル
ファスシリコン薄膜内の水素を放出せしめ、歪ゲージ2
1.22.23.24 (R1+ Rz、R3,R4)
を形成せんとする個所にエキシマレーザを照射してアニ
ールを施し、前記アモルファスシリコン薄膜の一部をポ
リシリコンに変性せしめ、所定のパターニングを行って
歪ゲージ21〜24を形成する。更にアルミニウムの真
空蒸着並びにパターニングを行って歪ゲージ21〜24
がフルブリッジ接続となるように電極3を形成する。
An insulating layer of silane oxide (Stow) is formed on the surface of the cantilever substrate 1 made of copper alloy, nickel-based alloy, stainless steel, etc. by the P-CVD method, and then a reactive gas is added to silane (Sins) and diborane (Stow). 82H&), an amorphous silicon thin film doped with boron (B) as a predetermined impurity is formed on the surface of the insulating layer using the P-CVD method. Next, an appropriate heat treatment is performed to remove the hydrogen in the amorphous silicon thin film. Release, strain gauge 2
1.22.23.24 (R1+ Rz, R3, R4)
An excimer laser is irradiated onto the portion where the amorphous silicon film is to be formed to anneal the amorphous silicon thin film to transform it into polysilicon, followed by predetermined patterning to form the strain gauges 21-24. Furthermore, vacuum evaporation and patterning of aluminum are performed to form strain gauges 21 to 24.
The electrode 3 is formed so as to form a full bridge connection.

以上が歪抵抗装置の形成工程で、本発明は更に歪ゲージ
のブリッジ回路の平衡を実現するため、第3図に示すよ
うにドーピングガス(ジボラン二B!H&)を供給しな
がら、歪ゲージ24の一部aをレーザーAで照射し、前
記歪ゲージ24の一部aにボロン(B)をドープするも
のである。従って前記のドープの範囲及び量によって歪
ゲージ24の抵抗値は変化するので、第5図におけるV
out−0が成立するまで、歪ゲージ24の抵抗値を調
整するものである。
The above is the process of forming the strain resistance device.The present invention further provides a method for forming the strain gauge 24 while supplying doping gas (diborane2B!H&) as shown in FIG. A part a of the strain gauge 24 is irradiated with a laser A to dope the part a of the strain gauge 24 with boron (B). Therefore, since the resistance value of the strain gauge 24 changes depending on the range and amount of doping, V in FIG.
The resistance value of the strain gauge 24 is adjusted until out-0 is established.

4を付設し、歪抵抗装置本体5に他端を片持支持せしめ
、加速度センサ等に利用するものである。
4, and the other end is cantilever-supported by the strain resistance device main body 5, and is used as an acceleration sensor or the like.

尚、本発明は前記実施例に限定されるものでな(、歪ゲ
ージとしてポリシリコン薄膜を採用してフルブリッジ接
続してなるものであれば、カンチレバータイプ以外のダ
イヤフラムタイプのものにも適用され、また歪ゲージと
なるポリシリコン薄膜の形成手段は任意である。
It should be noted that the present invention is not limited to the above-mentioned embodiments (but can also be applied to diaphragm type strain gauges other than the cantilever type, as long as they are made of a polysilicon thin film and are connected in a full bridge manner). Furthermore, the method for forming the polysilicon thin film serving as the strain gauge is arbitrary.

〔発明の効果] 本発明は以上のように歪ゲージにポリシリコン薄膜を採
用し、且つ歪ゲージをフルブリッジ接続してなる歪抵抗
装置に於いて、歪ゲージの一部に不純物ドーピングを施
して抵抗値の調整を行ってブリッジ回路の平衡を実現し
たもので、従来の調整用外部抵抗を必要としないため、
外部調整抵抗を原因とする種々の技術的課題は一挙に解
決したものである。
[Effects of the Invention] As described above, the present invention provides a strain resistance device in which a polysilicon thin film is used as a strain gauge and the strain gauge is connected in a full bridge, by doping a part of the strain gauge with an impurity. The bridge circuit is balanced by adjusting the resistance value, and does not require the conventional external adjustment resistor.
Various technical problems caused by external adjustment resistors are solved at once.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はカンチレバー基板の平面図、第2図は同一部拡
大図、第3図はレーザードーピング実施状態を示し、第
4図はカンチレバーの組み込み状態を示し、第5図は歪
ゲージのブリッジ回路図、第6図は従来の調整例の回路
図である。 1一基板 21、22.23.24−一一歪ゲージ(抵抗体)3・
・−電極 4−重り 5−装置本体
Fig. 1 is a plan view of the cantilever substrate, Fig. 2 is an enlarged view of the same part, Fig. 3 shows the state of laser doping, Fig. 4 shows the assembled state of the cantilever, and Fig. 5 shows the bridge circuit of the strain gauge. 6 are circuit diagrams of conventional adjustment examples. 1-board 21, 22.23.24-11 strain gauge (resistor) 3.
・-Electrode 4-Weight 5-Device body

Claims (2)

【特許請求の範囲】[Claims] (1)起歪体上にブリッジ接続したポリシリコン薄膜に
よる歪ゲージを形成してなる歪抵抗装置に於いて、歪ゲ
ージの一部の不純物ドープ量を変化させ、前記ブリッジ
回路を電気的に平衡せしめたことを特徴とする歪抵抗装
置。
(1) In a strain resistance device in which a strain gauge is formed by a polysilicon thin film bridge-connected on a strain body, the amount of impurity doping in a part of the strain gauge is changed to electrically balance the bridge circuit. A strain resistance device characterized by:
(2)請求項第一項記載の歪抵抗装置に於いて、選択的
レーザードーピングによって歪ゲージの一部の不純物の
ドープ量を変化せしめてなることを特徴とする歪抵抗装
置。
(2) The strain resistance device according to claim 1, wherein the amount of impurity doped in a part of the strain gauge is changed by selective laser doping.
JP20267890A 1990-07-31 1990-07-31 Strain resistance device Pending JPH0486505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20267890A JPH0486505A (en) 1990-07-31 1990-07-31 Strain resistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20267890A JPH0486505A (en) 1990-07-31 1990-07-31 Strain resistance device

Publications (1)

Publication Number Publication Date
JPH0486505A true JPH0486505A (en) 1992-03-19

Family

ID=16461346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20267890A Pending JPH0486505A (en) 1990-07-31 1990-07-31 Strain resistance device

Country Status (1)

Country Link
JP (1) JPH0486505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371747A (en) * 2015-12-04 2016-03-02 浙江工业大学 Laterally-distributed six-sensitive-grid full-bridge metal foil gauge capable of measurement of double-side outer lateral partial derivatives
CN105588510A (en) * 2015-12-04 2016-05-18 浙江工业大学 Axially distributed six-sensitive grid full-bridge three-interdigital metal strain gauge capable of measuring outer axial partial derivatives of double side pieces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371747A (en) * 2015-12-04 2016-03-02 浙江工业大学 Laterally-distributed six-sensitive-grid full-bridge metal foil gauge capable of measurement of double-side outer lateral partial derivatives
CN105588510A (en) * 2015-12-04 2016-05-18 浙江工业大学 Axially distributed six-sensitive grid full-bridge three-interdigital metal strain gauge capable of measuring outer axial partial derivatives of double side pieces

Similar Documents

Publication Publication Date Title
US3858150A (en) Polycrystalline silicon pressure sensor
US4622856A (en) Sensor with polycrystalline silicon resistors
JP3166015B2 (en) Force conversion element and pressure detection circuit using the same
US5622901A (en) Method of forming a semiconductor strain sensor
JPS59158566A (en) Semiconductor acceleration sensor
JPH0486505A (en) Strain resistance device
JPS6410109B2 (en)
JPH0486535A (en) Resistance bridge in strain resistance apparatus
US4106349A (en) Transducer structures for high pressure application
JP2715738B2 (en) Semiconductor stress detector
JPH04249703A (en) Strain resistance apparatus
JPH04140602A (en) Strain gauge resistance apparatus
JPS62187230A (en) Force detecting element
JPH0830716B2 (en) Semiconductor acceleration detector
JPS63102377A (en) Manufacture of thin film pressure sensor
JPH055750A (en) Semiconductor acceleration sensor
JP3509336B2 (en) Integrated sensor
JPH06160221A (en) Wiring pattern of strain sensor
JP2011027611A (en) Semiconductor pressure sensor, and method for manufacturing the same
JPH03248577A (en) Pressure sensor
JP2001272203A (en) Distortion measuring apparatus
JPH04164373A (en) Manufacture of thin film semiconductor resistance device
JPH0412236A (en) Distortion resistance device
SU934257A1 (en) Semiconductor strain-gauge transducer
JPH0835897A (en) Resistor for adjustment of pressure sensor